1
|
Zheng H, Xiao X, Han Y, Wang P, Zang L, Wang L, Zhao Y, Shi P, Yang P, Guo C, Xue J, Zhao X. Research progress of propofol in alleviating cerebral ischemia/reperfusion injury. Pharmacol Rep 2024; 76:962-980. [PMID: 38954373 DOI: 10.1007/s43440-024-00620-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/30/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Ischemic stroke is a leading cause of adult disability and death worldwide. The primary treatment for cerebral ischemia patients is to restore blood supply to the ischemic region as quickly as possible. However, in most cases, more severe tissue damage occurs, which is known as cerebral ischemia/reperfusion (I/R) injury. The pathological mechanisms of brain I/R injury include mitochondrial dysfunction, oxidative stress, excitotoxicity, calcium overload, neuroinflammation, programmed cell death and others. Propofol (2,6-diisopropylphenol), a short-acting intravenous anesthetic, possesses not only sedative and hypnotic effects but also immunomodulatory and neuroprotective effects. Numerous studies have reported the protective properties of propofol during brain I/R injury. In this review, we summarize the potential protective mechanisms of propofol to provide insights for its better clinical application in alleviating cerebral I/R injury.
Collapse
Affiliation(s)
- Haijing Zheng
- Basic Medical College, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
- Zhengzhou Central Hospital, Zhengzhou, China
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Xian Xiao
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Yiming Han
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Pengwei Wang
- Department of Pharmacy, the First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Weihui, Henan, 453100, China
| | - Lili Zang
- Department of Surgery, the First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Weihui, China
| | - Lilin Wang
- Department of Pediatric Surgery, the First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Weihui, China
| | - Yinuo Zhao
- Basic Medical College, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Peijie Shi
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Pengfei Yang
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| | - Chao Guo
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| | - Jintao Xue
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| | - Xinghua Zhao
- Basic Medical College, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| |
Collapse
|
2
|
Anastasaki C, Chatterjee J, Koleske JP, Gao Y, Bozeman SL, Kernan CM, Marco Y Marquez LI, Chen JK, Kelly CE, Blair CJ, Dietzen DJ, Kesterson RA, Gutmann DH. NF1 mutation-driven neuronal hyperexcitability sets a threshold for tumorigenesis and therapeutic targeting of murine optic glioma. Neuro Oncol 2024; 26:1496-1508. [PMID: 38607967 PMCID: PMC11300021 DOI: 10.1093/neuonc/noae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND With the recognition that noncancerous cells function as critical regulators of brain tumor growth, we recently demonstrated that neurons drive low-grade glioma initiation and progression. Using mouse models of neurofibromatosis type 1 (NF1)-associated optic pathway glioma (OPG), we showed that Nf1 mutation induces neuronal hyperexcitability and midkine expression, which activates an immune axis to support tumor growth, such that high-dose lamotrigine treatment reduces Nf1-OPG proliferation. Herein, we execute a series of complementary experiments to address several key knowledge gaps relevant to future clinical translation. METHODS We leverage a collection of Nf1-mutant mice that spontaneously develop OPGs to alter both germline and retinal neuron-specific midkine expression. Nf1-mutant mice harboring several different NF1 patient-derived germline mutations were employed to evaluate neuronal excitability and midkine expression. Two distinct Nf1-OPG preclinical mouse models were used to assess lamotrigine effects on tumor progression and growth in vivo. RESULTS We establish that neuronal midkine is both necessary and sufficient for Nf1-OPG growth, demonstrating an obligate relationship between germline Nf1 mutation, neuronal excitability, midkine production, and Nf1-OPG proliferation. We show anti-epileptic drug (lamotrigine) specificity in suppressing neuronal midkine production. Relevant to clinical translation, lamotrigine prevents Nf1-OPG progression and suppresses the growth of existing tumors for months following drug cessation. Importantly, lamotrigine abrogates tumor growth in two Nf1-OPG strains using pediatric epilepsy clinical dosing. CONCLUSIONS Together, these findings establish midkine and neuronal hyperexcitability as targetable drivers of Nf1-OPG growth and support the use of lamotrigine as a potential chemoprevention or chemotherapy agent for children with NF1-OPG.
Collapse
Affiliation(s)
- Corina Anastasaki
- Departments of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jit Chatterjee
- Departments of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joshua P Koleske
- Departments of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yunqing Gao
- Departments of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stephanie L Bozeman
- Departments of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chloe M Kernan
- Departments of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lara I Marco Y Marquez
- Departments of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ji-Kang Chen
- Departments of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Caitlin E Kelly
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Connor J Blair
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dennis J Dietzen
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robert A Kesterson
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - David H Gutmann
- Departments of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Potocnik I, Kerin-Povsic M, Markovic-Bozic J. The influence of anaesthesia on cancer growth. Radiol Oncol 2024; 58:9-14. [PMID: 38378027 PMCID: PMC10878770 DOI: 10.2478/raon-2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/10/2023] [Accepted: 11/22/2023] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Oncological patients make up a large proportion of all surgical patients. Through its influence on the patient's inflammatory and immune system, the choice of anaesthetic technique has an indirect impact on the health of the individual patient and on public health. Both the specific and the non-specific immune system have a major influence on the recurrence of carcinomas. The pathophysiological basis for growth and metastasis after surgery is the physiological response to stress. Inflammation is the organism's universal response to stress. Anaesthetics and adjuvants influence perioperative inflammation in different ways and have an indirect effect on tumour growth and metastasis. In vitro studies have shown how individual anaesthetics influence the growth and spread of cancer, but clinical studies have not confirmed these results. Nevertheless, it is advisable to use an anaesthetic that has shown lesser effect on the growth of cancer cells in vitro. CONCLUSIONS In this review, we focus on the area of the effects of anaesthesia on tumour growth. The field is still relatively unexplored, there are only few clinical prospective studies and their results are controversial. Based on the review of new research findings we report on recommendations about anaesthetics and anaesthetic techniques that might be preferable for oncological surgical procedures.
Collapse
Affiliation(s)
- Iztok Potocnik
- Department of Anaesthesiology and Intensive Care, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Milena Kerin-Povsic
- Department of Anaesthesiology and Intensive Care, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Jasmina Markovic-Bozic
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Anaesthesiology and Surgical Intensive Therapy, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
4
|
Sharma V, Sharma P, Singh TG. Therapeutic Correlation of TLR-4 Mediated NF-κB Inflammatory Pathways in Ischemic Injuries. Curr Drug Targets 2024; 25:1027-1040. [PMID: 39279711 DOI: 10.2174/0113894501322228240830063605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/09/2024] [Revised: 07/06/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024]
Abstract
Ischemia-reperfusion (I/R) injury refers to the tissue damage that happens when blood flow returns to tissue after a period of ischemia. I/R injuries are implicated in a large array of pathological conditions, such as cerebral, myocardial, renal, intestinal, retinal and hepatic ischemia. The hallmark of these pathologies is excessive inflammation. Toll-like receptors (TLRs) are recognized as significant contributors to inflammation caused by pathogens and, more recently, inflammation caused by injury. TLR-4 activation initiates a series of events that results in activation of nuclear factor kappa-B (NF-κB), which stimulates the production of pro-inflammatory cytokines and chemokines, exacerbating tissue injury. Therefore, through a comprehensive review of current research and experimentation, this investigation elucidates the TLRs signalling pathway and the role of TLR-4/NF-κB in the pathophysiology of I/R injuries. Furthermore, this review highlights the various pharmacological agents (TLR-4/NF-κB inhibitors) with special emphasis on the various ischemic injuries (cerebral, myocardial, renal, intestinal, retinal and hepatic). Future research should prioritise investigating the specific molecular pathways that cause TLR-4/NF-κBmediated inflammation in ischemic injuries. Additionally, efforts should be made to enhance treatment approaches in order to enhance patient outcomes.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Prateek Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | |
Collapse
|
5
|
Zhang T, Deng D, Huang S, Fu D, Wang T, Xu F, Ma L, Ding Y, Wang K, Wang Y, Zhao W, Chen X. A retrospect and outlook on the neuroprotective effects of anesthetics in the era of endovascular therapy. Front Neurosci 2023; 17:1140275. [PMID: 37056305 PMCID: PMC10086253 DOI: 10.3389/fnins.2023.1140275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/08/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Studies on the neuroprotective effects of anesthetics were carried out more than half a century ago. Subsequently, many cell and animal experiments attempted to verify the findings. However, in clinical trials, the neuroprotective effects of anesthetics were not observed. These contradictory results suggest a mismatch between basic research and clinical trials. The Stroke Therapy Academic Industry Roundtable X (STAIR) proposed that the emergence of endovascular thrombectomy (EVT) would provide a proper platform to verify the neuroprotective effects of anesthetics because the haemodynamics of patients undergoing EVT is very close to the ischaemia–reperfusion model in basic research. With the widespread use of EVT, it is necessary for us to re-examine the neuroprotective effects of anesthetics to guide the use of anesthetics during EVT because the choice of anesthesia is still based on team experience without definite guidelines. In this paper, we describe the research status of anesthesia in EVT and summarize the neuroprotective mechanisms of some anesthetics. Then, we focus on the contradictory results between clinical trials and basic research and discuss the causes. Finally, we provide an outlook on the neuroprotective effects of anesthetics in the era of endovascular therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiangdong Chen
- *Correspondence: Xiangdong Chen, ; orcid.org/0000-0003-3347-2947
| |
Collapse
|
6
|
Propofol Suppresses Glioma Tumorigenesis by Regulating circ_0047688/miR-516b-5p/IFI30 Axis. Biochem Genet 2023; 61:151-169. [PMID: 35763173 DOI: 10.1007/s10528-022-10243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2021] [Accepted: 06/07/2022] [Indexed: 01/24/2023]
Abstract
Propofol has recently attracted increasing attention for its anti-tumor property in cancers, including glioma. Circular RNAs (circRNAs) can act as key regulators in various cancers. However, the relationship between propofol and circ_0047688 in glioma is still unclear. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), and colony formation assays. Cell migration and invasion were determined using transwell assay. Cell apoptosis was detected by flow cytometry. Protein levels and RNA levels were detected by western blot assay and real-time quantitative polymerase chain reaction (RT‑qPCR), respectively. The intermolecular interaction was predicted by bioinformatics analysis and verified by dual-luciferase reporter assay. A mouse xenograft model was established for in vivo experiments. Propofol inhibited cell proliferation, migration, and invasion and accelerated apoptosis in glioma cells. Circ_0047688 was upregulated in glioma tissues and cells, and propofol downregulated circ_0047688 in a dose-dependent manner. Circ_0047688 knockdown inhibited glioma cell progression and its overexpression abated the anti-tumor role of propofol in glioma cells. Moreover, miR-516b-5p was a direct target of circ_0047688, and circ_0047688 promoted glioma cell progression by sponging miR-516b-5p. In addition, IFI30 was a direct target of miR-516b-5p, and miR-516b-5p inhibited glioma cell malignant behaviors by targeting IFI30 in propofol-treated cells. Furthermore, circ_0047688 overexpression could weaken the anti-tumor role of propofol in vivo. Propofol inhibited glioma progression via modulating circ_0047688/miR-516b-5p/IFI30 axis, providing a potential therapeutic strategy for treatment of glioma.
Collapse
|
7
|
Yi S, Tao X, Wang Y, Cao Q, Zhou Z, Wang S. Effects of propofol on macrophage activation and function in diseases. Front Pharmacol 2022; 13:964771. [PMID: 36059940 PMCID: PMC9428246 DOI: 10.3389/fphar.2022.964771] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
Macrophages work with monocytes and dendritic cells to form a monocyte immune system, which constitutes a powerful cornerstone of the immune system with their powerful antigen presentation and phagocytosis. Macrophages play an essential role in infection, inflammation, tumors and other pathological conditions, but these cells also have non-immune functions, such as regulating lipid metabolism and maintaining homeostasis. Propofol is a commonly used intravenous anesthetic in the clinic. Propofol has sedative, hypnotic, anti-inflammatory and anti-oxidation effects, and it participates in the body’s immunity. The regulation of propofol on immune cells, especially macrophages, has a profound effect on the occurrence and development of human diseases. We summarized the effects of propofol on macrophage migration, recruitment, differentiation, polarization, and pyroptosis, and the regulation of these propofol-regulated macrophage functions in inflammation, infection, tumor, and organ reperfusion injury. The influence of propofol on pathology and prognosis via macrophage regulation is also discussed. A better understanding of the effects of propofol on macrophage activation and function in human diseases will provide a new strategy for the application of clinical narcotic drugs and the treatment of diseases.
Collapse
Affiliation(s)
- Shuyuan Yi
- School of Anesthesiology, Weifang Medical University, Weifang, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xinyi Tao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Qianqian Cao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- *Correspondence: Zhixia Zhou, ; Shoushi Wang,
| | - Shoushi Wang
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
- *Correspondence: Zhixia Zhou, ; Shoushi Wang,
| |
Collapse
|
8
|
Han J, Tao W, Cui W, Chen J. Propofol via Antioxidant Property Attenuated Hypoxia-Mediated Mitochondrial Dynamic Imbalance and Malfunction in Primary Rat Hippocampal Neurons. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6298786. [PMID: 35087616 PMCID: PMC8789416 DOI: 10.1155/2022/6298786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/21/2021] [Accepted: 12/24/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Hypoxia may induce mitochondrial abnormality, which is associated with a variety of clinical phenotypes in the central nervous system. Propofol is an anesthetic agent with neuroprotective property. We examined whether and how propofol protected hypoxia-induced mitochondrial abnormality in neurons. METHODS Primary rat hippocampal neurons were exposed to propofol followed by hypoxia treatment. Neuron viability, mitochondrial morphology, mitochondrial permeability transition pore (mPTP) opening, mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP) production were measured. Mechanisms including reactive oxygen species (ROS), extracellular regulated protein kinase (ERK), protein kinase A (PKA), HIF-1α, Drp1, Fis1, Mfn1, Mfn2, and Opa1 were investigated. RESULTS Hypoxia increased intracellular ROS production and induced mPTP opening, while reducing ATP production, MMP values, and neuron viability. Hypoxia impaired mitochondrial dynamic balance by increasing mitochondrial fragmentation. Further, hypoxia induced the translocation of HIF-1α and increased the expression of Drp1, while having no effect on Fis1 expression. In addition, hypoxia induced the phosphorylation of ERK and Drp1ser616, while reducing the phosphorylation of PKA and Drp1ser637. Importantly, we demonstrated all these effects were attenuated by pretreatment of neurons with 50 μM propofol, antioxidant α-tocopherol, and ROS scavenger ebselen. Besides, hypoxia, propofol, α-tocopherol, or ebselen had no effect on the expression of Mfn1, Mfn2, and Opa1. CONCLUSIONS In rat hippocampal neurons, hypoxia induced oxidative stress, caused mitochondrial dynamic imbalance and malfunction, and reduced neuron viability. Propofol protected mitochondrial abnormality and neuron viability via antioxidant property, and the molecular mechanisms involved HIF-1α-mediated Drp1 expression and ERK/PKA-mediated Drp1 phosphorylation.
Collapse
Affiliation(s)
- Jingfeng Han
- Department of Anesthesiology, Jing'an District Central Hospital, No. 259 Xi Kang Road, Shanghai 200040, China
| | - Weiping Tao
- Department of Anesthesiology, Jing'an District Central Hospital, No. 259 Xi Kang Road, Shanghai 200040, China
| | - Wei Cui
- Department of Anesthesiology, Jing'an District Central Hospital, No. 259 Xi Kang Road, Shanghai 200040, China
| | - Jiawei Chen
- Department of Anesthesiology, Jing'an District Central Hospital, No. 259 Xi Kang Road, Shanghai 200040, China
| |
Collapse
|
9
|
Wang Y, Lin C, Wang J, Zhou M, Fang T, Miao L, Wei Y. Propofol rescues LPS-induced toxicity in HRT-8/SVneo cells via miR-216a-5p/TLR4 axis. Arch Gynecol Obstet 2022; 305:1055-1067. [PMID: 34982175 DOI: 10.1007/s00404-021-06316-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The purpose of this study was to evaluate the effect of propofol on lipopolysaccharide (LPS)-induced toxicity in HTR-8/SVneo cells. METHODS In this study, HTR-8/SVneo cells were induced by LPS. The cells were treated with different concentrations of propofol. Cell proliferation, apoptosis, invasion, and wound healing rate were measured by MTT, flow cytometry, Transwell, and wound-healing assay. The relative mRNA expression levels of miR-216a-5p, TLR, MyD88, and NF-κB(p65) were measured by qRT-PCR. The protein expression levels of TLR, MyD88, and p-NF-κB(p65) were detected by western blot. The p-NF-κB(p65) nuclear volume was evaluated by cell immunofluorescence. RESULTS Compared with control group, the cell proliferation, invasion, and wound healing rate were significantly decreased and the cell apoptosis rate was significantly increased in LPS- induced HTR-8/SVneo cells (P < 0.01). With propofol supplement, the cell proliferation, migration, and invasion abilities were significantly recovered and apoptosis rate was significantly inhibited (P < 0.05). The expression levels of miR-216a-5p, TLR4, MyD88, NF-κB(p65), and p-NF-κB(p65), and p-NF-κB(p65) nuclear volume were significantly different between propofol group and model group (P < 0.05). However, after knockdown of miR-216a-5p expression by si-miR-216a-5p transfection, the cell proliferation, migration, and invasion abilities were significantly inhibited and apoptosis rate was notably increased (P < 0.05). CONCLUSION Propofol improves LPS-induced toxicity in HTR-8/SVneo cells via regulation miR-216a-5p/TLR4 axis.
Collapse
Affiliation(s)
- Yuping Wang
- Department of Anesthesiology, Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Gulou District, Fuzhou, 350001, Fujian, China
| | - Chuantao Lin
- Department of Anesthesiology, Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Gulou District, Fuzhou, 350001, Fujian, China
| | - Jing Wang
- Department of Anesthesiology, Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Gulou District, Fuzhou, 350001, Fujian, China
| | - Min Zhou
- Department of Anesthesiology, Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Gulou District, Fuzhou, 350001, Fujian, China
| | - Tuanfang Fang
- Department of Anesthesiology, Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Gulou District, Fuzhou, 350001, Fujian, China
| | - Liyan Miao
- Department of Anesthesiology, Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Gulou District, Fuzhou, 350001, Fujian, China
| | - Ying Wei
- Department of Anesthesiology, Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Gulou District, Fuzhou, 350001, Fujian, China
| |
Collapse
|
10
|
The Influence of Mitochondrial-DNA-Driven Inflammation Pathways on Macrophage Polarization: A New Perspective for Targeted Immunometabolic Therapy in Cerebral Ischemia-Reperfusion Injury. Int J Mol Sci 2021; 23:ijms23010135. [PMID: 35008558 PMCID: PMC8745401 DOI: 10.3390/ijms23010135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/23/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022] Open
Abstract
Cerebral ischemia-reperfusion injury is related to inflammation driven by free mitochondrial DNA. At the same time, the pro-inflammatory activation of macrophages, that is, polarization in the M1 direction, aggravates the cycle of inflammatory damage. They promote each other and eventually transform macrophages/microglia into neurotoxic macrophages by improving macrophage glycolysis, transforming arginine metabolism, and controlling fatty acid synthesis. Therefore, we propose targeting the mtDNA-driven inflammatory response while controlling the metabolic state of macrophages in brain tissue to reduce the possibility of cerebral ischemia-reperfusion injury.
Collapse
|
11
|
Chen PH, Tsuang FY, Lee CT, Yeh YC, Cheng HL, Lee TS, Chang YW, Cheng YJ, Wu CY. Neuroprotective effects of intraoperative dexmedetomidine versus saline infusion combined with goal-directed haemodynamic therapy for patients undergoing cranial surgery: A randomised controlled trial. Eur J Anaesthesiol 2021; 38:1262-1271. [PMID: 34101714 DOI: 10.1097/eja.0000000000001532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND By inhibiting neuroinflammation dexmedetomidine may be neuroprotective in patients undergoing cranial surgery, but it reduces cardiac output and cerebral blood flow. OBJECTIVE To investigate whether intra-operative dexmedetomidine combined with goal-directed haemodynamic therapy (GDHT) has neuroprotective effects in cranial surgery. DESIGN A double-blind, single-institution, randomised controlled trial. SETTING A single university hospital, from April 2017 to April 2020. PATIENTS A total of 160 adults undergoing elective cranial surgery. INTERVENTION Infusion of dexmedetomidine (0.5 μg kg-1 h-1) or saline combined with GDHT to optimise stroke volume during surgery. MAIN OUTCOME MEASURES The proportion who developed postoperative neurological complications was compared. Postoperative disability was assessed using the Barthel Index at time points between admission and discharge, and also the 30-day modified Rankin Scale (mRS). Postoperative delirium was assessed. The concentration of a peri-operative serum neuroinflammatory mediator, high-mobility group box 1 protein (HMGB1), was compared. RESULTS Fewer patients in the dexmedetomidine group developed new postoperative neurological complications (26.3% vs. 43.8%; P = 0.031), but the number of patients developing severe neurological complications was comparable between the two groups (11.3% vs. 20.0%; P = 0.191). In the dexmedetomidine group the Barthel Index reduction [0 (-10 to 0)] was less than that in the control group [-5 (-15 to 0)]; P = 0.023, and there was a more favourable 30-day mRS (P = 0.013) with more patients without postoperative delirium (84.6% vs. 64.2%; P = 0.012). Furthermore, dexmedetomidine induced a significant reduction in peri-operative serum HMGB1 level from the baseline (222.5 ± 408.3 pg ml-1) to the first postoperative day (152.2 ± 280.0 pg ml-1) P = 0.0033. There was no significant change in the control group. The dexmedetomidine group had a lower cardiac index than did the control group (3.0 ± 0.8 vs. 3.4 ± 1.8 l min-1 m-2; P = 0.0482) without lactate accumulation. CONCLUSIONS Dexmedetomidine infusion combined with GDHT may mitigate neuroinflammation without undesirable haemodynamic effects during cranial surgery and therefore be neuroprotective. TRIAL REGISTRATION Clinicaltrials.gov Identifier: NCT02878707.
Collapse
Affiliation(s)
- Pin-Hsin Chen
- From the Department of Anaesthesiology, National Taiwan University Hospital, Taipei, Taiwan (P-HC, C-TL, Y-CY, H-LC, T-SL, Y-WC, Y-JC, C-YW) and Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan (F-YT)
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Liu Y, Liu L, Xing W, Sun Y. Anesthetics mediated the immunomodulatory effects via regulation of TLR signaling. Int Immunopharmacol 2021; 101:108357. [PMID: 34785143 DOI: 10.1016/j.intimp.2021.108357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2021] [Revised: 10/29/2021] [Accepted: 11/07/2021] [Indexed: 11/29/2022]
Abstract
Anesthetics have been widely used in surgery and found to suppress inflammatory injury and affect the outcomes of the surgery and diseases. In contrast, anesthetics are also found to induce neuronal injury and inflammation. However, the immune-modulation mechanism of anesthetics is still not clear. Recent studies have shown that the immune-modulation of anesthetics is associated with the regulation of toll-like receptor (TLR)-mediated signaling. Moreover, the regulation of anesthetics in TLR signaling is related to modulations of non-coding RNAs (nc RNAs). Consistently, nc RNAs are mainly divided into micro RNAs (miRs) and long non-coding RNAs (lnc RNAs), which have been found to exert regulatory effects on the immune system. In this review, we summarize the immunomodulatory functions of the widely used anesthetic agents, which are associated with regulation of TLR signaling. In addition, we also focus on the roles of nc RNAs induced by anesthetics in regulations of TLR signaling.
Collapse
Affiliation(s)
- Yan Liu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Li Liu
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Wanying Xing
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yan Sun
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
13
|
Liu L, Dong T, Sheng J. Propofol Suppresses Gastric Cancer Progression by Regulating circPDSS1/miR-1324/SOX4 Axis. Cancer Manag Res 2021; 13:6031-6043. [PMID: 34377022 PMCID: PMC8349207 DOI: 10.2147/cmar.s312989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/26/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background Propofol is a common intravenous anesthetic that exerts an antitumor role in human cancers. Circular RNAs (circRNAs) play crucial roles in the progression of various cancers. However, the relationship between propofol and circRNA decaprenyl diphosphate synthase subunit 1 (circPDSS1) in gastric cancer (GC) remains unclear. Methods Cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8), colony formation, and 5-ethynyl-2ʹ-deoxyuridine (EdU) assays. Cell migration and invasion were assessed by transwell assay. Cell apoptosis was determined by flow cytometry. All protein levels were detected by Western blot assay. The expression levels of circPDSS1, microRNA-1324 (miR-1324), and SRY-box transcription factor 4 (SOX4) mRNA were determined by quantitative real-time PCR (qRT-PCR). The interaction between miR-1324 and circPDSS1 or SOX4 was confirmed by dual-luciferase reporter and RNA pull-down assays. The mice xenograft model was established to investigate the role of propofol and circPDSS1 in vivo. Results Propofol inhibited cell proliferation, migration and invasion and induced apoptosis in GC cells, which could be reversed by upregulating circPDSS1. MiR-1324 was a target of circPDSS1, and circPDSS1 promoted cell proliferation, migration and invasion and reduced apoptosis in propofol-treated cells by sponging miR-1324. Moreover, SOX4 was a direct target of miR-1324, and miR-1324 exerted anticancer role by targeting SOX4 in propofol-treated cells. CircPDSS1 acted as a sponge of miR-1324 to regulate SOX4 expression. Additionally, circPDSS1 overexpression weakened the anticancer role of propofol in vivo. Conclusion Propofol exerted anticancer role in GC through regulating circPDSS1/miR-1324/SOX4 axis, indicating that propofol might be an effective therapeutic medicine for GC treatment.
Collapse
Affiliation(s)
- Leyi Liu
- Department of Anesthesiology, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, 241000, People's Republic of China
| | - Ting Dong
- Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, People's Republic of China
| | - Jun Sheng
- Department of Oncology, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, 241000, People's Republic of China
| |
Collapse
|
14
|
Xie L, Hu Y, Yan D, McQuillan P, Liu Y, Zhu S, Zhu Z, Jiang Y, Hu Z. The relationship between exposure to general anesthetic agents and the risk of developing an impulse control disorder. Pharmacol Res 2021; 165:105440. [PMID: 33493656 DOI: 10.1016/j.phrs.2021.105440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/20/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 12/18/2022]
Abstract
Most studies examining the effect of extended exposure to general anesthetic agents (GAAs) have demonstrated that extended exposure induces both structural and functional changes in the central nervous system. These changes are frequently accompanied by neurobehavioral changes that include impulse control disorders that are generally characterized by deficits in behavioral inhibition and executive function. In this review, we will.
Collapse
Affiliation(s)
- Linghua Xie
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuhan Hu
- Department of Cell Biology, Yale University, New Haven, CT, USA
| | - Dandan Yan
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - P McQuillan
- Department of Anesthesiology, Penn State Hershey Medical Centre, Penn State College of Medicine, Hershey, PA, USA
| | - Yue Liu
- Department of Anesthesiology, The Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengmei Zhu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhirui Zhu
- Department of Anesthesiology, The Children Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yilei Jiang
- Department of Anesthesiology, The Children Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiyong Hu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
15
|
Pichl T, Keller T, Hünseler C, Roth B, Janoschek R, Appel S, Hucklenbruch-Rother E. Effects of ketamine on neurogenesis, extracellular matrix homeostasis and proliferation in hypoxia-exposed HT22 murine hippocampal neurons. Biomed Rep 2020; 13:23. [PMID: 32765862 PMCID: PMC7403805 DOI: 10.3892/br.2020.1330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Ketamine is a widely used drug in pediatric anesthesia, and both neurotoxic and neuroprotective effects have been associated with its use. There are only a few studies to date which have examined the effects of ketamine on neurons under hypoxic conditions, which may lead to severe brain damage and poor neurocognitive outcomes in neonates. In the present study, the effects of ketamine on cellular pathways associated with neurogenesis, extracellular matrix homeostasis and proliferation were examined in vitro in hypoxia-exposed neurons. Differentiated HT22 murine hippocampal neurons were treated with 1, 10 and 20 µM ketamine and cultured under hypoxic or normoxic conditions for 24 h followed by quantitative PCR analysis of relevant candidate genes. Ketamine treatment did not exert any notable effects on the mRNA expression levels of markers of neurogenesis (neuronal growth factor and syndecan 1), extracellular matrix homeostasis (matrix-metalloproteinase 2 and 9, tenascin C and tenascin R) or proliferation markers (Ki67 and proliferating cell nuclear antigen) compared with the respective untreated controls. However, there was a tendency towards downregulation of multiple cellular markers under hypoxic conditions and simultaneous ketamine treatment. No dose-dependent association was found in the ketamine treated groups for genetic markers of neurogenesis, extracellular matrix homeostasis or proliferation. Based on the results, ketamine may have increased the vulnerability of hippocampal neurons in vitro to hypoxia, independent of the dose. The results of the present study contribute to the ongoing discussion on the safety concerns around ketamine use in pediatric clinical practice from a laboratory perspective.
Collapse
Affiliation(s)
- Thomas Pichl
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital, D-50931 Cologne, Germany
| | - Titus Keller
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital, D-50931 Cologne, Germany
| | - Christoph Hünseler
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital, D-50931 Cologne, Germany
| | - Bernhard Roth
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital, D-50931 Cologne, Germany
| | - Ruth Janoschek
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital, D-50931 Cologne, Germany
| | - Sarah Appel
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital, D-50931 Cologne, Germany
| | - Eva Hucklenbruch-Rother
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital, D-50931 Cologne, Germany
| |
Collapse
|
16
|
Pribish A, Wood N, Kalava A. A Review of Nonanesthetic Uses of Ketamine. Anesthesiol Res Pract 2020; 2020:5798285. [PMID: 32308676 PMCID: PMC7152956 DOI: 10.1155/2020/5798285] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2019] [Revised: 02/07/2020] [Accepted: 03/05/2020] [Indexed: 12/20/2022] Open
Abstract
Ketamine, a nonselective NMDA receptor antagonist, is used widely in medicine as an anesthetic agent. However, ketamine's mechanisms of action lead to widespread physiological effects, some of which are now coming to the forefront of research for the treatment of diverse medical disorders. This paper aims at reviewing recent data on key nonanesthetic uses of ketamine in the current literature. MEDLINE, CINAHL, and Google Scholar databases were queried to find articles related to ketamine in the treatment of depression, pain syndromes including acute pain, chronic pain, and headache, neurologic applications including neuroprotection and seizures, and alcohol and substance use disorders. It can be concluded that ketamine has a potential role in the treatment of all of these conditions. However, research in this area is still in its early stages, and larger studies are required to evaluate ketamine's efficacy for nonanesthetic purposes in the general population.
Collapse
Affiliation(s)
- Abby Pribish
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nicole Wood
- Department of Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Arun Kalava
- Department of Anesthesiology, University of Central Florida College of Medicine, Orlando, FL, USA
| |
Collapse
|
17
|
Anna R, Rolf R, Mark C. Update of the organoprotective properties of xenon and argon: from bench to beside. Intensive Care Med Exp 2020; 8:11. [PMID: 32096000 PMCID: PMC7040108 DOI: 10.1186/s40635-020-0294-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/15/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023] Open
Abstract
The growth of the elderly population has led to an increase in patients with myocardial infarction and stroke (Wajngarten and Silva, Eur Cardiol 14: 111–115, 2019). Patients receiving treatment for ST-segment-elevation myocardial infarction (STEMI) highly profit from early reperfusion therapy under 3 h from the onset of symptoms. However, mortality from STEMI remains high due to the increase in age and comorbidities (Menees et al., N Engl J Med 369: 901–909, 2013). These factors also account for patients with acute ischaemic stroke. Reperfusion therapy has been established as the gold standard within the first 4 to 5 h after onset of symptoms (Powers et al., Stroke 49: e46-e110, 2018). Nonetheless, not all patients are eligible for reperfusion therapy. The same is true for traumatic brain injury patients. Due to the complexity of acute myocardial and central nervous injury (CNS), finding organ protective substances to improve the function of remote myocardium and the ischaemic penumbra of the brain is urgent. This narrative review focuses on the noble gases argon and xenon and their possible cardiac, renal and neuroprotectant properties in the elderly high-risk (surgical) population. The article will provide an overview of the latest experimental and clinical studies. It is beyond the scope of this review to give a detailed summary of the mechanistic understanding of organ protection by xenon and argon.
Collapse
Affiliation(s)
- Roehl Anna
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelstrasse 30, 52072, Aachen, Germany.
| | - Rossaint Rolf
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelstrasse 30, 52072, Aachen, Germany
| | - Coburn Mark
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelstrasse 30, 52072, Aachen, Germany
| |
Collapse
|
18
|
Propofol weakens hypoxia-aroused apoptosis and autophagy via elevating microRNA-137 in neurocytes. Exp Mol Pathol 2019; 112:104327. [PMID: 31678238 DOI: 10.1016/j.yexmp.2019.104327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Hypoxia was proven to cause brain cell apoptosis and autophagy. Herein, we tested the influences of propofol, a commonly used intravenous sedative hypnotic drug, on apoptosis and autophagy aroused by hypoxia stimulation in PC-12 and HT-22 cells. METHODS Followed by hypoxia and/or propofol treatment, cell viability of PC-12 and HT-22 cells, apoptosis and autophagy, along with microRNA-137 (miR-137) expression were measured, respectively. Then, miR-137 inhibitor was transfected to silence miR-137. Whether miR-137 took part in the impacts of propofol on hypoxia-exposed cells was explored. Finally, the activities of PI3K/AKT/mTOR and ERK pathways were measured. RESULTS Hypoxia stimulation aroused cell apoptosis and elevated cell autophagy in PC-12 and HT-22 cells. Propofol weakened the apoptosis and autophagy of PC-12 and HT-22 cells aroused by hypoxia. Moreover, propofol elevated the miR-137 level in PC-12 and HT-22 cells. Silencing miR-137 declined the influences of propofol on hypoxia-induced injuries. Besides, propofol promoted PI3K/AKT/mTOR and ERK pathways activation in hypoxia-exposed cells through raising miR-137. CONCLUSION Propofol weakened hypoxia-aroused apoptosis and autophagy of PC-12 and HT-22 cells might be through raising miR-137 level and thereby promoting PI3K/AKT/mTOR and ERK pathways activation.
Collapse
|
19
|
Sun Y, Sun H. Retracted
:Propofol exerts anticancer activity on hepatocellular carcinoma cells by raising lncRNA DGCR5. J Cell Physiol 2019; 235:2963-2972. [DOI: 10.1002/jcp.29202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/12/2019] [Accepted: 09/03/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Yan Sun
- Department of Anesthesiology China‐Japan Union Hospital of Jilin University Changchun China
| | - Hai Sun
- Department of Anesthesiology China‐Japan Union Hospital of Jilin University Changchun China
| |
Collapse
|
20
|
Mazzone GL, Nistri A. Modulation of extrasynaptic GABAergic receptor activity influences glutamate release and neuronal survival following excitotoxic damage to mouse spinal cord neurons. Neurochem Int 2019; 128:175-185. [PMID: 31051211 DOI: 10.1016/j.neuint.2019.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2019] [Revised: 04/08/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022]
Abstract
Excitotoxic levels of released glutamate trigger a cascade of deleterious cellular events leading to delayed neuronal death. This phenomenon implies extensive dysregulation in the balance between network excitation and inhibition. Our hypothesis was that enhancing network inhibition should prevent excitotoxicity and provide neuroprotection. To test this notion, we used mouse organotypic spinal slice cultures and explored if excitotoxicity caused by the potent glutamate analogue kainate was blocked by pharmacological increase in GABAA receptor activity. To this end we monitored (with a biosensor) real-time glutamate release following 1 h kainate application and quantified neuronal survival 24 h later. Glutamate release evoked by kainate was strongly decreased by the allosteric GABAA modulator midazolam (10 nM) or the GABA agonist THIP (10 μM), leading to neuroprotection. On the contrary, much higher glutamate release was induced by the GABA antagonist bicuculline (20 μM) that inhibits synaptic and extrasynaptic GABAA receptors. Gabazine (20 μM), an antagonist of synaptic GABAA receptors, had no effect on glutamate release or neuroprotection. No effect was observed with the glycine antagonist strychnine or the glycine agonist L-alanine. These findings indicate that enhancement of GABA receptor activity was an effective tool to counteract excitotoxic death in spinal networks. In view of the potent activity by THIP, preferentially acting on extrasynaptic GABAA receptors, the present data imply a significant role for extrasynaptic GABAA receptors in sparing spinal cord neurons from injury.
Collapse
Affiliation(s)
- Graciela L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina.
| | - Andrea Nistri
- Neuroscience Dept., International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
21
|
He M, Sun H, Pang J, Guo X, Huo Y, Wu X, Liu Y, Ma J. Propofol alleviates hypoxia-induced nerve injury in PC-12 cells by up-regulation of microRNA-153. BMC Anesthesiol 2018; 18:197. [PMID: 30579328 PMCID: PMC6303956 DOI: 10.1186/s12871-018-0660-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/18/2018] [Accepted: 12/03/2018] [Indexed: 12/31/2022] Open
Abstract
Background Although the neuroprotective role of propofol has been identified recently, the regulatory mechanism associated with microRNAs (miRNAs/miRs) in neuronal cells remains to be poorly understood. We aimed to explore the regulatory mechanism of propofol in hypoxia-injured rat pheochromocytoma (PC-12) cells. Methods PC-12 cells were exposed to hypoxia, and cell viability and apoptosis were assessed by CCK-8 assay and flow cytometry assay/Western blot analysis, respectively. Effects of propofol on hypoxia-injured cells were measured, and the expression of miR-153 was determined by stem-loop RT-PCR. After that, whether propofol affected PC-12 cells under hypoxia via miR-153 was verified, and the downstream protein of miR-153 as well as the involved signaling cascade was finally explored. Results Hypoxia-induced decrease of cell viability and increase of apoptosis were attenuated by propofol. Then, we found hypoxia exposure up-regulated miR-153 expression, and the level of miR-153 was further elevated by propofol in hypoxia-injured PC-12 cells. Following experiments showed miR-153 inhibition reversed the effects of propofol on hypoxia-treated PC-12 cells. Afterwards, we found BTG3 expression was negatively regulated by miR-153 expression, and BTG3 overexpression inhibited the mTOR pathway and AMPK activation. Besides, hypoxia inhibited the mTOR pathway and AMPK, and these inhibitory effects could be attenuated by propofol. Conclusion Propofol protected hypoxia-injured PC-12 cells through miR-153-mediataed down-regulation of BTG3. BTG3 could inhibit the mTOR pathway and AMPK activation.
Collapse
Affiliation(s)
- Mingwei He
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Haiyan Sun
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Jinlei Pang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Xiangfei Guo
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Yansong Huo
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Xianhong Wu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Yaguang Liu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
22
|
Propofol inhibits proliferation, migration and invasion of gastric cancer cells by up-regulating microRNA-195. Int J Biol Macromol 2018; 120:975-984. [DOI: 10.1016/j.ijbiomac.2018.08.173] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/12/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022]
|
23
|
Chen CY, Tsai YF, Huang WJ, Chang SH, Hwang TL. Propofol inhibits endogenous formyl peptide-induced neutrophil activation and alleviates lung injury. Free Radic Biol Med 2018; 129:372-382. [PMID: 30312762 DOI: 10.1016/j.freeradbiomed.2018.09.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/30/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 02/06/2023]
Abstract
Critically ill patients have a high risk of sepsis. Various studies have demonstrated that propofol has anti-inflammatory effects that may benefit critically ill patients who require anesthesia. However, the mechanism and therapeutic effect remain incompletely understood. Our previous data suggest that propofol can act as a formyl peptide receptor 1 (FPR1) antagonist. Here, we hypothesize that propofol mitigates sepsis-induced acute lung injury (ALI) by inhibiting mitochondria-derived N-formyl peptide-mediated neutrophil activation. Oxidative stress caused by activated neutrophils is involved in the pathogenesis of ALI. In human neutrophils, propofol competitively reduced the release of superoxide and associated reactive oxygen species induced by fMMYALF, a human mitochondria-derived N-formyl peptide, suggesting that propofol effectively suppresses neutrophilic oxidative stress. In addition, propofol significantly inhibited fMMYALF-induced elastase release, chemotaxis, calcium mobilization, and phosphorylation of protein kinase B and mitogen-activated protein kinases. These results indicate that propofol suppresses neutrophil activation by blocking the interaction between endogenous N-formyl peptide and its receptor, FPR1, thus inhibiting downstream signaling. Furthermore, propofol alleviated alveolar wall disruption, edematous changes, and neutrophil infiltration in lipopolysaccharide-induced ALI in mice. Noticeably, propofol improved the survival of sepsis mice. This study indicates that the anti-neutrophil effects of propofol may benefit critically ill septic patients.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Yung-Fong Tsai
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Wei-Ju Huang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Shih-Hsin Chang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan.
| |
Collapse
|
24
|
Li HY, Meng JX, Liu Z, Liu XW, Huang YG, Zhao J. Propofol Attenuates Airway Inflammation in a Mast Cell-Dependent Mouse Model of Allergic Asthma by Inhibiting the Toll-like Receptor 4/Reactive Oxygen Species/Nuclear Factor κB Signaling Pathway. Inflammation 2018. [PMID: 29532264 DOI: 10.1007/s10753-018-0746-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
Propofol, an intravenous anesthetic agent widely used in clinical practice, is the preferred anesthetic for asthmatic patients. This study was designed to determine the protective effect and underlying mechanisms of propofol on airway inflammation in a mast cell-dependent mouse model of allergic asthma. Mice were sensitized by ovalbumin (OVA) without alum and challenged with OVA three times. Propofol was given intraperitoneally 0.5 h prior to OVA challenge. The inflammatory cell count and production of cytokines in the bronchoalveolar lavage fluid (BALF) were detected. The changes of lung histology and key molecules of the toll-like receptor 4 (TLR4)/reactive oxygen species (ROS)/NF-κB signaling pathway were also measured. The results showed that propofol significantly decreased the number of eosinophils and the levels of IL-4, IL-5, IL-6, IL-13, and TNF-α in BALF. Furthermore, propofol significantly attenuated airway inflammation, as characterized by fewer infiltrating inflammatory cells and decreased mucus production and goblet cell hyperplasia. Meanwhile, the expression of TLR4, and its downstream signaling adaptor molecules--myeloid differentiation factor 88 (MyD88) and NF-κB, were inhibited by propofol. The hydrogen peroxide and methane dicarboxylic aldehyde levels were decreased by propofol, and the superoxide dismutase activity was increased in propofol treatment group. These findings indicate that propofol may attenuate airway inflammation by inhibiting the TLR4/MyD88/ROS/NF-κB signaling pathway in a mast cell-dependent mouse model of allergic asthma.
Collapse
Affiliation(s)
- Hong-Yi Li
- Department of Anesthesiology, Peking Union Medical College Hospital, No. 1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730, China
| | - Jing-Xia Meng
- Department of Anesthesiology, Peking Union Medical College Hospital, No. 1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730, China
| | - Zhen Liu
- Department of Anesthesiology, Peking Union Medical College Hospital, No. 1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730, China
| | - Xiao-Wen Liu
- Department of Anesthesiology, Peking Union Medical College Hospital, No. 1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730, China
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33# Shijingshan District, Beijing, 100144, China
| | - Yu-Guang Huang
- Department of Anesthesiology, Peking Union Medical College Hospital, No. 1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730, China
| | - Jing Zhao
- Department of Anesthesiology, China-Japan Friendship Hospital, No. 2 Yinghua East Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
25
|
Jiang S, Wu Y, Fang DF, Chen Y. Hypothermic preconditioning but not ketamine reduces oxygen and glucose deprivation induced neuronal injury correlated with downregulation of COX-2 expression in mouse hippocampal slices. J Pharmacol Sci 2018; 137:30-37. [PMID: 29681435 DOI: 10.1016/j.jphs.2018.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/06/2017] [Revised: 03/03/2018] [Accepted: 03/29/2018] [Indexed: 01/24/2023] Open
Abstract
Hypothermic preconditioning is an effective treatment for limiting ischemic injury, but the mechanism is poorly understood. This study was aimed to explore the effect of hypothermic and ketamine preconditioning on oxygen and glucose deprivation (OGD) induced neuronal injury in mouse hippocampal slices, and to investigate its possible mechanism. The population spike (PS) was recorded in the CA1 region of mouse hippocampal slices using extracellular recordings, Na+/K+ ATPase activity in slices was determined by spectrophotometer and the expression of Cyclooxygenase-2 (COX-2) was measured by Western blot. Ten min of OGD induced a poor recovery of PS in slices after reoxygenation. Hypothermic (33 °C) preconditioning delayed the appearance of transient recovery (TR) of PS and improved the recovery amplitude of PS after reoxygenation. Hypothermic preconditioning also decreased the expression of COX-2 and increased Na+/K+ ATPase activity in slices. Pretreatment of ketamine, a non-competitive NMDA receptor antagonist at a subanesthetic dose has no effect on OGD induced neuronal injury. Moreover, the protection of hypothermic preconditioning was not added by ketamine. The downregulation of COX-2 expression and the increase of Na+/K+ ATPase activity may be associated with the effectiveness of hypothermic preconditioning in increasing tolerance to an OGD insult.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Anesthesiology, The First People's Hospital of Lianyungang, Lianyungang, China; Department of Anatomy and Physiology, Lianyungang Branch of Traditional Chinese Medicine, Jiangsu Union Technical Institute, Lianyungang, China
| | - Yong Wu
- Department of Anesthesiology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - De-Fang Fang
- Department of Anatomy and Physiology, Lianyungang Branch of Traditional Chinese Medicine, Jiangsu Union Technical Institute, Lianyungang, China
| | - Ying Chen
- Department of Anesthesiology, The First People's Hospital of Lianyungang, Lianyungang, China.
| |
Collapse
|
26
|
Kang F, Tang C, Han M, Chai X, Huang X, Li J. Effects of Dexmedetomidine-Isoflurane versus Isoflurane Anesthesia on Brain Injury After Cardiac Valve Replacement Surgery. J Cardiothorac Vasc Anesth 2017; 32:1581-1586. [PMID: 29277297 DOI: 10.1053/j.jvca.2017.11.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/19/2017] [Indexed: 11/11/2022]
Abstract
OBJECTIVES To compare dexmedetomidine combined with isoflurane versus isoflurane anesthesia on brain injury after cardiac surgery. DESIGN A prospective, randomized, single-blind study. SETTING University hospital. PARTICIPANTS Adult patients undergoing elective valve replacement surgery. INTERVENTIONS Ninety-seven patients scheduled for valve replacement surgery were randomly divided into 2 groups: dexmedetomidine and isoflurane (Dex-Iso, n = 50) and isoflurane alone (Iso, n = 47). Dexemedetomidine was infused at 0.6 μg/kg as a bolus, followed with 0.2 μg/kg/h until the end of surgery. MEASUREMENTS AND MAIN RESULTS Jugular blood samples were drawn for analysis of matrix metalloproteinase-9 (MMP-9) and glial fibrillary acidic protein (GFAP) levels on time points of: T1 (before induction); T2 (5 minutes after cardiopulmonary bypass [CPB] onset); T3 (after CPB off); T4 (the first day after operation); T5 (the second day after operation). Plasma lactate levels in arterial and jugular venous blood also were quantified. The difference between arterial and jugular bulb venous blood lactate levels (AVDL) was calculated. An antisaccadic eye movement (ASEM) test was carried out on the day before the operation and the seventh day postoperatively. In both groups, serum MMP-9 and GFAP concentrations increased after CPB, with the peak values occurring after CPB. At time point T5, MMP-9 and GFAP levels were close to those at T1. MMP-9 concentrations in the Dex-Iso group were lower than the Iso group at T3 and T4. GFAP concentrations in the Dex-Iso group were lower at T3 but were higher than the Iso group at T2. No significant differences were found in AVDL between the 2 groups perioperatively except at T2. The ASEM scores decreased significantly postoperatively. There was no significant difference in the ASEM scores between the 2 treatment groups before and after the operation. CONCLUSIONS The use of dexmedetomidine decreased the biochemical markers of brain injury but did not improve the neuropsychological test result after cardiac surgery.
Collapse
Affiliation(s)
- Fang Kang
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Anhui Province, China
| | - ChaoLiang Tang
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Anhui Province, China
| | - MingMing Han
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Anhui Province, China
| | - XiaoQing Chai
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Anhui Province, China
| | - Xiang Huang
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Anhui Province, China
| | - Juan Li
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Anhui Province, China.
| |
Collapse
|
27
|
Xie LJ, Huang JX, Yang J, Yuan F, Zhang SS, Yu QJ, Hu J. Propofol protects against blood-spinal cord barrier disruption induced by ischemia/reperfusion injury. Neural Regen Res 2017; 12:125-132. [PMID: 28250758 PMCID: PMC5319217 DOI: 10.4103/1673-5374.199004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023] Open
Abstract
Propofol has been shown to exert neuroprotective effects on the injured spinal cord. However, the effect of propofol on the blood-spinal cord barrier (BSCB) after ischemia/reperfusion injury (IRI) is poorly understood. Therefore, we investigated whether propofol could maintain the integrity of the BSCB. Spinal cord IRI (SCIRI) was induced in rabbits by infrarenal aortic occlusion for 30 minutes. Propofol, 30 mg/kg, was intravenously infused 10 minutes before aortic clamping as well as at the onset of reperfusion. Then, 48 hours later, we performed histological and mRNA/protein analyses of the spinal cord. Propofol decreased histological damage to the spinal cord, attenuated the reduction in BSCB permeability, downregulated the mRNA and protein expression levels of matrix metalloprotease-9 (MMP-9) and nuclear factor-κB (NF-κB), and upregulated the protein expression levels of occludin and claudin-5. Our findings suggest that propofol helps maintain BSCB integrity after SCIRI by reducing MMP-9 expression, by inhibiting the NF-κB signaling pathway, and by maintaining expression of tight junction proteins.
Collapse
Affiliation(s)
- Li-Jie Xie
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Jin-Xiu Huang
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Jian Yang
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Fen Yuan
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Shuang-Shuang Zhang
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Qi-Jing Yu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Ji Hu
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| |
Collapse
|
28
|
Chen X, Du YM, Xu F, Liu D, Wang YL. Propofol Prevents Hippocampal Neuronal Loss and Memory Impairment in Cerebral Ischemia Injury Through Promoting PTEN Degradation. J Mol Neurosci 2016; 60:63-70. [DOI: 10.1007/s12031-016-0791-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/29/2016] [Accepted: 06/28/2016] [Indexed: 01/07/2023]
|