1
|
Smith DRM, Chervet S, Pinettes T, Shirreff G, Jijón S, Oodally A, Jean K, Opatowski L, Kernéis S, Temime L. How have mathematical models contributed to understanding the transmission and control of SARS-CoV-2 in healthcare settings? A systematic search and review. J Hosp Infect 2023; 141:132-141. [PMID: 37734676 DOI: 10.1016/j.jhin.2023.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/04/2023] [Indexed: 09/23/2023]
Abstract
Since the onset of the COVID-19 pandemic, mathematical models have been widely used to inform public health recommendations regarding COVID-19 control in healthcare settings. The objective of this study was to systematically review SARS-CoV-2 transmission models in healthcare settings, and to summarize their contributions to understanding nosocomial COVID-19. A systematic search and review of published articles indexed in PubMed was carried out. Modelling studies describing dynamic inter-individual transmission of SARS-CoV-2 in healthcare settings, published by mid-February 2022 were included. Models have mostly focused on acute-care and long-term-care facilities in high-income countries. Models have quantified outbreak risk, showing great variation across settings and pandemic periods. Regarding surveillance, routine testing rather than symptom-based was highlighted as essential for COVID-19 prevention due to high rates of silent transmission. Surveillance impacts depended critically on testing frequency, diagnostic sensitivity, and turn-around time. Healthcare re-organization also proved to have large epidemiological impacts: beyond obvious benefits of isolating cases and limiting inter-individual contact, more complex strategies (staggered staff scheduling, immune-based cohorting) reduced infection risk. Finally, vaccination impact, while highly effective for limiting COVID-19 burden, varied substantially depending on assumed mechanistic impacts on infection acquisition, symptom onset and transmission. Modelling results form an extensive evidence base that may inform control strategies for future waves of SARS-CoV-2 and other viral respiratory pathogens. We propose new avenues for future models of healthcare-associated outbreaks, with the aim of enhancing their efficiency and contributions to decision-making.
Collapse
Affiliation(s)
- D R M Smith
- Anti-infective Evasion and Pharmacoepidemiology Team, CESP, Université Paris-Saclay, UVSQ, INSERM U1018, Montigny-le-Bretonneux, France; Institut Pasteur, Université Paris-Cité, Epidemiology and Modelling of Antibiotic Evasion (EMAE), F-75015 Paris, France; Laboratoire Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire National des Arts et Métiers, F-75003 Paris, France
| | - S Chervet
- Anti-infective Evasion and Pharmacoepidemiology Team, CESP, Université Paris-Saclay, UVSQ, INSERM U1018, Montigny-le-Bretonneux, France; Institut Pasteur, Université Paris-Cité, Epidemiology and Modelling of Antibiotic Evasion (EMAE), F-75015 Paris, France; Université Paris-Cité, INSERM, IAME, F-75018, Paris, France
| | - T Pinettes
- Laboratoire Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire National des Arts et Métiers, F-75003 Paris, France; Unité PACRI, Institut Pasteur, Conservatoire National des Arts et Métiers, Paris, France
| | - G Shirreff
- Anti-infective Evasion and Pharmacoepidemiology Team, CESP, Université Paris-Saclay, UVSQ, INSERM U1018, Montigny-le-Bretonneux, France; Institut Pasteur, Université Paris-Cité, Epidemiology and Modelling of Antibiotic Evasion (EMAE), F-75015 Paris, France; Laboratoire Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire National des Arts et Métiers, F-75003 Paris, France
| | - S Jijón
- Laboratoire Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire National des Arts et Métiers, F-75003 Paris, France; Unité PACRI, Institut Pasteur, Conservatoire National des Arts et Métiers, Paris, France
| | - A Oodally
- Anti-infective Evasion and Pharmacoepidemiology Team, CESP, Université Paris-Saclay, UVSQ, INSERM U1018, Montigny-le-Bretonneux, France; Institut Pasteur, Université Paris-Cité, Epidemiology and Modelling of Antibiotic Evasion (EMAE), F-75015 Paris, France; Laboratoire Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire National des Arts et Métiers, F-75003 Paris, France
| | - K Jean
- Laboratoire Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire National des Arts et Métiers, F-75003 Paris, France; Unité PACRI, Institut Pasteur, Conservatoire National des Arts et Métiers, Paris, France
| | - L Opatowski
- Anti-infective Evasion and Pharmacoepidemiology Team, CESP, Université Paris-Saclay, UVSQ, INSERM U1018, Montigny-le-Bretonneux, France; Institut Pasteur, Université Paris-Cité, Epidemiology and Modelling of Antibiotic Evasion (EMAE), F-75015 Paris, France
| | - S Kernéis
- Université Paris-Cité, INSERM, IAME, F-75018, Paris, France; Equipe de Prévention du Risque Infectieux (EPRI), AP-HP, Hôpital Bichat, F-75018 Paris, France.
| | - L Temime
- Laboratoire Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire National des Arts et Métiers, F-75003 Paris, France; Unité PACRI, Institut Pasteur, Conservatoire National des Arts et Métiers, Paris, France
| |
Collapse
|
2
|
Reitzinger S, Czypionka T, Lammel O, Panovska-Griffiths J, Leber W. Impact of national-scale targeted point-of-care symptomatic lateral flow testing on trends in COVID-19 infections, hospitalisations and deaths during the second epidemic wave in Austria (REAP3). BMC Public Health 2023; 23:506. [PMID: 36927503 PMCID: PMC10018611 DOI: 10.1186/s12889-023-15364-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND In October 2020, amidst the second COVID-19 epidemic wave and before the second-national lockdown, Austria introduced a policy of population-wide point-of-care lateral flow antigen testing (POC-LFT). This study explores the impact of this policy by quantifying the association between trends in POC-LFT-activity with trends in PCR-positivity (as a proxy for symptomatic infection), hospitalisations and deaths related to COVID-19 between October 22 and December 06, 2020. METHODS We stratified 94 Austrian districts according to POC-LFT-activity (number of POC-LFTs performed per 100,000 inhabitants over the study period), into three population cohorts: (i) high(N = 24), (ii) medium(N = 45) and (iii) low(N = 25). Across the cohorts we a) compared trends in POC-LFT-activity with PCR-positivity, hospital admissions and deaths related to COVD-19; b) compared the epidemic growth rate before and after the epidemic peak; and c) calculated the Pearson correlation coefficients between PCR-positivity with COVID-19 hospitalisations and with COVID -19 related deaths. RESULTS The trend in POC-LFT activity was similar to PCR-positivity and hospitalisations trends across high, medium and low POC-LFT activity cohorts, with association with deaths only present in cohorts with high POC-LFT activity. Compared to the low POC-LFT-activity cohort, the high-activity cohort had steeper pre-peak daily increase in PCR-positivity (2.24 more cases per day, per district and per 100,000 inhabitants; 95% CI: 2.0-2.7; p < 0.001) and hospitalisations (0.10; 95% CI: 0.02, 0.18; p = 0.014), and 6 days earlier peak of PCR-positivity. The high-activity cohort also had steeper daily reduction in the post-peak trend in PCR-positivity (-3.6; 95% CI: -4.8, -2.3; p < 0.001) and hospitalisations (-0.2; 95% CI: -0.32, -0.08; p = 0.001). PCR-positivity was positively correlated to both hospitalisations and deaths, but with lags of 6 and 14 days respectively. CONCLUSIONS High POC-LFT-use was associated with increased and earlier case finding during the second Austrian COVID-19 epidemic wave, and early and significant reduction in cases and hospitalisations during the second national lockdown. A national policy promoting symptomatic POC-LFT in primary care, can capture trends in PCR-positivity and hospitalisations. Symptomatic POC-LFT delivered at scale and combined with immediate self-quarantining and contact tracing can thus be a proxy for epidemic status, and hence a useful tool that can replace large-scale PCR testing.
Collapse
Affiliation(s)
| | - Thomas Czypionka
- Institute for Advanced Studies, Vienna, Austria
- London School of Economics and Political Science, London, UK
| | | | - Jasmina Panovska-Griffiths
- The Big Data Institute and The Pandemic Sciences Institute, University of Oxford, Oxford, UK.
- The Queen's College, University of Oxford, Oxford, UK.
| | - Werner Leber
- Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
3
|
Materón EM, Gómez FR, Almeida MB, Shimizu FM, Wong A, Teodoro KBR, Silva FSR, Lima MJA, Angelim MKSC, Melendez ME, Porras N, Vieira PM, Correa DS, Carrilho E, Oliveira O, Azevedo RB, Goncalves D. Colorimetric Detection of SARS-CoV-2 Using Plasmonic Biosensors and Smartphones. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54527-54538. [PMID: 36454041 PMCID: PMC9728479 DOI: 10.1021/acsami.2c15407] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/08/2022] [Indexed: 05/27/2023]
Abstract
Low-cost, instrument-free colorimetric tests were developed to detect SARS-CoV-2 using plasmonic biosensors with Au nanoparticles functionalized with polyclonal antibodies (f-AuNPs). Intense color changes were noted with the naked eye owing to plasmon coupling when f-AuNPs form clusters on the virus, with high sensitivity and a detection limit of 0.28 PFU mL-1 (PFU stands for plaque-forming units) in human saliva. Plasmon coupling was corroborated with computer simulations using the finite-difference time-domain (FDTD) method. The strategies based on preparing plasmonic biosensors with f-AuNPs are robust to permit SARS-CoV-2 detection via dynamic light scattering and UV-vis spectroscopy without interference from other viruses, such as influenza and dengue viruses. The diagnosis was made with a smartphone app after processing the images collected from the smartphone camera, measuring the concentration of SARS-CoV-2. Both image processing and machine learning algorithms were found to provide COVID-19 diagnosis with 100% accuracy for saliva samples. In subsidiary experiments, we observed that the biosensor could be used to detect the virus in river waters without pretreatment. With fast responses and requiring small sample amounts (only 20 μL), these colorimetric tests can be deployed in any location within the point-of-care diagnosis paradigm for epidemiological control.
Collapse
Affiliation(s)
- Elsa M. Materón
- São Carlos Institute of Physics,
University of São Paulo, P.O Box 369,
13560-970São Carlos, SP, Brazil
- São Carlos Institute of Chemistry,
University of São Paulo, 13566-590São Carlos,
SP, Brazil
| | - Faustino R. Gómez
- São Carlos Institute of Physics,
University of São Paulo, P.O Box 369,
13560-970São Carlos, SP, Brazil
| | - Mariana B. Almeida
- São Carlos Institute of Chemistry,
University of São Paulo, 13566-590São Carlos,
SP, Brazil
- National Institute of Science and
Technology in Bioanalytics - INCTBio, 13083-970Campinas, SP,
Brazil
| | - Flavio M. Shimizu
- Department of Applied Physics, “Gleb
Wataghin” Institute of Physics (IFGW), University of Campinas
(UNICAMP), 13083-859Campinas, SP, Brazil
| | - Ademar Wong
- Department of Chemistry, Federal
University of São Carlos (UFSCar), 13560-970São Carlos,
São Paulo, Brazil
| | - Kelcilene B. R. Teodoro
- Nanotechnology National Laboratory for Agriculture,
Embrapa Instrumentation, 13560-970São Carlos, SP,
Brazil
| | - Filipe S. R. Silva
- São Carlos Institute of Chemistry,
University of São Paulo, 13566-590São Carlos,
SP, Brazil
| | - Manoel J. A. Lima
- São Carlos Institute of Chemistry,
University of São Paulo, 13566-590São Carlos,
SP, Brazil
| | - Monara Kaelle S. C. Angelim
- Department of Genetics Evolution, Microbiology, and
Immunology, Institute of Biology, University of Campinas,
13083-970Campinas, SP, Brazil
| | - Matias E. Melendez
- Molecular Carcinogenesis Program,
National Cancer Institute, 20231-050Rio de Janeiro, RJ,
Brazil
| | - Nelson Porras
- Physics Department, del Valle
University, AA 25360Cali, Colombia
| | - Pedro M. Vieira
- Department of Genetics Evolution, Microbiology, and
Immunology, Institute of Biology, University of Campinas,
13083-970Campinas, SP, Brazil
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture,
Embrapa Instrumentation, 13560-970São Carlos, SP,
Brazil
| | - Emanuel Carrilho
- São Carlos Institute of Chemistry,
University of São Paulo, 13566-590São Carlos,
SP, Brazil
- National Institute of Science and
Technology in Bioanalytics - INCTBio, 13083-970Campinas, SP,
Brazil
| | - Osvaldo
N. Oliveira
- São Carlos Institute of Physics,
University of São Paulo, P.O Box 369,
13560-970São Carlos, SP, Brazil
| | - Ricardo B. Azevedo
- Laboratory of Nanobiotechnology, Department of Genetics
and Morphology, Institute of Biological Sciences, University of
Brasilia, 70910-900Brasilia, DF, Brazil
| | - Débora Goncalves
- São Carlos Institute of Physics,
University of São Paulo, P.O Box 369,
13560-970São Carlos, SP, Brazil
| |
Collapse
|
4
|
Alafeef M, Pan D. Diagnostic Approaches For COVID-19: Lessons Learned and the Path Forward. ACS NANO 2022; 16:11545-11576. [PMID: 35921264 PMCID: PMC9364978 DOI: 10.1021/acsnano.2c01697] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/12/2022] [Indexed: 05/17/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a transmitted respiratory disease caused by the infection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although humankind has experienced several outbreaks of infectious diseases, the COVID-19 pandemic has the highest rate of infection and has had high levels of social and economic repercussions. The current COVID-19 pandemic has highlighted the limitations of existing virological tests, which have failed to be adopted at a rate to properly slow the rapid spread of SARS-CoV-2. Pandemic preparedness has developed as a focus of many governments around the world in the event of a future outbreak. Despite the largely widespread availability of vaccines, the importance of testing has not diminished to monitor the evolution of the virus and the resulting stages of the pandemic. Therefore, developing diagnostic technology that serves as a line of defense has become imperative. In particular, that test should satisfy three criteria to be widely adopted: simplicity, economic feasibility, and accessibility. At the heart of it all, it must enable early diagnosis in the course of infection to reduce spread. However, diagnostic manufacturers need guidance on the optimal characteristics of a virological test to ensure pandemic preparedness and to aid in the effective treatment of viral infections. Nanomaterials are a decisive element in developing COVID-19 diagnostic kits as well as a key contributor to enhance the performance of existing tests. Our objective is to develop a profile of the criteria that should be available in a platform as the target product. In this work, virus detection tests were evaluated from the perspective of the COVID-19 pandemic, and then we generalized the requirements to develop a target product profile for a platform for virus detection.
Collapse
Affiliation(s)
- Maha Alafeef
- Department of Chemical, Biochemical and Environmental
Engineering, University of Maryland Baltimore County, Interdisciplinary
Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland 21250,
United States
- Departments of Diagnostic Radiology and Nuclear
Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis,
University of Maryland Baltimore School of Medicine, Health Sciences
Research Facility III, 670 W Baltimore Street, Baltimore, Maryland 21201,
United States
- Department of Bioengineering, the
University of Illinois at Urbana−Champaign, Urbana, Illinois 61801,
United States
- Biomedical Engineering Department, Jordan
University of Science and Technology, Irbid 22110,
Jordan
| | - Dipanjan Pan
- Department of Chemical, Biochemical and Environmental
Engineering, University of Maryland Baltimore County, Interdisciplinary
Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland 21250,
United States
- Departments of Diagnostic Radiology and Nuclear
Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis,
University of Maryland Baltimore School of Medicine, Health Sciences
Research Facility III, 670 W Baltimore Street, Baltimore, Maryland 21201,
United States
- Department of Bioengineering, the
University of Illinois at Urbana−Champaign, Urbana, Illinois 61801,
United States
| |
Collapse
|
5
|
Achenbach CJ, Caputo M, Hawkins C, Balmert LC, Qi C, Odorisio J, Dembele E, Jackson A, Abbas H, Frediani JK, Levy JM, Rebolledo PA, Kempker RR, Esper AM, Lam WA, Martin GS, Murphy RL. Clinical evaluation of the Diagnostic Analyzer for Selective Hybridization (DASH): A point-of-care PCR test for rapid detection of SARS-CoV-2 infection. PLoS One 2022; 17:e0270060. [PMID: 35709204 PMCID: PMC9202852 DOI: 10.1371/journal.pone.0270060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND An ideal test for COVID-19 would combine the sensitivity of laboratory-based PCR with the speed and ease of use of point-of-care (POC) or home-based rapid antigen testing. We evaluated clinical performance of the Diagnostic Analyzer for Selective Hybridization (DASH) SARS-CoV-2 POC rapid PCR test. METHODS We conducted a cross-sectional study of adults with and without symptoms of COVID-19 at four clinical sites where we collected two bilateral anterior nasal swabs and information on COVID-19 symptoms, vaccination, and exposure. One swab was tested with the DASH SARS-CoV-2 POC PCR and the second in a central laboratory using Cepheid Xpert Xpress SARS-CoV-2 PCR. We assessed test concordance and calculated sensitivity, specificity, negative and positive predictive values using Xpert as the "gold standard". RESULTS We enrolled 315 and analyzed 313 participants with median age 42 years; 65% were female, 62% symptomatic, 75% had received ≥2 doses of mRNA COVID-19 vaccine, and 16% currently SARS-CoV-2 positive. There were concordant results for 307 tests indicating an overall agreement for DASH of 0.98 [95% CI 0.96, 0.99] compared to Xpert. DASH performed at 0.96 [95% CI 0.86, 1.00] sensitivity and 0.98 [95% CI 0.96, 1.00] specificity, with a positive predictive value of 0.85 [95% CI 0.73, 0.96] and negative predictive value of 0.996 [95% CI 0.99, 1.00]. The six discordant tests between DASH and Xpert all had high Ct values (>30) on the respective positive assay. DASH and Xpert Ct values were highly correlated (R = 0.89 [95% CI 0.81, 0.94]). CONCLUSIONS DASH POC SARS-CoV-2 PCR was accurate, easy to use, and provided fast results (approximately 15 minutes) in real-life clinical settings with an overall performance similar to an EUA-approved laboratory-based PCR.
Collapse
Affiliation(s)
- Chad J. Achenbach
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States of America
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States of America
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States of America
| | - Matthew Caputo
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States of America
| | - Claudia Hawkins
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States of America
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States of America
| | - Lauren C. Balmert
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States of America
| | - Chao Qi
- Department of Pathology, Northwestern University, Evanston, IL, United States of America
| | - Joseph Odorisio
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States of America
| | - Etienne Dembele
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States of America
| | - Alema Jackson
- Access Community Health Network, Chicago, IL, United States of America
| | - Hiba Abbas
- Access Community Health Network, Chicago, IL, United States of America
| | - Jennifer K. Frediani
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies, Atlanta, GA, United States of America
- Emory University Nell Hodgson Woodruff School of Nursing, Atlanta, GA, United States of America
| | - Joshua M. Levy
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies, Atlanta, GA, United States of America
- Emory University Department of Otolaryngology, Atlanta, GA, United States of America
| | - Paulina A. Rebolledo
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies, Atlanta, GA, United States of America
- Emory University Division of Infectious Diseases, Atlanta, GA, United States of America
| | - Russell R. Kempker
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies, Atlanta, GA, United States of America
- Emory University Division of Infectious Diseases, Atlanta, GA, United States of America
| | - Annette M. Esper
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies, Atlanta, GA, United States of America
- Emory University Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Atlanta, GA, United States of America
| | - Wilbur A. Lam
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies, Atlanta, GA, United States of America
- Emory University Department of Pediatrics, Atlanta, GA, United States of America
| | - Greg S. Martin
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies, Atlanta, GA, United States of America
- Emory University Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Atlanta, GA, United States of America
| | - Robert L. Murphy
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States of America
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States of America
| |
Collapse
|
6
|
Achenbach CJ, Caputo M, Hawkins C, Balmert LC, Qi C, Odorisio J, Dembele E, Jackson A, Abbas H, Frediani JK, Levy JM, Rebolledo PA, Kempker RR, Esper AM, Lam WA, Martin GS, Murphy RL. Clinical evaluation of the Diagnostic Analyzer for Selective Hybridization (DASH): a point-of-care PCR test for rapid detection of SARS-CoV-2 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.01.24.22269785. [PMID: 35118476 PMCID: PMC8811909 DOI: 10.1101/2022.01.24.22269785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND Rapid and accurate testing for SARS-CoV-2 is an essential tool in the medical and public health response to the COVID-19 pandemic. An ideal test for COVID-19 would combine the sensitivity of laboratory-based PCR combined with the speed and ease of use of point-of-care (POC) or home-based rapid antigen testing. METHODS To evaluate the performance of the Diagnostic Analyzer for Selective Hybridization (DASH) SARS-CoV-2 POC PCR (sample insertion to result time of 16 minutes), we conducted a cross-sectional study of adults with and without symptoms of COVID-19 at four clinical sites. We collected two bilateral anterior nasal swabs from each participant and information on COVID-19 symptoms, vaccination, and exposure. One swab was tested with the DASH SARS-CoV-2 POC PCR and the second in a central laboratory using Cepheid Xpert Xpress SARS-CoV-2 PCR. We assessed test concordance and calculated sensitivity, specificity, negative and positive predictive values using Xpert as the "gold standard." RESULTS We enrolled 315 and analyzed 313 participants with median age 42 years; 65% were female, 62% symptomatic, 75% had received ≥2 doses of mRNA COVID-19 vaccine, and 16% currently COVID-19 positive. There were concordant results for 307 tests indicating an overall agreement for DASH of 0.98 [95% CI 0.96, 0.99] compared to Xpert. DASH performed at 0.96 [95% CI 0.86, 1.00] sensitivity and 0.98 [95% CI 0.96, 1.00] specificity, with a positive predictive value of 0.85 [95% CI 0.73, 0.96] and negative predictive value of 0.996 [95% CI 0.99, 1.00]. The six discordant tests between DASH and Xpert all had high Ct values (>30) on the respective positive assay. DASH and Xpert Ct values were highly correlated (R=0.89 [95% CI 0.81, 0.94]). CONCLUSIONS DASH POC SARS-CoV-2 PCR was accurate, easy to use, and provided fast results in real-life clinical settings with an overall performance similar to an EUA-approved laboratory-based PCR. Its compact design and ease of use are optimal for a variety of healthcare, and potentially community settings, including areas with lack of access to central laboratory-based PCR testing. SUMMARY DASH is an accurate, easy to use, and fast point-of-care test with applications for diagnosis and screening of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Chad J Achenbach
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University
| | - Matthew Caputo
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University
| | - Claudia Hawkins
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University
| | - Lauren C Balmert
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University
| | - Chao Qi
- Department of Pathology, Northwestern University
| | - Joseph Odorisio
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University
| | - Etienne Dembele
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University
| | | | | | - Jennifer K Frediani
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies
- Emory University Nell Hodgson Woodruff School of Nursing
| | - Joshua M Levy
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies
- Emory University Department of Otolaryngology
| | - Paulina A Rebolledo
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies
- Emory University Division of Infectious Diseases
| | - Russell R Kempker
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies
- Emory University Division of Infectious Diseases
| | - Annette M Esper
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies
- Emory University Division of Pulmonary, Allergy, Critical Care and Sleep Medicine
| | - Wilbur A Lam
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies
- Emory University Department of Pediatrics
| | - Greg S Martin
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies
- Emory University Division of Pulmonary, Allergy, Critical Care and Sleep Medicine
| | - Robert L Murphy
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University
| |
Collapse
|
7
|
Smith DRM, Duval A, Zahar JR, Opatowski L, Temime L. Rapid antigen testing as a reactive response to surges in nosocomial SARS-CoV-2 outbreak risk. Nat Commun 2022; 13:236. [PMID: 35017499 PMCID: PMC8752617 DOI: 10.1038/s41467-021-27845-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/07/2021] [Indexed: 11/24/2022] Open
Abstract
Healthcare facilities are vulnerable to SARS-CoV-2 introductions and subsequent nosocomial outbreaks. Antigen rapid diagnostic testing (Ag-RDT) is widely used for population screening, but its health and economic benefits as a reactive response to local surges in outbreak risk are unclear. We simulate SARS-CoV-2 transmission in a long-term care hospital with varying COVID-19 containment measures in place (social distancing, face masks, vaccination). Across scenarios, nosocomial incidence is reduced by up to 40-47% (range of means) with routine symptomatic RT-PCR testing, 59-63% with the addition of a timely round of Ag-RDT screening, and 69-75% with well-timed two-round screening. For the latter, a delay of 4-5 days between the two screening rounds is optimal for transmission prevention. Screening efficacy varies depending on test sensitivity, test type, subpopulations targeted, and community incidence. Efficiency, however, varies primarily depending on underlying outbreak risk, with health-economic benefits scaling by orders of magnitude depending on the COVID-19 containment measures in place.
Collapse
Affiliation(s)
- David R M Smith
- Institut Pasteur, Epidemiology and Modelling of Antibiotic Evasion (EMAE), Paris, France.
- Université Paris-Saclay, UVSQ, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology team, Montigny-Le-Bretonneux, France.
- Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire national des arts et métiers, Paris, France.
| | - Audrey Duval
- Institut Pasteur, Epidemiology and Modelling of Antibiotic Evasion (EMAE), Paris, France
- Université Paris-Saclay, UVSQ, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology team, Montigny-Le-Bretonneux, France
- IAME, UMR 1137, Université Paris 13, Sorbonne Paris Cité, Paris, France
| | - Jean Ralph Zahar
- IAME, UMR 1137, Université Paris 13, Sorbonne Paris Cité, Paris, France
- Service de Microbiologie Clinique et Unité de Contrôle et de Prévention du Risque Infectieux, Groupe Hospitalier Paris Seine Saint-Denis, AP-HP, Bobigny, France
| | - Lulla Opatowski
- Institut Pasteur, Epidemiology and Modelling of Antibiotic Evasion (EMAE), Paris, France
- Université Paris-Saclay, UVSQ, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology team, Montigny-Le-Bretonneux, France
| | - Laura Temime
- Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire national des arts et métiers, Paris, France
- PACRI unit, Institut Pasteur, Conservatoire national des arts et métiers, Paris, France
| |
Collapse
|
8
|
Jani IV, Peter TF. Nucleic Acid Point-of-Care Testing to Improve Diagnostic Preparedness. Clin Infect Dis 2022; 75:723-728. [PMID: 35015842 PMCID: PMC9464067 DOI: 10.1093/cid/ciac013] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Indexed: 01/18/2023] Open
Abstract
Testing programs for severe acute respiratory syndrome coronavirus 2 have relied on high-throughput polymerase chain reaction laboratory tests and rapid antigen assays to meet diagnostic needs. Both technologies are essential; however, issues of cost, accessibility, manufacturing delays, and performance have limited their use in low-resource settings and contributed to the global inequity in coronavirus disease 2019 testing. Emerging low-cost, multidisease point-of-care nucleic acid tests may address these limitations and strengthen pandemic preparedness, especially within primary healthcare where most cases of disease first present. Widespread deployment of these novel technologies will also help close long-standing test access gaps for other diseases, including tuberculosis, human immunodeficiency virus, cervical cancer, viral hepatitis, and sexually transmitted infections. We propose a more optimized testing framework based on greater use of point-of-care nucleic acid tests together with rapid immunologic assays and high-throughput laboratory molecular tests to improve the diagnosis of priority endemic and epidemic diseases, as well as strengthen the overall delivery of primary healthcare services.
Collapse
Affiliation(s)
- Ilesh V Jani
- Instituto Nacional da Saúde, Marracuene, Mozambique
| | | |
Collapse
|