1
|
Kršek A, Batičić L, Ćurko-Cofek B, Batinac T, Laškarin G, Miletić-Gršković S, Sotošek V. Insights into the Molecular Mechanism of Endothelial Glycocalyx Dysfunction during Heart Surgery. Curr Issues Mol Biol 2024; 46:3794-3809. [PMID: 38785504 PMCID: PMC11119104 DOI: 10.3390/cimb46050236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
The endothelial glycocalyx (EGC) is a layer of proteoglycans (associated with glycosaminoglycans) and glycoproteins, which adsorbs plasma proteins on the luminal surface of endothelial cells. Its main function is to participate in separating the circulating blood from the inner layers of the vessels and the surrounding tissues. Physiologically, the EGC stimulates mechanotransduction, the endothelial charge, thrombocyte adhesion, leukocyte tissue recruitment, and molecule extravasation. Hence, severe impairment of the EGC has been implicated in various pathological conditions, including sepsis, diabetes, chronic kidney disease, inflammatory disorders, hypernatremia, hypervolemia, atherosclerosis, and ischemia/reperfusion injury. Moreover, alterations in EGC have been associated with altered responses to therapeutic interventions in conditions such as cardiovascular diseases. Investigation into the function of the glycocalyx has expanded knowledge about vascular disorders and indicated the need to consider new approaches in the treatment of severe endothelial dysfunction. This review aims to present the current understanding of the molecular mechanisms underlying cardiovascular diseases and to elucidate the impact of heart surgery on EGC dysfunction.
Collapse
Affiliation(s)
- Antea Kršek
- Faculty of Rijeka, University of Medicine, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (B.Ć.-C.); (G.L.)
| | - Tanja Batinac
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia; (T.B.); (V.S.)
| | - Gordana Laškarin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (B.Ć.-C.); (G.L.)
- Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism “Thalassotherapia-Opatija”, M. Tita 188, 51410 Opatija, Croatia;
| | - Silvija Miletić-Gršković
- Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism “Thalassotherapia-Opatija”, M. Tita 188, 51410 Opatija, Croatia;
| | - Vlatka Sotošek
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia; (T.B.); (V.S.)
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
2
|
Lin L, Gao W, Feng L, Wang C, Yang R, Wang W, Wu Q. Autophagy Induced by Low Shear Stress Leads to Endothelial Glycocalyx Disruption. J Vasc Res 2024; 61:77-88. [PMID: 38503274 DOI: 10.1159/000537772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/05/2024] [Indexed: 03/21/2024] Open
Abstract
INTRODUCTION Previous studies have confirmed that low shear stress (LSS) induces glycocalyx disruption, leading to endothelial dysfunction. However, the role of autophagy in LSS-induced glycocalyx disruption and relevant mechanism are not clear. In this study, we hypothesized that LSS may promote autophagy, disrupting the endothelium glycocalyx. METHODS Human umbilical vein endothelial cells were subjected to physiological shear stress and LSS treatments, followed by the application of autophagy inducers and inhibitors. Additionally, cells were treated with specific matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) inhibitor. The expression of autophagic markers, glycocalyx, MMP-2, and MMP-9 was measured. RESULTS LSS impacted the expression of endothelium autophagy markers, increasing the expression of LC3II.LC3I-1 and Beclin-1, and decreasing the levels of p62, accompanied by glycocalyx disturbance. Moreover, LSS upregulated the expression of MMP-2 and MMP-9 and downregulated the levels of syndecan-1 and heparan sulfate (HS). Additionally, expression of MMP-2 and MMP-9 was increased by an autophagy promoter but was decreased by autophagy inhibitor treatment under LSS. Autophagy and MMP-2 and MMP-9 further caused glycocalyx disruption. CONCLUSION LSS promotes autophagy, leading to glycocalyx disruption. Autophagy increases the expression of MMP-2 and MMP-9, which are correlated with the glycocalyx destruction induced by LSS.
Collapse
Affiliation(s)
- Lina Lin
- Department of Anaesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Gao
- Department of Anaesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Linya Feng
- Department of Anaesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chundong Wang
- Department of Anaesthesiology, Dongyang Hospital Affiliated to Wenzhou Medical University, Jinhua, China
| | - Ruiqi Yang
- Department of the Operating Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weijian Wang
- Department of Anaesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiaolin Wu
- Department of Anaesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Lin L, Niu M, Gao W, Wang C, Wu Q, Fang F, Wang Y, Wang W. Predictive role of glycocalyx components and MMP-9 in cardiopulmonary bypass patients for ICU stay. Heliyon 2024; 10:e23299. [PMID: 38163126 PMCID: PMC10756997 DOI: 10.1016/j.heliyon.2023.e23299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Background Shedding of glycocalyx is relevant to worse prognosis in surgical patients, and elevated levels of serum matrix metalloproteinase-9 (MMP-9) are associated with this phenomenon. This study aimed to investigate the dynamic alterations of serum glycocalyx components and MMP-9 during cardiopulmonary bypass (CPB), and evaluate their predictive capacities for prolonged intensive care unit (ICU) stay, as well as their correlation with coagulation dysfunction. Methods This retrospective study analyzed serum levels of syndecan-1, heparan sulfate (HS), and MMP-9 at different time points during CPB, and assessed their association with prolonged ICU stay and coagulation dysfunction. Results Syndecan-1, HS, and MMP-9 exhibited divergent changes during CPB. Serum levels of syndecan-1 (AUC = 78.0 %) and MMP-9 (AUC = 78.4 %) were validated as reliable predictors for prolonged ICU stay, surpassing the predictive value of creatinine (AUC = 70.0 %). Syndecan-1 (rho = 0.566, P < 0.01 at T1 and rho = 0.526, P < 0.01 at T2) and HS (rho = 0.403, P < 0.05 at T4) exhibited correlations with activated partial thromboplastin time (APTT) ratio beyond the normal range. Conclusions Our findings advocate the potential efficacy of serum glycocalyx components and MMP-9 as early predictive indicators for extended ICU stay following cardiac surgery with CPB. Additionally, we observed a correlation between glycocalyx disruption during CPB and coagulation dysfunction. Further studies with expansive cohorts are warranted to consolidate our findings and explore the predictive potential of other glycocalyx components.
Collapse
Affiliation(s)
- Lina Lin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Mengying Niu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Wei Gao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Chundong Wang
- Department of Anesthesiology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, 322100, China
| | - Qiaolin Wu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Fuquan Fang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Yongan Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Weijian Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| |
Collapse
|
4
|
Schnider TW, Nieuwenhuijs-Moeke GJ, Beck-Schimmer B, Hemmerling TM. Pro-Con Debate: Should All General Anesthesia Be Done Using Target-Controlled Propofol Infusion Guided by Objective Monitoring of Depth of Anesthesia? Anesth Analg 2023; 137:565-575. [PMID: 37590801 DOI: 10.1213/ane.0000000000006293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
In this Pro-Con commentary article, we discuss whether all general anesthesia should be done using target-controlled propofol anesthesia guided by monitoring of depth of anesthesia. This is an ongoing debate since more than 25 years, representing a scientific, cultural as well as geographical divide in the anesthesia community. The Pro side argues that total intravenous anesthesia causes less postoperative nausea and higher patient satisfaction than anesthesia using volatile anesthetics. Target-controlled infusion (TCI) of anesthetic agents allows for better titration of intravenous anesthesia using pharmacokinetic models. Processed EEG monitors, such as bispectral index monitoring, allows for better assessing the effect of TCI anesthesia than solely assessment of clinical parameters, such as ECG or blood pressure. The combination of TCI propofol and objective depth of anesthesia monitoring allows creating a pharmacokinetic-pharmacodynamic profile for each patient. Finally, anesthesia using volatile anesthetics poses health risks for healthcare professionals and contributes to greenhouse effect. The Con side argues that for procedures accompanied with ischemia and reperfusion injury of an organ or tissue and for patients suffering from a severe inflammation' the use of volatile anesthetics might well have its advantages above propofol. In times of sudden shortage of drugs, volatile anesthetics can overcome the restriction in the operating theater or even on the intensive care unit, which is another advantage. Volatile anesthetics can be used for induction of anesthesia when IV access is impossible, end-tidal measurements of volatile anesthetic concentration allows confirmation that patients receive anesthetics. Taking environmental considerations into account, both propofol and volatile anesthetics bear certain harm to the environment, be it as waste product or as greenhouse gases. The authors therefore suggest to carefully considering advantages and disadvantages for each patient in its according environment. A well-balanced choice based on the available literature is recommended. The authors recommend careful consideration of advantages and disadvantages of each technique when tailoring an anesthetic to meet patient needs. Where appropriate, anesthesia providers are encouraged to account for unique features of anesthetic drug behavior, patient-reported and observed postoperative outcomes, and economic and environmental considerations when choosing any of the 2 described techniques.
Collapse
Affiliation(s)
- Thomas W Schnider
- From the Department for Anesthesiology, Intensive, Rescue and Pain medicine, Kantonsspital St Gallen, St Gallen, Switzerland
| | - Gertrude J Nieuwenhuijs-Moeke
- Department of Anesthesiology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | | | | |
Collapse
|
5
|
Wang Q, Zuurbier CJ, Huhn R, Torregroza C, Hollmann MW, Preckel B, van den Brom CE, Weber NC. Pharmacological Cardioprotection against Ischemia Reperfusion Injury-The Search for a Clinical Effective Therapy. Cells 2023; 12:1432. [PMID: 37408266 DOI: 10.3390/cells12101432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
Pharmacological conditioning aims to protect the heart from myocardial ischemia-reperfusion injury (IRI). Despite extensive research in this area, today, a significant gap remains between experimental findings and clinical practice. This review provides an update on recent developments in pharmacological conditioning in the experimental setting and summarizes the clinical evidence of these cardioprotective strategies in the perioperative setting. We start describing the crucial cellular processes during ischemia and reperfusion that drive acute IRI through changes in critical compounds (∆GATP, Na+, Ca2+, pH, glycogen, succinate, glucose-6-phosphate, mitoHKII, acylcarnitines, BH4, and NAD+). These compounds all precipitate common end-effector mechanisms of IRI, such as reactive oxygen species (ROS) generation, Ca2+ overload, and mitochondrial permeability transition pore opening (mPTP). We further discuss novel promising interventions targeting these processes, with emphasis on cardiomyocytes and the endothelium. The limited translatability from basic research to clinical practice is likely due to the lack of comorbidities, comedications, and peri-operative treatments in preclinical animal models, employing only monotherapy/monointervention, and the use of no-flow (always in preclinical models) versus low-flow ischemia (often in humans). Future research should focus on improved matching between preclinical models and clinical reality, and on aligning multitarget therapy with optimized dosing and timing towards the human condition.
Collapse
Affiliation(s)
- Qian Wang
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Coert J Zuurbier
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Ragnar Huhn
- Department of Anesthesiology, Kerckhoff-Clinic-Center for Heart, Lung, Vascular and Rheumatic Disease, Justus-Liebig-University Giessen, Benekestr. 2-8, 61231 Bad Nauheim, Germany
| | - Carolin Torregroza
- Department of Anesthesiology, Kerckhoff-Clinic-Center for Heart, Lung, Vascular and Rheumatic Disease, Justus-Liebig-University Giessen, Benekestr. 2-8, 61231 Bad Nauheim, Germany
| | - Markus W Hollmann
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Benedikt Preckel
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Charissa E van den Brom
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Nina C Weber
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
6
|
Knežević D, Ćurko-Cofek B, Batinac T, Laškarin G, Rakić M, Šoštarič M, Zdravković M, Šustić A, Sotošek V, Batičić L. Endothelial Dysfunction in Patients Undergoing Cardiac Surgery: A Narrative Review and Clinical Implications. J Cardiovasc Dev Dis 2023; 10:jcdd10050213. [PMID: 37233179 DOI: 10.3390/jcdd10050213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Cardiac surgery is one of the highest-risk procedures, usually involving cardiopulmonary bypass and commonly inducing endothelial injury that contributes to the development of perioperative and postoperative organ dysfunction. Substantial scientific efforts are being made to unravel the complex interaction of biomolecules involved in endothelial dysfunction to find new therapeutic targets and biomarkers and to develop therapeutic strategies to protect and restore the endothelium. This review highlights the current state-of-the-art knowledge on the structure and function of the endothelial glycocalyx and mechanisms of endothelial glycocalyx shedding in cardiac surgery. Particular emphasis is placed on potential strategies to protect and restore the endothelial glycocalyx in cardiac surgery. In addition, we have summarized and elaborated the latest evidence on conventional and potential biomarkers of endothelial dysfunction to provide a comprehensive synthesis of crucial mechanisms of endothelial dysfunction in patients undergoing cardiac surgery, and to highlight their clinical implications.
Collapse
Affiliation(s)
- Danijel Knežević
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Tanja Batinac
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia
| | - Gordana Laškarin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
- Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism "Thalassotherapia-Opatija", M. Tita 188, 51410 Opatija, Croatia
| | - Marijana Rakić
- Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism "Thalassotherapia-Opatija", M. Tita 188, 51410 Opatija, Croatia
| | - Maja Šoštarič
- Clinical Department of Anesthesiology and Perioperative Intensive Therapy, Division of Cardiac Anesthesiology and Intensive Therapy, University Clinical Center Ljubljana, Zaloska 7, 1000 Ljubljana, Slovenia
- Department of Anesthesiology and Reanimatology, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | - Marko Zdravković
- Department of Anaesthesiology, Intensive Care and Pain Management, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
| | - Alan Šustić
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Vlatka Sotošek
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
7
|
The effects of female sexual hormones on the endothelial glycocalyx. CURRENT TOPICS IN MEMBRANES 2023; 91:89-137. [PMID: 37080682 DOI: 10.1016/bs.ctm.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The glycocalyx is a layer composed of carbohydrate side chains bound to core proteins that lines the vascular endothelium. The integrity of the glycocalyx is essential for endothelial cells' performance and vascular homeostasis. The neuroendocrine and immune systems influence the composition, maintenance, activity and degradation of the endothelial glycocalyx. The female organism has unique characteristics, and estrogen and progesterone, the main female hormones are essential to the development and physiology of the reproductive system and to the ability to develop a fetus. Female sex hormones also exert a wide variety of effects on other organs, including the vascular endothelium. They upregulate nitric oxide synthase expression and activity, decrease oxidative stress, increase vasodilation, and protect from vascular injury. This review will discuss how female hormones and pregnancy, which prompts to high levels of estrogen and progesterone, modulate the endothelial glycocalyx. Diseases prevalent in women that alter the glycocalyx, and therapeutic forms to prevent glycocalyx degradation and potential treatments that can reconstitute its structure and function will also be discussed.
Collapse
|
8
|
Gao W, Fang F, Xia TJ, Zhang Y, Sun J, Wu Q, Wang W. Doxycycline can reduce glycocalyx shedding by inhibiting matrix metalloproteinases in patients undergoing cardiopulmonary bypass: A randomized controlled trial. Microvasc Res 2022; 142:104381. [PMID: 35588887 DOI: 10.1016/j.mvr.2022.104381] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cardiopulmonary bypass (CPB) leads to shedding of the glycocalyx of endothelial cells, resulting in a series of complications such as tissue edema and coagulatory and microcirculatory dysfunctions. Matrix metalloproteinases (MMPs) can cause glycocalyx shedding in a variety of pathological processes, but their role in the process of CPB is still unclear. We hypothesized that the MMPs inhibitor doxycycline would reduce glycocalyx shedding by inhibiting MMPs during CPB. METHODS Thirty-six patients were randomized to receive either 100 mg oral doxycycline (an MMPs inhibitor) or a matching placebo pill twice a day for three days before CPB. The primary outcome was the concentration of plasma syndecan-1. Secondary outcomes included heparan sulphate, MMP-2, MMP-9, ratio of urinary albumin to creatinine, and short-term clinical outcomes. In order to further prove that MMPs in plasma caused the glycocalyx shedding, human umbilical vein endothelial cells were cultured with plasma obtained from cardiac surgery patients before or after CPB (with or without MMPs inhibitor GM6001). The change in glycocalyx content was detected by immunofluorescence. RESULTS CPB resulted in an increase of MMPs and shedding of the glycocalyx. Plasma syndecan-1 was higher in the control group than in the doxycycline group (median difference:15.04 μg/L; 95% CI: 9.14-20.94 μg/L; P < 0.001). Similar to syndecan-1, plasma heparan sulphate, MMP-2, and MMP-9 concentrations in the doxycycline group were significantly lower than those in the control group during CPB. Doxycycline was also correlated with a reduction in the ratio of urinary albumin to creatinine and improved the short-term clinical outcomes of patients. Endothelial cells cultured with plasma from patients after CPB showed significant shedding of syndecan-1 and heparan sulphate (post-CPB group vs pre-CPB group, P < 0.001). GM6001 was shown to reduce shedding of syndecan-1 and heparan sulphate by inhibiting MMPs (post-CPB + GM6001 group vs post-CPB group, P < 0.001). CONCLUSION Doxycycline can reduce glycocalyx shedding by inhibiting MMPs during CPB.
Collapse
Affiliation(s)
- Wei Gao
- Department of Anaesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Fuquan Fang
- Department of Anaesthesiology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang Province, China
| | - Tianna J Xia
- Department of Anaesthesiology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Yan Zhang
- Department of the Operating Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiehao Sun
- Department of Anaesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qiaolin Wu
- Department of Anaesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Weijian Wang
- Department of Anaesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
9
|
Wang WX, Zhao ZR, Bai Y, Li YX, Gao XN, Zhang S, Sun YB. Sevoflurane preconditioning prevents acute renal injury caused by ischemia‑reperfusion in mice via activation of the Nrf2 signaling pathway. Exp Ther Med 2022; 23:303. [PMID: 35340877 PMCID: PMC8931593 DOI: 10.3892/etm.2022.11232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/12/2022] [Indexed: 11/10/2022] Open
Abstract
Oxidative stress, caused by renal ischemia reperfusion (IR)/hypoperfusion, is one of the main causes of acute kidney injury (AKI). Previous studies have demonstrated that sevoflurane (SEV) protects organs from the damage caused by oxidative stress. In the present study, mice were randomly assigned to a sham operation group (Sham), IR-vehicle group (IR+ vehicle), IR + SEV low-dose preconditioning group and an IR + SEV high-dose preconditioning group. The effect of SEV on nuclear factor E2-related factor 2 (Nrf2), a key regulatory protein of the endogenous antioxidant defense system and, consequently oxidative stress, inflammation and apoptosis-related factors, were all quantified using commercial kits or by western blotting. SEV preconditioning was demonstrated to ameliorate kidney injury as a result of decreased blood urine nitrogen and serum creatinine levels, activated Nrf2 expression in the kidney and decreased oxidative stress and inflammatory index levels an AKI mouse model. SEV preconditioning also protected injured kidney via the downregulation of caspase-3 protein expression levels. In addition, using the Nrf2 inhibitor, Brusatol, significantly abolished the SEV preconditioning renal protective effect. Using an in vitro HK-2 cell model of hypoxia/reoxygenation, it was also demonstrated that Nrf2 pathway activation was necessary for SEV to exert its beneficial effect for tubular cell injury caused by hypoxia/reoxygenation. These results indicated that SEV may protect against renal injury caused by IR via Nrf2 upregulation.
Collapse
Affiliation(s)
- Wen-Xi Wang
- Department of Anesthesiology, Chengde Central Hospital, Chengde, Hebei 067000, P.R. China
| | - Zhen-Ru Zhao
- Department of Anesthesiology, Chengde Central Hospital, Chengde, Hebei 067000, P.R. China
| | - Ying Bai
- Department of Anesthesiology, Chengde Central Hospital, Chengde, Hebei 067000, P.R. China
| | - Ya-Xing Li
- Department of Anesthesiology, Chengde Central Hospital, Chengde, Hebei 067000, P.R. China
| | - Xiao-Ning Gao
- Department of Anesthesiology, Chengde Central Hospital, Chengde, Hebei 067000, P.R. China
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Yan-Bin Sun
- Department of Anesthesiology, Chengde Central Hospital, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
10
|
Makkad B, Heinke TL, Kertai MD. Inhalational or total intravenous anesthetic for cardiac surgery: does the debate even exist? Curr Opin Anaesthesiol 2022; 35:18-35. [PMID: 34873076 DOI: 10.1097/aco.0000000000001087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Perioperative myocardial injury related to cardiac surgery is associated with organ dysfunction and increased mortality. Volatile anesthetics (VA) have been used during cardiac surgery for decades because of their direct and indirect preconditioning and protection against ischemia-reperfusion injury. The current review provides a summary of the latest literature comparing pharmacological preconditioning and the potential benefits of using VA versus total intravenous anesthesia (TIVA) for general anesthesia to improve outcomes after cardiac surgery. RECENT FINDINGS Recent literature reports lower mortality and better outcomes when VA is used alone or in combination with remote ischemic preconditioning compared with groups receiving TIVA. However, inconsistent research findings over the years have led to continued debate regarding the anesthetic technique considered more favorable for cardiac surgery. SUMMARY Research findings regarding the use of volatile anesthetic versus TIVA for better outcomes after cardiac surgery are inconsistent. Variability in timing, duration, dosing, and type of VA as well as surgical and patient-related factors may have influenced these results. Therefore, either technique can reasonably be adopted depending on provider and institutional preference and used safely in patients undergoing cardiac surgery.
Collapse
Affiliation(s)
- Benu Makkad
- Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Timothy Lee Heinke
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Miklos D Kertai
- Division of Cardiothoracic Anesthesiology, Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Chanthick C, Thongboonkerd V. Hyaluronic acid promotes calcium oxalate crystal growth, crystal-cell adhesion, and crystal invasion through extracellular matrix. Toxicol In Vitro 2022; 80:105320. [DOI: 10.1016/j.tiv.2022.105320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/31/2021] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
|
12
|
Meyer-Frießem CH, Hüsken S, Kaisler M, Malewicz NM, Zahn PK, Baumann A. Isoflurane not at the expense of postoperative nausea and vomiting in cardiac anesthesia - an observational study. Curr Med Res Opin 2021; 37:2035-2042. [PMID: 34515599 DOI: 10.1080/03007995.2021.1980776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Inhalative anesthesia is of common use, but is generally known to potentiate postoperative nausea and vomiting (PONV). With an internal change of anesthesia regimen from total intravenous anesthesia (TIVA) to isoflurane (in terms of myocardial protection) in cardiac anesthesia a higher incidence of PONV was to be expected. Therefore, we evaluated the incidence of PONV after the simultaneous implementation of PONV prophylaxis. METHODS The incidence of PONV, prospectively assessed in 197 cardiac surgery patients (68 y ± 10.4, 66.5% male) having isoflurane plus dual PONV prophylaxis with dexamethasone and droperidol, was compared with previous data of 190 controls (67 y ± 9.6, 71% male) having TIVA without and with single or dual PONV prophylaxis (n = 64 dexamethasone and droperidol, n = 25 dexamethasone, n = 101 only TIVA), and the Apfel-scoring (0-4 depending on PONV-risk). DRKS00014275. Statistics: Chi2-test, p < .05 (Bonferroni). RESULTS The incidence of PONV under isoflurane with antiemetic prophylaxis was 20.8% (95% confidence interval (CI) 15.4; 27.4) compared to 30.5% (95%CI 24; 37.6) under TIVA (p = .029; dexamethasone and droperidol 23.4% (95%CI 13.8; 35.7); dexamethasone 32% (95%CI 14.9; 53.5); only TIVA 34.7% (95%CI 25.5; 44.8)), but was not lower in high-risk patients than predicted according to Apfel-scoring 4 (71.4 vs. 78%). CONCLUSION In cardiac anesthesia, the use of isoflurane is not at the expense of PONV when using a risk-independent two-drug-prophylaxis. It is even beneficial resulting surprisingly in a lower incidence of PONV than under TIVA unless with and without prophylaxis. Patients with the highest risk for PONV and receiving isoflurane should receive a third antiemetic prophylactic drug.
Collapse
Affiliation(s)
- Christine H Meyer-Frießem
- Department of Anesthesiology, Intensive Care and Pain Medicine, Medical Faculty of Ruhr, University Bochum, BG-Universitätsklinikum Bergmannsheil gGmbH Bochum, Bochum, Germany
| | - Sabeth Hüsken
- Department of Anesthesiology, Intensive Care and Pain Medicine, Medical Faculty of Ruhr, University Bochum, BG-Universitätsklinikum Bergmannsheil gGmbH Bochum, Bochum, Germany
| | - Miriam Kaisler
- Department of Anesthesiology, Intensive Care and Pain Medicine, Medical Faculty of Ruhr, University Bochum, BG-Universitätsklinikum Bergmannsheil gGmbH Bochum, Bochum, Germany
| | - Nathalie M Malewicz
- Department of Anesthesiology, Intensive Care and Pain Medicine, Medical Faculty of Ruhr, University Bochum, BG-Universitätsklinikum Bergmannsheil gGmbH Bochum, Bochum, Germany
| | - Peter K Zahn
- Department of Anesthesiology, Intensive Care and Pain Medicine, Medical Faculty of Ruhr, University Bochum, BG-Universitätsklinikum Bergmannsheil gGmbH Bochum, Bochum, Germany
| | - Andreas Baumann
- Department of Anesthesiology, Intensive Care and Pain Medicine, Medical Faculty of Ruhr, University Bochum, BG-Universitätsklinikum Bergmannsheil gGmbH Bochum, Bochum, Germany
| |
Collapse
|
13
|
Jin J, Fang F, Gao W, Chen H, Wen J, Wen X, Chen J. The Structure and Function of the Glycocalyx and Its Connection With Blood-Brain Barrier. Front Cell Neurosci 2021; 15:739699. [PMID: 34690703 PMCID: PMC8529036 DOI: 10.3389/fncel.2021.739699] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/17/2021] [Indexed: 11/24/2022] Open
Abstract
The vascular endothelial glycocalyx is a dense, bush-like structure that is synthesized and secreted by endothelial cells and evenly distributed on the surface of vascular endothelial cells. The blood-brain barrier (BBB) is mainly composed of pericytes endothelial cells, glycocalyx, basement membranes, and astrocytes. The glycocalyx in the BBB plays an indispensable role in many important physiological functions, including vascular permeability, inflammation, blood coagulation, and the synthesis of nitric oxide. Damage to the fragile glycocalyx can lead to increased permeability of the BBB, tissue edema, glial cell activation, up-regulation of inflammatory chemokines expression, and ultimately brain tissue damage, leading to increased mortality. This article reviews the important role that glycocalyx plays in the physiological function of the BBB. The review may provide some basis for the research direction of neurological diseases and a theoretical basis for the diagnosis and treatment of neurological diseases.
Collapse
Affiliation(s)
- Jing Jin
- Zhejiang Center for Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Fuquan Fang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Gao
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hanjian Chen
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Wen
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuehua Wen
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Junfa Chen
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|