1
|
Peart DR, Claridge EV, Karlovcec JM, El Azali R, LaDouceur KE, Sikic A, Thomas A, Stone AP, Murray JE. Generalization of a positive-feature interoceptive morphine occasion setter across the rat estrous cycle. Horm Behav 2024; 162:105541. [PMID: 38583235 DOI: 10.1016/j.yhbeh.2024.105541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/17/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024]
Abstract
INTRODUCTION Interoceptive stimuli elicited by drug administration acquire conditioned modulatory properties of the induction of conditioned appetitive behaviours by exteroceptive cues. This effect may be modeled using a drug discrimination task in which the drug stimulus is trained as a positive-feature (FP) occasion setter (OS) that disambiguates the relation between an exteroceptive light conditioned stimulus (CS) and a sucrose unconditioned stimulus (US). We previously reported that females are less sensitive to generalization of a FP morphine OS than males, so we investigated the role of endogenous ovarian hormones in this difference. METHODS Male and female rats received intermixed injections of 3.2 mg/kg morphine or saline before each daily training session. Training consisted of 8 presentations of the CS, each followed by access to sucrose on morphine, but not saline sessions. Following acquisiton, rats were tested for generalization of the morphine stimulus to 0, 1.0, 3.2, and 5.4 mg/kg morphine. Female rats were monitored for estrous cyclicity using vaginal cytology throughout the study. RESULTS Both sexes acquired stable drug discrimination. A gradient of generalization was measured across morphine doses and this behaviour did not differ by sex, nor did it differ across the estrous cycle in females. CONCLUSIONS Morphine generalization is independent of fluctuations in levels of sex and endogenous gonadal hormones in females under these experimental conditions.
Collapse
Affiliation(s)
- Davin R Peart
- Department of Psychology, University of Guelph, Guelph, ON, Canada; Collaborative Neurosciences Graduate Program, University of Guelph, Guelph, ON, Canada
| | - Ella V Claridge
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Jessica M Karlovcec
- Department of Psychology, University of Guelph, Guelph, ON, Canada; Collaborative Neurosciences Graduate Program, University of Guelph, Guelph, ON, Canada
| | - Rita El Azali
- Department of Psychology, University of Guelph, Guelph, ON, Canada; Collaborative Neurosciences Graduate Program, University of Guelph, Guelph, ON, Canada
| | - Kathleen E LaDouceur
- Department of Psychology, University of Guelph, Guelph, ON, Canada; Collaborative Neurosciences Graduate Program, University of Guelph, Guelph, ON, Canada
| | - Anita Sikic
- Department of Psychology, University of Guelph, Guelph, ON, Canada; Collaborative Neurosciences Graduate Program, University of Guelph, Guelph, ON, Canada
| | - Abina Thomas
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Adiia P Stone
- Department of Psychology, University of Guelph, Guelph, ON, Canada; Collaborative Neurosciences Graduate Program, University of Guelph, Guelph, ON, Canada
| | - Jennifer E Murray
- Department of Psychology, University of Guelph, Guelph, ON, Canada; Collaborative Neurosciences Graduate Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
2
|
Marinho EAV, Oliveira-Lima AJ, Reis HS, Santos-Baldaia R, Wuo-Silva R, Hollais AW, Yokoyama TS, Frussa-Filho R, Berro LF. Context-dependent effects of the CB1 receptor antagonist rimonabant on morphine-induced behavioral sensitization in female mice. Front Pharmacol 2023; 14:1100527. [PMID: 36814501 PMCID: PMC9939462 DOI: 10.3389/fphar.2023.1100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction: The endocannabinoid system has been implicated in the neurobiology of opioid use disorder. While the CB1 receptor antagonist rimonabant has been shown to block some of the behavioral effects of opioids, studies suggest that the treatment environment (i.e., receiving treatment in the drug-associated environment, and/or novelty) can influence its effects. In the present study, we investigated the role of the treatment environment in the effects of rimonabant on the expression of morphine-induced behavioral sensitization. Methods: Adult female Swiss mice were submitted to a behavioral sensitization protocol, during which they received morphine (20 mg/kg, i.p.) in the open-field apparatus, and were subsequently treated with vehicle or rimonabant (1 or 10 mg/kg, i.p.) either in the open-field, in the home-cage or in an activity box (novel environment). The expression of conditioned locomotion (increased locomotor activity in the open-field apparatus in the absence of morphine) and of morphine-induced behavioral sensitization (increased locomotor activity in animals sensitized to morphine) was evaluated during asubsequent saline and morphine challenge, respectively. Results: Animals treated with morphine expressed behavioral sensitization, showing a significant increase in locomotor activity over time. Animals sensitized to morphine and treated with vehicle in the home-cage expressed conditioned locomotion, an effect that was blocked by home-cage treatment with rimonabant. During a saline challenge, only animals sensitized to morphine and treated with saline in the home-cage expressed morphine-induced conditioned locomotion. All morphine-treated animals that received saline during the treatment phase (control groups) expressed behavioral sensitization during the morphine challenge. Treatment with rimonabant in the open-field and in the activity box, but not in the home-cage, blocked the expression of morphine-induced behavioral sensitization. Discussion: Our findings suggest that CB1 receptor antagonism can modulate conditioned responses to morphine even when administered in the home-cage. However, exposure to the drug-associated environment or to a novel environment is necessary for the expression of rimonabant's effects on morphine-induced behavioral sensitization during a morphine challenge.
Collapse
Affiliation(s)
- Eduardo A. V. Marinho
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil,Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Alexandre Justo Oliveira-Lima
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil,Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Henrique S. Reis
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - Renan Santos-Baldaia
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Raphael Wuo-Silva
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Andre W. Hollais
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Thais S. Yokoyama
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Roberto Frussa-Filho
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Lais F. Berro
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil,Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, SP, Brazil,Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States,*Correspondence: Lais F. Berro,
| |
Collapse
|
3
|
May CE, Haun HL, Griffin WC. Sensitization and Tolerance Following Repeated Exposure to Caffeine and Alcohol in Mice. Alcohol Clin Exp Res 2015; 39:1443-52. [PMID: 26136115 PMCID: PMC4515142 DOI: 10.1111/acer.12794] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/28/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Energy drinks are popular mixers with alcohol. While energy drinks contain many ingredients, caffeine is an important pharmacologically active component and is generally present in larger amounts than in other caffeinated beverages. In these studies, we investigated the hypothesis that caffeine would influence the effects of alcohol (ethanol [EtOH]) on conditioned taste aversion (CTA), ataxia, and locomotor activity (LA) after repeated exposure. METHODS Four groups of mice were exposed by oral gavage twice daily to vehicle, EtOH (4 g/kg), caffeine (15 mg/kg), or the EtOH/caffeine combination. CTA to saccharin and ataxia in the parallel rod task was evaluated after 8 or 16 gavages, respectively, using EtOH (1 to 3 g/kg) or EtOH/caffeine (3 mg/kg + 2 g/kg) challenges. In addition, LA was evaluated initially and after repeated exposure to oral gavage of these drugs and doses. RESULTS Repeated oral gavage of EtOH produced significant locomotor sensitization, with those mice increasing total distance traveled by 2-fold. The locomotor response to caffeine, while significantly greater than vehicle gavage, did not change with repeated exposure. On the other hand, repeated gavage of caffeine/EtOH combination produced a substantial increase in total distance traveled after repeated exposure (~4-fold increase). After repeated EtOH exposure, there was significant tolerance to EtOH in the CTA and parallel rod tests. However, neither a history of caffeine exposure nor including caffeine influenced EtOH-induced CTA. Interestingly, a history of caffeine exposure increased the ataxic response to the caffeine/EtOH combination and appeared to reduce the ataxic response to high doses of EtOH. CONCLUSIONS The data support the general hypothesis that repeated exposure to caffeine influences the response to EtOH. Together with previously published work, these data indicate that caffeine influences some EtOH-related behaviors, notably locomotion and ataxia, but appears not to influence the expression of conditioned behaviors.
Collapse
Affiliation(s)
- Christina E May
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, South Carolina
| | - Harold L Haun
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, South Carolina
| | - William C Griffin
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|