1
|
Cong Z, Wan T, Wang J, Feng L, Cao C, Li Z, Wang X, Han Y, Zhou Y, Gao Y, Zhang J, Qu Y, Guo X. Epidemiological and clinical features of malignant hyperthermia: A scoping review. Clin Genet 2024; 105:233-242. [PMID: 38148504 DOI: 10.1111/cge.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/22/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
Malignant hyperthermia (MH) is a potentially fatal inherited pharmacogenetic disorder related to pathogenic variants in the RYR1, CACNA1S, or STAC3 genes. Early recognition of the occurrence of MH and prompt medical treatment are indispensable to ensure a positive outcome. The purpose of this study was to provide valuable information for the early identification of MH by summarizing epidemiological and clinical features of MH. This scoping review followed the methodological framework recommended by Arksey and O'Malley. PubMed, Embase, and Web of science databases were searched for studies that evaluated the epidemical and clinical characteristics of MH. A total of 37 studies were included in this review, of which 26 were related to epidemiology and 24 were associated with clinical characteristics. The morbidity of MH varied from 0.18 per 100 000 to 3.9 per 100 000. The mortality was within the range of 0%-18.2%. Identified risk factors included sex, age, disorders associated with MH, and others. The most frequent initial clinical signs included hyperthermia, sinus tachycardia, and hypercarbia. The occurrence of certain signs, such as hypercapnia, delayed first temperature measurement, and peak temperature were associated with poor outcomes. The epidemiological and clinical features of MH varied considerably and some risk factors and typical clinical signs were identified. The main limitation of this review is that the treatment and management strategies were not assessed sufficiently due to limited information.
Collapse
Affiliation(s)
- Zhukai Cong
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and lmprovement on Clinical Anesthesia, Beijing, China
| | - Tingting Wan
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and lmprovement on Clinical Anesthesia, Beijing, China
| | - Jiechu Wang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and lmprovement on Clinical Anesthesia, Beijing, China
| | - Luyang Feng
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and lmprovement on Clinical Anesthesia, Beijing, China
| | - Cathy Cao
- Department of Anesthesiology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and lmprovement on Clinical Anesthesia, Beijing, China
| | - Xiaoxiao Wang
- Research Center for Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Yongzheng Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and lmprovement on Clinical Anesthesia, Beijing, China
| | - Yang Zhou
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and lmprovement on Clinical Anesthesia, Beijing, China
| | - Ya Gao
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and lmprovement on Clinical Anesthesia, Beijing, China
| | - Jing Zhang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and lmprovement on Clinical Anesthesia, Beijing, China
| | - Yinyin Qu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and lmprovement on Clinical Anesthesia, Beijing, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and lmprovement on Clinical Anesthesia, Beijing, China
| |
Collapse
|
2
|
Zumsande S, Thoben C, Dennhardt N, Krauß T, Sümpelmann R, Zimmermann S, Rüffert H, Heiderich S. Rebounds of sevoflurane concentration during simulated trigger-free pediatric and adult anesthesia. BMC Anesthesiol 2023; 23:196. [PMID: 37291484 PMCID: PMC10249316 DOI: 10.1186/s12871-023-02148-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/20/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND In trigger-free anesthesia a volatile anesthetic concentration of 5 parts per million (ppm) should not be exceeded. According to European Malignant Hyperthermia Group (EMHG) guideline, this may be achieved by removing the vapor, changing the anesthetic breathing circuit and renewing the soda lime canister followed by flushing with O2 or air for a workstation specific time. Reduction of the fresh gas flow (FGF) or stand-by modes are known to cause rebound effects. In this study, simulated trigger-free pediatric and adult ventilation was carried out on test lungs including ventilation maneuvers commonly used in clinical practice. The goal of this study was to evaluate whether rebounds of sevoflurane develop during trigger-free anesthesia. METHODS A Dräger® Primus® was contaminated with decreasing concentrations of sevoflurane for 120 min. Then, the machine was prepared for trigger-free anesthesia according to EMHG guideline by changing recommended parts and flushing the breathing circuits using 10 or 18 l⋅min- 1 FGF. The machine was neither switched off after preparation nor was FGF reduced. Simulated trigger-free ventilation was performed with volume-controlled ventilation (VCV) and pressure-controlled ventilation (PCV) including various ventilation maneuvers like pressure support ventilation (PSV), apnea, decreased lung compliance (DLC), recruitment maneuvers, prolonged expiration and manual ventilation (MV). A high-resolution ion mobility spectrometer with gas chromatographic pre-separation was used to measure sevoflurane in the ventilation gas mixture in a 20 s interval. RESULTS Immediately after start of simulated anesthesia, there was an initial peak of 11-18 ppm sevoflurane in all experiments. The concentration dropped below 5 ppm after 2-3 min during adult and 4-18 min during pediatric ventilation. Other rebounds of sevoflurane > 5 ppm occurred after apnea, DLC and PSV. MV resulted in a decrease of sevoflurane < 5 ppm within 1 min. CONCLUSION This study shows that after guideline-compliant preparation for trigger-free ventilation anesthetic machines may develop rebounds of sevoflurane > 5 ppm during typical maneuvers used in clinical practice. The changes in rate and direction of internal gas flow during different ventilation modes and maneuvers are possible explanations. Therefore, manufacturers should provide machine-specific washout protocols or emphasize the use of active charcoal filters (ACF) for trigger-free anesthesia.
Collapse
Affiliation(s)
- Simon Zumsande
- Clinic of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Christian Thoben
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, Hannover, Germany
| | - Nils Dennhardt
- Clinic of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Terence Krauß
- Clinic of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Robert Sümpelmann
- Clinic of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Stefan Zimmermann
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, Hannover, Germany
| | - Henrik Rüffert
- Clinic of Anesthesiology and Intensive Care Medicine, Helios Klinik Schkeuditz, Leipzig, Germany
| | - Sebastian Heiderich
- Clinic of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
3
|
Malignant Hyperthermia in PICU—From Diagnosis to Treatment in the Light of Up-to-Date Knowledge. CHILDREN 2022; 9:children9111692. [DOI: 10.3390/children9111692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Malignant Hyperthermia (MH) is a rare, hereditary, life-threatening disease triggered by volatile anesthetics and succinylcholine. Rarely, MH can occur after non-pharmacological triggers too. MH was detected more often in children and young adults, which makes this topic very important for every pediatric specialist, both anesthesiologists and intensivists. MH crisis is a life-threatening severe hypermetabolic whole-body reaction. Triggers of MH are used in pediatric intensive care unit (PICU) as well, volatile anesthetics in difficult sedation, status asthmaticus or epilepticus, and succinylcholine still sometimes in airway management. Recrudescence or delayed onset of MH crisis hours after anesthesia was previously described. MH can also be a cause of rhabdomyolysis and hyperpyrexia in the PICU. In addition, patients with neuromuscular diseases are often admitted to PICU and they might be at risk for MH. The most typical symptoms of MH are hypercapnia, tachycardia, hyperthermia, and muscle rigidity. Thinking of the MH as the possible cause of deterioration of a patient’s clinical condition is the key to early diagnosis and treatment. The sooner the correct treatment is commenced, the better patient´s outcome. This narrative review article aims to summarize current knowledge and guidelines about recognition, treatment, and further management of MH in PICU.
Collapse
|
4
|
Klincová M, Štěpánková D, Schröderová I, Klabusayová E, Ošťádalová E, Valášková I, Fajkusová L, Zídková J, Gaillyová R, Štourač P. Malignant hyperthermia in Czechia and Slovakia. Br J Anaesth 2022; 129:e41-e43. [PMID: 35718563 DOI: 10.1016/j.bja.2022.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Martina Klincová
- Department of Paediatric Anaesthesiology and Intensive Care Medicine, University Hospital Brno, Brno, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic; Academic Centre for Malignant Hyperthermia of Masaryk University, Brno, Czech Republic
| | - Dagmar Štěpánková
- Department of Paediatric Anaesthesiology and Intensive Care Medicine, University Hospital Brno, Brno, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic; Academic Centre for Malignant Hyperthermia of Masaryk University, Brno, Czech Republic; Department of Simulation Medicine, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ivana Schröderová
- Faculty of Medicine, Masaryk University, Brno, Czech Republic; Academic Centre for Malignant Hyperthermia of Masaryk University, Brno, Czech Republic; Department of Anaesthesiology and Intensive Care, St Anne's University Hospital, Brno, Czech Republic
| | - Eva Klabusayová
- Department of Paediatric Anaesthesiology and Intensive Care Medicine, University Hospital Brno, Brno, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Edita Ošťádalová
- Faculty of Medicine, Masaryk University, Brno, Czech Republic; Centre for Molecular Biology and Genetics, University Hospital Brno, Brno, Czech Republic
| | - Iveta Valášková
- Faculty of Medicine, Masaryk University, Brno, Czech Republic; Centre for Molecular Biology and Genetics, University Hospital Brno, Brno, Czech Republic
| | - Lenka Fajkusová
- Faculty of Medicine, Masaryk University, Brno, Czech Republic; Academic Centre for Malignant Hyperthermia of Masaryk University, Brno, Czech Republic; Centre for Molecular Biology and Genetics, University Hospital Brno, Brno, Czech Republic
| | - Jana Zídková
- Faculty of Medicine, Masaryk University, Brno, Czech Republic; Academic Centre for Malignant Hyperthermia of Masaryk University, Brno, Czech Republic; Centre for Molecular Biology and Genetics, University Hospital Brno, Brno, Czech Republic
| | - Renata Gaillyová
- Institute of Medical Genetics and Genomics, University Hospital Brno, Brno, Czech Republic
| | - Petr Štourač
- Department of Paediatric Anaesthesiology and Intensive Care Medicine, University Hospital Brno, Brno, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic; Academic Centre for Malignant Hyperthermia of Masaryk University, Brno, Czech Republic; Department of Simulation Medicine, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|