1
|
Smith E, Krometis LAH, Czuba JA, Kolivras K. Land cover and community water system characteristics as predictors of Safe Drinking Water Act violations in Central Appalachia, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159726. [PMID: 36302432 DOI: 10.1016/j.scitotenv.2022.159726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/05/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Upstream anthropogenic land cover can degrade source drinking water quality and thereby inhibit the ability of a community water system to provide safe drinking water. This study aimed to predict differences in Safe Drinking Water Act (SDWA) compliance between water systems based on upstream land cover in Central Appalachia and to examine whether national trends correlating violations with system size and source type were relevant for this region. Multiple generalized linear mixed models assessed relationships between SDWA violations and the distance weighted land cover proportions associated with the water system's contributing source watershed, as well as county economic status, system size, and water source. Results indicate that rates of monitoring and reporting violations were significantly higher for smaller water systems in more economically distressed counties. Interestingly, increases in surface mining landuse and high density development decreased monitoring and reporting violations, which may reflect impacts of associated economic development. Increases in low intensity development increased the likelihood of health-based violations. To protect public health, community managers should consider source water protection and/or upgrading drinking water system treatment capacity prior to developing previously undeveloped areas and further motivate compliance with monitoring and reporting requirements.
Collapse
Affiliation(s)
- Ethan Smith
- Capital Planning, San Jose Water District, 1265 South Bascom Ave, San Jose, CA 95128, USA.
| | - Leigh-Anne H Krometis
- Biological Systems Engineering, 155 Ag Quad Lane, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0303, USA.
| | - Jonathan A Czuba
- Biological Systems Engineering, 155 Ag Quad Lane, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0303, USA.
| | - Korine Kolivras
- Geography, 238 Wallace Hall, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
2
|
Young HA, Kolivras KN, Krometis LAH, Marcillo CE, Gohlke JM. Examining the association between safe drinking water act violations and adverse birth outcomes in Virginia. ENVIRONMENTAL RESEARCH 2023; 218:114977. [PMID: 36463994 PMCID: PMC9901941 DOI: 10.1016/j.envres.2022.114977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
In 1974, the United States established the Safe Drinking Water Act (SDWA) to protect consumers from potential exposure to drinking water contaminants associated with health risks. Each contaminant is assigned a health-based standard meant to reflect the maximum level at which an adverse human health outcome is unlikely; measurements beyond that level have greater potential to result in adverse health outcomes. Although there is extensive research on human health implications following water contaminant exposure, few studies have specifically examined associations between fetal health and municipal drinking water violations. Therefore, the objective of this study is to assess whether SDWA drinking water violations are associated with fetal health outcomes, including preterm birth (PTB), low birth weight (LBW), and term-low birth weight (tLBW), in the Commonwealth of Virginia. Singleton births (n = 665,984) occurring between 2007 and 2015 in Virginia were geocoded and assigned to a corresponding estimated water service area. Health-based (HB) and monitoring and reporting (MR) violations for 12 contaminants were acquired from the US EPA Safe Drinking Water Information System, with exposure defined at the approximate service area level to limit exposure misclassification. A logistic regression model for each birth outcome assessed potential relationships with SDWA violations. When examining the association between individual MR violations and birth outcomes, Nitrate-Nitrite (OR = 1.10; 95% CI = 1.02, 1.18, P = 0.01) was positively associated with PTB and the total coliform rule was negatively associated with tLBW (OR = 0.93; 95% CI = 0.87, 1.00, P = 0.04). These findings indicate that a lack of regular monitoring and reporting by water providers (resulting in monitoring and reporting violations) may be concealing health-based violations as these health concerns cannot be revealed without testing, suggesting a need for additional technical, managerial, and financial support to enable often-underfunded water systems to adhere to monitoring and reporting requirements meant to protect public health.
Collapse
Affiliation(s)
- Holly A Young
- Department of Geography, Virginia Tech, Blacksburg, United States.
| | | | - Leigh-Anne H Krometis
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, United States
| | - Cristina E Marcillo
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, United States
| | - Julia M Gohlke
- Department of Population Health Sciences, Virginia Tech, Blacksburg, United States
| |
Collapse
|
3
|
Mendrinos A, Ramesh B, Ruktanonchai CW, Gohlke JM. Poultry Concentrated Animal-Feeding Operations on the Eastern Shore, Virginia, and Geospatial Associations with Adverse Birth Outcomes. Healthcare (Basel) 2022; 10:healthcare10102016. [PMID: 36292462 PMCID: PMC9602095 DOI: 10.3390/healthcare10102016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/04/2022] Open
Abstract
Concentrated animal-feeding operations (CAFOs) emit pollution into surrounding areas, and previous research has found associations with poor health outcomes. The objective of this study was to investigate if home proximity to poultry CAFOs during pregnancy is associated with adverse birth outcomes, including preterm birth (PTB) and low birth weight (LBW). This study includes births occurring on the Eastern Shore, Virginia, from 2002 to 2015 (N = 5768). A buffer model considering CAFOs within 1 km, 2 km, and 5 km of the maternal residence and an inverse distance weighted (IDW) approach were used to estimate proximity to CAFOs. Associations between proximity to poultry CAFOs and adverse birth outcomes were determined by using regression models, adjusting for available covariates. We found a −52.8 g (−95.8, −9.8) change in birthweight and a −1.51 (−2.78, −0.25) change in gestational days for the highest tertile of inverse distance to CAFOs. Infants born with a maternal residence with at least one CAFO within a 5 km buffer weighed −47 g (−94.1, −1.7) less than infants with no CAFOs within a 5 km buffer of the maternal address. More specific measures of exposure pathways via air and water should be used in future studies to refine mediators of the association found in the present study.
Collapse
Affiliation(s)
- Antonia Mendrinos
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Balaji Ramesh
- Department of Population Health Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Corrine W. Ruktanonchai
- Department of Population Health Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Julia M. Gohlke
- Department of Population Health Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
- Correspondence:
| |
Collapse
|
4
|
Cooper DB, Walker CJ, Christian WJ. Maternal proximity to mountain-top removal mining and birth defects in Appalachian Kentucky, 1997-2003. PLoS One 2022; 17:e0272998. [PMID: 35951600 PMCID: PMC9371306 DOI: 10.1371/journal.pone.0272998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/31/2022] [Indexed: 01/09/2023] Open
Abstract
Extraction of coal through mountaintop removal mining (MTR) alters many dimensions of the landscape. Explosive blasts, exposed rock, and coal washing have the potential to pollute air and water. Previous research suggests that infants born to mothers living in areas with MTR have a higher prevalence of birth defects. In this cross-sectional study, we further examine the relationship between MTR activity and several types of birth defects. Maternal exposure to MTR was assessed using remote sensing data from Skytruth, which captures MTR activity in the Central Appalachian region of the United States. Active MTR area was quantified within a five-kilometer buffer surrounding geocoded maternal address captured on birth records for live births to Appalachian Kentucky mothers between 1997 and 2003 (N = 95,581). We assigned high, medium, and low exposure based on the tertile of total MTR area within 5-km, and births with no MTR within this buffer were assigned zero exposure. The presence or absence of a birth defect grouped into six major organ systems was identified using birth records alone. Finally, we applied conditional multiple imputation for variables with missing values before conducting separate multivariable log-binomial regression models for each birth defect group. Prevalence ratio (PR) estimates were adjusted for individual level covariates from birth records. The prevalence of gastro-intestinal defects was significantly higher in birth records with high and low active MTR exposure compared to records with no exposure. (High exposure: PR = 1.99, 95% CI = 1.14-3.47; low exposure PR = 1.88, 95% CI = 1.06-3.31). This study supports some of the existing findings of previous ecological studies. Research addressing the relationship between gastro-intestinal birth defects and MTR coal mining is warranted but should carefully consider temporal dimensions of exposure.
Collapse
Affiliation(s)
- Daniel B. Cooper
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, KY, United States of America
| | - Courtney J. Walker
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, KY, United States of America
| | - W. Jay Christian
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, KY, United States of America
| |
Collapse
|
5
|
Ruktanonchai CW, McKnight MX, Buttling L, Kolivras K, Krometis LA, Gohlke J. Identifying exposure pathways mediating adverse birth outcomes near active surface mines in Central Appalachia. Environ Epidemiol 2022; 6:e208. [PMID: 35702501 PMCID: PMC9187182 DOI: 10.1097/ee9.0000000000000208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/12/2022] [Indexed: 01/09/2023] Open
Abstract
Background Previous work has determined an association between proximity to active surface mining within Central Appalachia and an increased risk of preterm birth (PTB) and low birthweight (LBW). Multiple potential exposure pathways may exist; however, including inhalation of particulate matter (airshed exposure), or exposure to impacted surface waters (watershed exposure). We hypothesize that this relationship is mediated by exposure to contaminants along one or both of these pathways. Methods We geolocated 194,084 birth records through health departments in WV, KY, VA, and TN between 1990 and 2015. We performed a mediation analysis, iteratively including within our models: (a) the percent of active surface mining within 5 km of maternal residence during gestation; (b) the cumulative surface mining airshed trajectories experienced during gestation; and (c) the percent of active surface mining occurring within the watershed of residency during gestation. Results Our baseline models found that active surface mining was associated with an increased odds of PTB (1.09, 1.05-1.13) and LBW (1.06, 1.02-1.11), controlling for individual-level predictors. When mediators were added to the baseline model, the association between active mining and birth outcomes became nonsignificant (PTB: 0.48, 0.14-1.58; LBW 0.78, 0.19-3.00), whereas the association between PTB and LBW remained significant by airshed exposure (PTB: 1.14, 1.11-1.18; LBW: 1.06, 1.03-1.10). Conclusions Our results found that surface mining airsheds at least partially explained the association between active mining and adverse birth outcomes, consistent with a hypothesis of mediation, while mediation via the watershed pathway was less evident.
Collapse
Affiliation(s)
- Corrine W. Ruktanonchai
- Department of Population Health Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Molly X. McKnight
- Department of Geography, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Lauren Buttling
- Department of Population Health Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Korine Kolivras
- Department of Geography, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Leigh-Anne Krometis
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Julia Gohlke
- Department of Population Health Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| |
Collapse
|
6
|
Walker CJ, Browning SR, Levy JE, Christian WJ. Geocoding precision of birth records from 2008 to 2017 in Kentucky, USA. GEOSPATIAL HEALTH 2022; 17. [PMID: 35532018 DOI: 10.4081/gh.2022.1020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/14/2021] [Indexed: 06/14/2023]
Abstract
Maternal address information captured on birth records is increasingly used to estimate residential environmental exposures during pregnancy. However, there has been limited assessment of the geocoding precision of birth records, particularly since the adoption of the 2003 standard birth certificate in 2015. To address this gap, this study evaluated the geocoding precision of live and stillbirth records of Kentucky residents over ten years, from 2008 through 2017. This study summarized the demographic characteristics of imprecisely geocoded records and, using a bivariate logistic regression, identified covariates associated with poor geocoding precision among three population density designations-metro, non-metro, and rural. We found that in metro areas, after adjusting for area deprivation, education, and the race, age and education of both parents, records for Black mothers had 48% lower odds of imprecise geocoding (aOR=0.52, 95% CI: 0.48, 0.56), while Black women in rural areas had 96% higher odds of imprecise geocoding (aOr=1.96, 95% CI: 1.68, 2.28). This study also found that over the study period, rural and non-metro areas began with a high proportion of imprecisely geocoded records (38% in rural areas, 19% in non-metro), but both experienced an 8% decline in imprecisely geocoded records over the study period (aOr=0.92, 95% CI: 0.92, 0.94). This study shows that, while geocoding precision has improved in Kentucky, further work is needed to improve geocoding in rural areas and address racial and ethnic disparities.
Collapse
Affiliation(s)
- Courtney J Walker
- Department of Epidemiology, University of Kentucky, College of Public Health, Lexington, KY.
| | - Steven R Browning
- Department of Epidemiology, University of Kentucky, College of Public Health, Lexington, KY.
| | | | - W Jay Christian
- Department of Epidemiology, University of Kentucky, College of Public Health, Lexington, KY.
| |
Collapse
|