1
|
Tedford RJ, Leacche M, Lorts A, Drakos SG, Pagani FD, Cowger J. Durable Mechanical Circulatory Support: JACC Scientific Statement. J Am Coll Cardiol 2023; 82:1464-1481. [PMID: 37758441 DOI: 10.1016/j.jacc.2023.07.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/01/2023] [Accepted: 07/12/2023] [Indexed: 10/03/2023]
Abstract
Despite advances in medical therapy for patients with stage C heart failure (HF), survival for patients with advanced HF is <20% at 5 years. Durable left ventricular assist device (dLVAD) support is an important treatment option for patients with advanced HF. Innovations in dLVAD technology have reduced the risk of several adverse events, including pump thrombosis, stroke, and bleeding. Average patient survival is now similar to that of heart transplantation at 2 years, with 5-year dLVAD survival now approaching 60%. Unfortunately, greater adoption of dLVAD therapy has not been realized due to delayed referral of patients to advanced HF centers, insufficient clinician knowledge of contemporary dLVAD outcomes (including gains in quality of life), and deprioritization of patients with dLVAD support waiting for heart transplantation. Despite these challenges, novel devices are on the horizon of clinical investigation, offering smaller size, permitting less invasive surgical implantation, and eliminating the percutaneous lead for power supply.
Collapse
Affiliation(s)
- Ryan J Tedford
- Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | | | |
Collapse
|
2
|
Kyriakopoulos CP, Taleb I, Drakos SG. Does cardiac recovery favorably impact adverse events and outcomes of LVAD patients? J Heart Lung Transplant 2022; 41:1029-1031. [PMID: 35878939 PMCID: PMC9990470 DOI: 10.1016/j.healun.2022.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/09/2022] [Accepted: 05/15/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Christos P Kyriakopoulos
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah Health & School of Medicine, Salt Lake City, Utah, USA; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, USA
| | - Iosif Taleb
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah Health & School of Medicine, Salt Lake City, Utah, USA; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, USA
| | - Stavros G Drakos
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah Health & School of Medicine, Salt Lake City, Utah, USA; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
3
|
Kyriakopoulos CP, Kapelios CJ, Stauder EL, Taleb I, Hamouche R, Sideris K, Koliopoulou AG, Bonios MJ, Drakos SG. LVAD as a Bridge to Remission from Advanced Heart Failure: Current Data and Opportunities for Improvement. J Clin Med 2022; 11:3542. [PMID: 35743611 PMCID: PMC9225013 DOI: 10.3390/jcm11123542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Left ventricular assist devices (LVADs) are an established treatment modality for advanced heart failure (HF). It has been shown that through volume and pressure unloading they can lead to significant functional and structural cardiac improvement, allowing LVAD support withdrawal in a subset of patients. In the first part of this review, we discuss the historical background, current evidence on the incidence and assessment of LVAD-mediated cardiac recovery, and out-comes including quality of life after LVAD support withdrawal. In the second part, we discuss current and future opportunities to promote LVAD-mediated reverse remodeling and improve our pathophysiological understanding of HF and recovery for the benefit of the greater HF population.
Collapse
Affiliation(s)
- Christos P. Kyriakopoulos
- Divisions of Cardiovascular Medicine and Cardiothoracic Surgery, University of Utah Health & School of Medicine, Salt Lake City, UT 84132, USA; (C.P.K.); (C.J.K.); (E.L.S.); (I.T.); (K.S.); (A.G.K.); (M.J.B.)
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Chris J. Kapelios
- Divisions of Cardiovascular Medicine and Cardiothoracic Surgery, University of Utah Health & School of Medicine, Salt Lake City, UT 84132, USA; (C.P.K.); (C.J.K.); (E.L.S.); (I.T.); (K.S.); (A.G.K.); (M.J.B.)
| | - Elizabeth L. Stauder
- Divisions of Cardiovascular Medicine and Cardiothoracic Surgery, University of Utah Health & School of Medicine, Salt Lake City, UT 84132, USA; (C.P.K.); (C.J.K.); (E.L.S.); (I.T.); (K.S.); (A.G.K.); (M.J.B.)
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Iosif Taleb
- Divisions of Cardiovascular Medicine and Cardiothoracic Surgery, University of Utah Health & School of Medicine, Salt Lake City, UT 84132, USA; (C.P.K.); (C.J.K.); (E.L.S.); (I.T.); (K.S.); (A.G.K.); (M.J.B.)
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Rana Hamouche
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Konstantinos Sideris
- Divisions of Cardiovascular Medicine and Cardiothoracic Surgery, University of Utah Health & School of Medicine, Salt Lake City, UT 84132, USA; (C.P.K.); (C.J.K.); (E.L.S.); (I.T.); (K.S.); (A.G.K.); (M.J.B.)
| | - Antigone G. Koliopoulou
- Divisions of Cardiovascular Medicine and Cardiothoracic Surgery, University of Utah Health & School of Medicine, Salt Lake City, UT 84132, USA; (C.P.K.); (C.J.K.); (E.L.S.); (I.T.); (K.S.); (A.G.K.); (M.J.B.)
- Divisions of Cardiology & Cardiothoracic Surgery, Onassis Cardiac Surgery Center, 17674 Athens, Greece
| | - Michael J. Bonios
- Divisions of Cardiovascular Medicine and Cardiothoracic Surgery, University of Utah Health & School of Medicine, Salt Lake City, UT 84132, USA; (C.P.K.); (C.J.K.); (E.L.S.); (I.T.); (K.S.); (A.G.K.); (M.J.B.)
- Divisions of Cardiology & Cardiothoracic Surgery, Onassis Cardiac Surgery Center, 17674 Athens, Greece
| | - Stavros G. Drakos
- Divisions of Cardiovascular Medicine and Cardiothoracic Surgery, University of Utah Health & School of Medicine, Salt Lake City, UT 84132, USA; (C.P.K.); (C.J.K.); (E.L.S.); (I.T.); (K.S.); (A.G.K.); (M.J.B.)
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA;
| |
Collapse
|
4
|
Torres DS, Mazzetto M, Cestari IA. A novel automated simulator of pediatric systemic circulation: Design and applications. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Liu H, Liu S, Ma X. Varying speed modulation of continuous-flow left ventricular assist device based on cardiovascular coupling numerical model. Comput Methods Biomech Biomed Engin 2020; 24:956-972. [PMID: 33347766 DOI: 10.1080/10255842.2020.1861601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Continuous-flow left ventricular assist devices (CFLVADs) routinely operate at a constant speed for the support of a failing heart, which decreases the pulsatility in the arteries. Some late complications could be related to a long-term lack of pulsatility. Modulating the CFLVAD speed is a solution to enhance the pulsatility. The purpose of this study is to modulate multiple varying speed patterns and investigate their effects on the ventricle and vascular system. A cardiovascular coupling numerical model is developed to provide a simulation platform for testing the varying speed patterns. The varying speed patterns are modulated by combining the shape, amplitude, frequency, phase shift, and pulsatile duty cycle of the speed profile. The influence of varying speed support is examined by analyzing the indexes of pulsatility, indexes of ventricular unloading, and hemodynamic variables. The results show that the synchronous counterpulsation pattern can effectively reduce the ventricular unloading indexes, whereas the low-frequency asynchronous pattern can effectively increase the vascular pulsatility indexes. Also, the hemodynamics with synchronous varying speed support is more physiological than that with asynchronous varying speed support. This study provides valuable insight for further optimization of varying speed modulation by weighing vascular pulsatility, ventricular unloading, and hemodynamics.
Collapse
Affiliation(s)
- Hongtao Liu
- School of Electrical Engineering, Shandong University, Jinan, PR China
| | - Shuqin Liu
- School of Electrical Engineering, Shandong University, Jinan, PR China
| | - Xiaoxu Ma
- School of Electrical Engineering, Shandong University, Jinan, PR China
| |
Collapse
|
6
|
Hanff TC, Birati EY. Left Ventricular Assist Device as Destination Therapy: a State of the Science and Art of Long-Term Mechanical Circulatory Support. Curr Heart Fail Rep 2020; 16:168-179. [PMID: 31631240 DOI: 10.1007/s11897-019-00438-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to synthesize and summarize recent developments in the care of patients with end-stage heart failure being managed with a left ventricular assist device (LVAD) as destination therapy. RECENT FINDINGS Although the survival of patients treated with LVAD continues to improve, the rates of LVAD-associated complication, such as right ventricular failure, bleeding complications, and major infection, remain high, and management of these patients remains challenging. The durability and hemocompatibility of LVAD support have greatly increased in recent years as a result of new technologies and novel management strategies. Challenges remain in the comprehensive care of patients with destination therapy LVADs, including management of comorbidities and optimizing patient function and quality of life.
Collapse
Affiliation(s)
- Thomas C Hanff
- Department of Medicine Cardiovascular Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edo Y Birati
- Department of Medicine Cardiovascular Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Mehta R, Athar M, Girgis S, Hassan A, Becker RC. Acquired Von Willebrand Syndrome (AVWS) in cardiovascular disease: a state of the art review for clinicians. J Thromb Thrombolysis 2019; 48:14-26. [PMID: 31004311 DOI: 10.1007/s11239-019-01849-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Von Willebrand Factor (vWF) is a large glycoprotein with a broad range of physiological and pathological functions in health and disease. While vWF is critical for normal hemostasis, vascular integrity and repair, quantitative and qualitative abnormalities in the molecule can predispose to serious bleeding and thrombosis. The heritable form of von Willebrand Disease was first described nearly a century ago, but more recently, recognition of an acquired condition known as acquired von Willebrand Syndrome (AVWF) has emerged in persons with hematological, endocrine and cardiovascular diseases, disorders and conditions. An in-depth understanding of the causes, diagnostic approach and management of AVWS is important for practicing clinicians.
Collapse
Affiliation(s)
- Radha Mehta
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Muhammad Athar
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sameh Girgis
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Atif Hassan
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Richard C Becker
- Stonehill Professor of Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, CVC 4th Floor, Room 4936, Cincinnati, 45267, OH, USA.
| |
Collapse
|
8
|
Gao B, Zhang Q, Chang Y. Hemodynamic effects of support modes of LVADs on the aortic valve. Med Biol Eng Comput 2019; 57:2657-2671. [PMID: 31707689 DOI: 10.1007/s11517-019-02058-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/02/2019] [Indexed: 12/11/2022]
Abstract
As the alternative treatment for heart failure, left ventricular assist devices (LVADs) have been widely applied to clinical practice. However, the effects of the support modes of LVADs on the biomechanical states of the aortic valve are still poorly understood. Hence, the present study investigates such effects and proposes a novel fluid-structure interaction (FSI) approach that combines the lattice Boltzmann method (LBM) and finite element (FE) method. Two support modes of LVADs, namely constant speed mode and constant flow mode, which have been widely applied to clinical practice, are also designed. Results demonstrate that the support modes of LVADs could significantly affect the biomechanical states of the aortic valve and the blood flow pattern of the ascending aorta. Compared with those in the constant flow mode, the leaflets in the constant speed mode could achieve better dynamic performance and lower stress during the systolic phase. The max radial displacement of the leaflets in the constant speed mode is at 8 mm, whereas that in the constant flow mode is at 0.8 mm. Furthermore, the outflow of LVADs directly impacts the aortic surfaces of the leaflets during the diastolic phase by increasing the level of wall shear stress of the leaflets. The leaflets in the constant speed mode receive less impact than those in the constant flow mode. The condition with such minimal impact is conducive to maintaining the normal structure of leaflets and benefits the reduction of the risk of valvular diseases. In sum, the support modes of LVADs exert a crucial effect on the biomechanical environment of the aortic valve. The constant speed mode is better than the constant flow mode in terms of providing a good hemodynamic environment for the aortic valve.
Collapse
Affiliation(s)
- Bin Gao
- School of Life Science and BioEngineering, Beijing University of Technology, Beijing, 100124, People's Republic of China.
| | - Qi Zhang
- School of Life Science and BioEngineering, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Yu Chang
- School of Life Science and BioEngineering, Beijing University of Technology, Beijing, 100124, People's Republic of China
| |
Collapse
|
9
|
|