1
|
Raju S, Woo H, Koehler K, Fawzy A, Liu C, Putcha N, Balasubramanian A, Peng RD, Lin CT, Lemoine C, Wineke J, Berger RD, Hansel NN, McCormack MC. Indoor Air Pollution and Impaired Cardiac Autonomic Function in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2023; 207:721-730. [PMID: 36288428 PMCID: PMC10037475 DOI: 10.1164/rccm.202203-0523oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Rationale: Indoor air pollution represents a modifiable risk factor for respiratory morbidity in chronic obstructive pulmonary disease (COPD). The effects of indoor air pollution, as well as the impact of interventions to improve indoor air quality, on cardiovascular morbidity in COPD remain unknown. Objectives: To determine the association between indoor particulate matter (PM) and heart rate variability (HRV), a measure of cardiac autonomic function tied to cardiovascular morbidity and mortality, as well as the impact of household air purifiers on HRV. Methods: Former smokers with moderate-severe COPD were recruited from a 6-month randomized controlled trial of a portable air cleaner intervention to undergo paired assessment of both in-home PM and HRV using 24-hour Holter monitoring at up to five time points. Primary outcomes were HRV measures tied to cardiovascular morbidity (standard deviation of normal-to-normal intervals [SDNN] and root mean square of successive differences between normal-to-normal intervals [RMSSD]). Measurements and Results: Eighty-five participants contributed 317 HRV measurements. A twofold increase in household PM ⩽2.5 µm in aerodynamic diameter was associated with decreases in SDNN (β, -2.98% [95% confidence interval (CI), -5.12 to -0.78]) and RMSSD (β, -4.57% [95% CI, -10.1 to -1.60]). The greatest effects were observed with ultrafine particles (<100 nm) (RMSSD; β, -16.4% [95% CI, -22.3 to -10.1]) and among obese participants. Participants randomized to the active air cleaner saw improvements in RMSSD (β, 25.2% [95% CI, 2.99 to 52.1]), but not SDNN (β, 2.65% [95% CI, -10.8 to 18.1]), compared with the placebo group. Conclusions: This is the first U.S. study to describe the association between household PM and cardiac autonomic function among individuals with COPD, as well as the potential cardiovascular health benefits of household air cleaners.
Collapse
Affiliation(s)
| | | | - Kirsten Koehler
- Department of Environmental Health Sciences and Engineering and
| | | | | | | | | | - Roger D. Peng
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Cheng Ting Lin
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chantal Lemoine
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; and
| | - Jennifer Wineke
- Department of Psychiatry, University of Maryland Medical Center, Baltimore, Maryland
| | | | - Nadia N. Hansel
- Department of Medicine and
- Department of Environmental Health Sciences and Engineering and
| | - Meredith C. McCormack
- Department of Medicine and
- Department of Environmental Health Sciences and Engineering and
| |
Collapse
|
2
|
Gondalia R, Baldassari A, Holliday KM, Justice AE, Stewart JD, Liao D, Yanosky JD, Engel SM, Sheps D, Jordahl KM, Bhatti P, Horvath S, Assimes TL, Demerath EW, Guan W, Fornage M, Bressler J, North KE, Conneely KN, Li Y, Hou L, Baccarelli AA, Whitsel EA. Epigenetically mediated electrocardiographic manifestations of sub-chronic exposures to ambient particulate matter air pollution in the Women's Health Initiative and Atherosclerosis Risk in Communities Study. ENVIRONMENTAL RESEARCH 2021; 198:111211. [PMID: 33895111 PMCID: PMC8179344 DOI: 10.1016/j.envres.2021.111211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/10/2021] [Accepted: 04/19/2021] [Indexed: 06/03/2023]
Abstract
BACKGROUND Short-duration exposure to ambient particulate matter (PM) air pollution is associated with cardiac autonomic dysfunction and prolonged ventricular repolarization. However, associations with sub-chronic exposures to coarser particulates are relatively poorly characterized as are molecular mechanisms underlying their potential relationships with cardiovascular disease. MATERIALS AND METHODS We estimated associations between monthly mean concentrations of PM < 10 μm and 2.5-10 μm in diameter (PM10; PM2.5-10) with time-domain measures of heart rate variability (HRV) and QT interval duration (QT) among U.S. women and men in the Women's Health Initiative and Atherosclerosis Risk in Communities Study (nHRV = 82,107; nQT = 76,711). Then we examined mediation of the PM-HRV and PM-QT associations by DNA methylation (DNAm) at three Cytosine-phosphate-Guanine (CpG) sites (cg19004594, cg24102420, cg12124767) with known sensitivity to monthly mean PM concentrations in a subset of the participants (nHRV = 7,169; nQT = 6,895). After multiply imputing missing PM, electrocardiographic and covariable data, we estimated associations using attrition-weighted, linear, mixed, longitudinal models adjusting for sociodemographic, behavioral, meteorological, and clinical characteristics. We assessed mediation by estimating the proportions of PM-HRV and PM-QT associations mediated by DNAm. RESULTS We found little evidence of PM-HRV association, PM-QT association, or mediation by DNAm. CONCLUSIONS The findings suggest that among racially/ethnically and environmentally diverse U.S. populations, sub-chronic exposures to coarser particulates may not exert appreciable, epigenetically mediated effects on cardiac autonomic function or ventricular repolarization. Further investigation in better-powered studies is warranted, with additional focus on shorter duration exposures to finer particulates and non-electrocardiographic outcomes among relatively susceptible populations.
Collapse
Affiliation(s)
- Rahul Gondalia
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Antoine Baldassari
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Katelyn M Holliday
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Community and Family Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Anne E Justice
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Geisinger Health System, Danville, PA, USA
| | - James D Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Duanping Liao
- Division of Epidemiology, Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jeff D Yanosky
- Division of Epidemiology, Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Stephanie M Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - David Sheps
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Kristina M Jordahl
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Parveen Bhatti
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Steve Horvath
- Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Biostatistics, School of Public Health, University of California Los Angeles, Los Angeles, USA
| | | | - Ellen W Demerath
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Weihua Guan
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA; Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University Chicago, Evanston, IL, USA; Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Andrea A Baccarelli
- Laboratory of Environmental Epigenetics, Departments of Environmental Health Sciences and Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Huang C, Tang M, Li H, Wen J, Wang C, Gao Y, Hu J, Lin J, Chen R. Particulate matter air pollution and reduced heart rate variability: How the associations vary by particle size in Shanghai, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111726. [PMID: 33396057 DOI: 10.1016/j.ecoenv.2020.111726] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/07/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND It remains unclear which size of particles has the strongest effects on heart rate variability (HRV). OBJECTIVE To explore the association between HRV parameters and daily variations of size-fractionated particle number concentrations (PNCs). METHODS We conducted a longitudinal repeated-measure study among 78 participants with a 24-h continuous ambulatory Holter electrocardiographic recorder in Shanghai, China, from January 2015 to June 2019. Linear mixed-effects models were employed to evaluate the changes of HRV parameters associated with PNCs of 7 size ranges from 0.01 to 10 μm after controlling for environmental and individual confounders. RESULTS On the concurrent day, decreased HRV parameters were associated with increased PNCs of 0.01-0.3 μm, and smaller particles showed greater effects. For an interquartile range increase in ultrafine particles (UFP, those < 0.1 μm, 2453 particles/cm3), the declines in very-low-frequency power, low-frequency power, high-frequency power, standard deviation of normal R-R intervals, root mean square of the successive differences between R-R intervals and percentage of adjacent normal R-R intervals with a difference ≥ 50 ms were 5.06% [95% confidence interval (CI): 2.09%, 7.94%], 7.65% (95%CI: 2.73%, 12.32%), 9.49% (95%CI: 4.64%, 14.09%), 5.10% (95%CI: 2.21%, 7.91%), 8.09% (95%CI: 4.39%, 11.65%) and 24.98% (95%CI: 14.70%, 34.02%), respectively. These results were robust to the adjustment of criteria air pollutants, temperature at different lags, and the status of heart medication. CONCLUSIONS Particles less than 0.3 μm (especially UFP) may dominate the acute effects of particulate air pollution on cardiac autonomic dysfunction.
Collapse
Affiliation(s)
- Chang Huang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Minna Tang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Huichu Li
- Department of Environmental Health, Harvard T.H.Chan School of Public Health, Boston, MA, USA
| | - Jianfen Wen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cuiping Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Ya Gao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Jialu Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Jingyu Lin
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Schikowski T, Altuğ H. The role of air pollution in cognitive impairment and decline. Neurochem Int 2020; 136:104708. [DOI: 10.1016/j.neuint.2020.104708] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 11/25/2022]
|
5
|
Feng W, Li H, Wang S, Van Halm-Lutterodt N, An J, Liu Y, Liu M, Wang X, Guo X. Short-term PM 10 and emergency department admissions for selective cardiovascular and respiratory diseases in Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:213-221. [PMID: 30543969 DOI: 10.1016/j.scitotenv.2018.12.066] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Few studies have explored PM10's connection with specific respiratory and cardiovascular emergency department admissions (EDAs). This study aimed to examine the overall effects of PM10 on EDAs for cardiovascular and respiratory diseases, including specifically, cerebrovascular events (CVE), ischemic heart disease (IHD), arrhythmia, heart failure (HF), upper respiratory tract infection (URTI), lower respiratory tract infection (LRTI), chronic obstructive pulmonary disease (COPD) and asthma. METHODS We collected daily data for EDAs from the 10 largest hospitals in Beijing, between January 2013 and December 2013 as well as daily measurements of PM10 from 17 stations in Beijing. The generalized-additive model was utilized to evaluate the associations between daily PM10 and cardio-pulmonary disease admissions. Differences in gender, age, and season groups were also examined by models. Relative risks (RR) with 95% confidence interval (CI) were calculated based on subtype, age, gender and seasonal groups. In all, there were approximately 56,212 cardiovascular and 92,464 respiratory emergency admissions presented in this study. RESULTS The largest estimate effects in EDAs of total cardiovascular disease, CVE, IHD, total respiratory diseases, URTI, LRTI and COPD were found for PM10 at day 4 (accumulative) moving average, were 0.29% (95% CI:0.12%, 0.46%), 0.36% (95% CI:0.11%, 0.61%), 0.68% (95% CI:0.25%, 1.10%), 0.34% (95% CI:0.22%, 0.47%), 0.35% (95% CI:0.18%, 0.51%), 0.34% (95% CI:0.14%, 0.55%), 2.75% (95% CI:1.38%, 4.12%) respectively. In two-pollutant models and full-pollutant model modified confounding factors, the positive correlation remained unchanged. The elderly (age ≥ 65 years) and male subjects were more susceptible to specific respiratory diseases. PM10's impact on EDAs for HF was found higher during the hot season however, EDAs for COPD peaked during the cold season. CONCLUSION The study markedly informed that PM10 pollution was strongly associated with EDAs for cardio-pulmonary diseases. The effects of PM10 pollution on COPD and heart failure EDAs were clearly determined by seasonal-temperatures.
Collapse
Affiliation(s)
- Wei Feng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Haibin Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Shuo Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Nicholas Van Halm-Lutterodt
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Orthopaedics and Neurosurgery, Keck Medical Center of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Ji An
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Yue Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Mengyang Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Xiaonan Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Xiuhua Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Ghiadoni L, Bruno RM. The Endothelium as a Target for Chronic Stress. Am J Hypertens 2017; 30:19-20. [PMID: 27623762 DOI: 10.1093/ajh/hpw116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 08/26/2016] [Accepted: 08/26/2016] [Indexed: 01/22/2023] Open
Affiliation(s)
- Lorenzo Ghiadoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Rosa Maria Bruno
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
7
|
Kaufman JD, Spalt EW, Curl CL, Hajat A, Jones MR, Kim SY, Vedal S, Szpiro AA, Gassett A, Sheppard L, Daviglus ML, Adar SD. Advances in Understanding Air Pollution and CVD. Glob Heart 2016; 11:343-352. [PMID: 27741981 PMCID: PMC5082281 DOI: 10.1016/j.gheart.2016.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/13/2016] [Accepted: 07/21/2016] [Indexed: 12/21/2022] Open
Abstract
The MESA Air (Multi-Ethnic Study of Atherosclerosis and Air Pollution) leveraged the platform of the MESA cohort into a prospective longitudinal study of relationships between air pollution and cardiovascular health. MESA Air researchers developed fine-scale, state-of-the-art air pollution exposure models for the MESA Air communities, creating individual exposure estimates for each participant. These models combine cohort-specific exposure monitoring, existing monitoring systems, and an extensive database of geographic and meteorological information. Together with extensive phenotyping in MESA-and adding participants and health measurements to the cohort-MESA Air investigated environmental exposures on a wide range of outcomes. Advances by the MESA Air team included not only a new approach to exposure modeling, but also biostatistical advances in addressing exposure measurement error and temporal confounding. The MESA Air study advanced our understanding of the impact of air pollutants on cardiovascular disease and provided a research platform for advances in environmental epidemiology.
Collapse
Affiliation(s)
- Joel D Kaufman
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Elizabeth W Spalt
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Cynthia L Curl
- Department of Community and Environmental Health, College of Health Sciences, Boise State University, Boise, ID, USA
| | - Anjum Hajat
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Miranda R Jones
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sun-Young Kim
- Institute of Health and Environment, Seoul National University, Seoul, Korea
| | - Sverre Vedal
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Adam A Szpiro
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Amanda Gassett
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Lianne Sheppard
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Martha L Daviglus
- Institute for Minority Health Research, University of Illinois at Chicago, Chicago, IL, USA; Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sara D Adar
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|