1
|
Rajan RK, Kumar RP, Ramanathan M. Piceatannol improved cerebral blood flow and attenuated JNK3 and mitochondrial apoptotic pathway in a global ischemic model to produce neuroprotection. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:479-496. [PMID: 37470802 DOI: 10.1007/s00210-023-02616-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
Cerebral ischemia is one of the leading causes of death and disability worldwide. The only FDA-approved treatment is recanalization with systemic tissue plasminogen activators like alteplase, although reperfusion caused by recanalization can result in neuroinflammation, which can cause brain cell apoptosis. Therefore, after an ischemic/reperfusion injury, interventions are needed to minimize the neuroinflammatory cascade. In the present study, piceatannol (PCT) was studied for its neuroprotective efficacy in a rat model of global ischemic injury by attenuating c-Jun N-terminal kinase 3 (JNK3) downstream signaling. PCT is a resveratrol analog and a polyphenolic stilbenoid naturally occurring in passion fruit and grapes. The neuroprotective efficacy of PCT (1, 5, 10 mg/kg) in ischemic conditions was assessed through pre- and post-treatment. Cerebral blood flow (CBF) and tests for functional recovery were assessed. Protein and gene expression were done for JNK3 and other inflammatory markers. A docking study was performed to identify the amino acid interaction. The results showed that PCT improved motor and memory function as measured by a functional recovery test believed to be due to an increase in cerebral blood flow. Also, the caspase signaling which promotes apoptosis was found to be down-regulated; however, nitric oxide synthase expression was up-regulated, which could explain the enhanced cerebral blood flow (CBF). According to our findings, PCT impeded c-Jun N-terminal kinase 3 (JNK3) signaling by suppressing phosphorylation and disrupting the mitochondrial apoptotic pathway, which resulted in the neuroprotective effect. Molecular docking analysis was performed to investigate the atomic-level interaction of JNK3 and PCT, which reveals that Met149, Leu206, and Lys93 amino acid residues are critical for the interaction of PCT and JNK3. According to our current research, JNK3 downstream signaling and the mitochondrial apoptosis pathway are both inhibited by PCT, which results in neuroprotection under conditions of global brain ischemia. Piceatannol attenuated JNK3 phosphorylation during the ischemic condition and prevented neuronal apoptosis.
Collapse
Affiliation(s)
- Ravi Kumar Rajan
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, 641004, Tamilnadu, India.
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science, Girijananda Chowdhury University, Dekargaon, Tezpur, 784501, Assam, India.
| | - Ram Pravin Kumar
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, 641004, Tamilnadu, India
| | - M Ramanathan
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, 641004, Tamilnadu, India
| |
Collapse
|
2
|
Cao W, Shu N, Wen J, Yang Y, Wang Y, Lu W. Widely Targeted Metabolomics Was Used to Reveal the Differences between Non-Volatile Compounds in Different Wines and Their Associations with Sensory Properties. Foods 2023; 12:foods12020290. [PMID: 36673382 PMCID: PMC9857859 DOI: 10.3390/foods12020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
In this study, metabolites from six varieties of wines, including 'Haasan' (A1), 'Zuoshaner' (A2), 'Beibinghong' (A3), 'Shuanghong' (A4), 'Zijingganlu' (A5), and 'Cabernet Sauvignon' (A6), were identified and quantified using widely targeted metabolomics analysis techniques. Based on the test results, 1172 metabolites were detected and classified into 18 categories. These include 62 amino acids, 178 alkaloids, 189 flavonoids, 106 phenols, 148 terpenoids, etc. Comparing the differential metabolites between the comparison groups of each variety, differences between varieties based on P-values and VIP values were shown. Among these differential metabolites, Trimethoprim and Crotonoside were screened out as core differential metabolites. Multiple comparisons also screened the biomarkers for each species. We used widely targeted metabolomics to reveal the differences between non-volatile compounds in different wines and their associations with sensory properties. We also used the simultaneous weighted gene co-expression network analysis (WGCNA) to correlate metabolites with sensory traits, including color difference values and taste characteristics. Two of the six key modules were screened by WGCNA for relevance to sensory traits (brown module and turquoise module). This study provides a high-throughput method for linking compounds to various sensory characteristics of food, opening up new avenues for explaining differences in different varieties of wine.
Collapse
|
3
|
Munc18-1 Contributes to Hippocampal Injury in Septic Rats Through Regulation of Syntanxin1A and Synaptophysin and Glutamate Levels. Neurochem Res 2023; 48:791-803. [PMID: 36335177 PMCID: PMC9638283 DOI: 10.1007/s11064-022-03806-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction closely associated with mortality in the acute phase of sepsis. Abnormal neurotransmitters release, such as glutamate, plays a crucial role in the pathological mechanism of SAE. Munc18-1 is a key protein regulating neurotransmission. However, whether Munc18-1 plays a role in SAE by regulating glutamate transmission is still unclear. In this study, a septic rat model was established by the cecal ligation and perforation. We found an increase in the content of glutamate in the hippocampus of septic rat, the number of synaptic vesicles in the synaptic active area and the expression of the glutamate receptor NMDAR1. Meanwhile, it was found that the expressions of Munc18-1, Syntaxin1A and Synaptophysin increased, which are involved in neurotransmission. The expression levels of Syntaxin1A and Synaptophysin in hippocampus of septic rats decreased after interference using Munc18-1siRNA. We observed a decrease in the content of glutamate in the hippocampus of septic rats, the number of synaptic vesicles in the synaptic activity area and the expression of NMDAR1. Interestingly, it was also found that the down-regulation of Munc18-1 improved the vital signs of septic rats. This study shows that CLP induced the increased levels of glutamate in rat hippocampus, and Munc18-1 may participate in the process of hippocampal injury in septic rats by affecting the levels of glutamate via regulating Syntaxin1A and Synaptophysin. Munc18-1 may serve as a potential target for SAE therapy.
Collapse
|
4
|
The effects of hypothermia on glutamate and γ-aminobutyric acid metabolism during ischemia in monkeys: a repeated-measures ANOVA study. Sci Rep 2022; 12:14470. [PMID: 36008544 PMCID: PMC9411555 DOI: 10.1038/s41598-022-18783-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
During an ischemic stroke, the brain releases various factors, including glutamate and γ-aminobutyric acid. Glutamate can cause neurotoxic effects through certain receptors and exacerbate neurological damage, while γ-aminobutyric acid as an inhibitory neurotransmitter can antagonize the excitotoxic effects of glutamate and enhance the tolerance of neurons to ischemia. Therefore, in this study, the content of amino acid neurotransmitters in brain tissue before ischemia, after 10 min of ischemia, hypothermic perfusion, and rewarming were analyzed by high-performance liquid chromatography-UV in an animal model of ischemic stroke generated by blocking the bilateral common carotid arteries of rhesus monkeys. The changes in amino acid neurotransmitters in the rhesus monkey brain during post-ischemia hypothermic perfusion and rewarming were investigated by statistical methods of repeated measures ANOVA, showing that the concentration change of glutamate had not only a temporal factor but also was influenced by temperature, and there was an interaction effect between the two. Time but not temperature affected the change in γ-aminobutyric acid concentration, and there was an interaction effect between the two. Accordingly, hypoperfusion exerts a protective effect during ischemia by inhibiting the release of excitatory amino acid neurotransmitters, while the antagonistic effect of GABA on Glu is not significant.
Collapse
|
5
|
Justin A, Thomas P, Narasimha Rao G, Jeyabalan JB, Narendar C, Ponnusankar S, Selvaraj J, R H. Chandamarutha Chenduram, an Indian traditional Siddha preparation attenuated the neuronal degeneration in ischemic mice through ameliorating cytokines and oxy-radicals mediated EAAT-2 dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114827. [PMID: 34774684 DOI: 10.1016/j.jep.2021.114827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 09/14/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chandamarutha Chenduram (CC), an Indian traditional Siddha preparation officially recorded in the Siddha formulary of India and its composition are widely used in the Siddha practice of neurological disorders like stroke/paralysis in India. However, the scientific validation and mechanistic evidence is lacking and yet to be elucidated. AIM OF THE STUDY To establish the scientific evidences and to explore the possible neuroprotective mechanism of CC in cerebral ischemia. MATERIALS AND METHODS Chemical standardization of the CC was performed using atomic absorption spectroscopy and gravimetric analysis. Acute toxicity study for CC in mice was performed in accordance with OECD 423 guidelines. CC (5 mg/kg) and CC (10 mg/kg) were investigated in bilateral common carotid occlusion (BCCAo) model in mice. After, behavioral assessments, the brain samples were collected and the hippocampus region was micro-dissected for neurotransmitter, neurobiochemicals and inflammatory cytokines estimation. The excitatory amino acid transporter-2 (EAAT-2) expressions was analyzed by RT-PCR to understand the possible molecular mechanism. In addition, hematoxylin and eosin staining of CA1 hippocampal brain region was performed to support the neuroprotective effect of CC in ischemic condition. RESULTS Chemical standardization analysis showed that CC has acceptable range of mercury (0.82 ppm) and elemental sulphur (11% w/w). Also, other heavy metal limits were found to be less or not detectable. Toxicity study also evidenced the safety profile of CC. CC has significantly reversed the behavioral dysfunctions (p < 0.001) in global ischemic mice. Treatment with CC has attenuated the excitatory neurotransmitter glutamate, lipid peroxide, nitric oxide, cytokines (IL-1β, TNF-α) (p < 0.001) and increased the antioxidant enzymes (SOD, CAT, GSH) and EAAT-2 expression level (p < 0.001) in ischemic brain. The hematoxylin and eosin staining in CA1 region of hippocampus also evidence the neuroprotective effect exhibited by CC. CONCLUSIONS Treatment with CC has exhibited dose dependent effect and CC10 has shown significant protective effect in comparison to CC5 in most of the parameters studied. CC prevented further degeneration of neurons in cerebral ischemic mice through ameliorating inflammatory cytokines and oxy-radicals mediated EAAT-2 dysfunction and subsequent excitotoxicity in neurons.
Collapse
Affiliation(s)
- Antony Justin
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu, India.
| | - Peet Thomas
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu, India
| | - Gaddam Narasimha Rao
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu, India
| | - Jeyaram Bharathi Jeyabalan
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu, India
| | - Chintha Narendar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu, India
| | - Sivasankaran Ponnusankar
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu, India
| | - Jubie Selvaraj
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu, India
| | - Hariprasad R
- Department of Pharmaceutical Analysis, PSG College of Pharmacy, Coimbatore, Tamilnadu, India
| |
Collapse
|
6
|
Kochalska K, Oakden W, Słowik T, Chudzik A, Pankowska A, Łazorczyk A, Kozioł P, Andres-Mach M, Pietura R, Rola R, Stanisz GJ, Orzylowska A. Dietary supplementation with Lactobacillus rhamnosus JB-1 restores brain neurochemical balance and mitigates the progression of mood disorder in a rat model of chronic unpredictable mild stress. Nutr Res 2020; 82:44-57. [PMID: 32961399 DOI: 10.1016/j.nutres.2020.06.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
Major depressive disorder is a stress-related disease associated with brain metabolic dysregulation in the glutamine-glutamate/γ-aminobutyric acid (Gln-Glu/GABA) cycle. Recent studies have demonstrated that microbiome-gut-brain interactions have the potential to influence mental health. The hypothesis of this study was that Lactobacillus rhamnosus JB-1 (LR-JB1™) dietary supplementation has a positive impact on neuro-metabolism which can be quantified in vivo using magnetic resonance spectroscopy (MRS). A rat model of depressive-like disorder, chronic unpredictable mild stress (CUMS), was used. Baseline comparisons of MRS and behavior were obtained in a control group and in a stressed group subjected to CUMS. Of the 22 metabolites measured using MRS, stressed rats had significantly lower concentrations of GABA, glutamate, glutamine + glutathione, glutamate + glutamine, total creatine, and total N-acetylaspartate (tNAA). Stressed rats were then separated into 2 groups and supplemented with either LR-JB1™ or placebo and re-evaluated after 4 weeks of continued CUMS. The LR-JB1™ microbiotic diet restored these metabolites to levels previously observed in controls, while the placebo diet resulted in further significant decrease of glutamate, total choline, and tNAA. LR-JB1™ treated animals also exhibited calmer and more relaxed behavior, as compared with placebo treated animals. In summary, significant cerebral biochemical downregulation of major brain metabolites following prolonged stress were measured in vivo using MRS, and these decreases were reversed using a microbiotic dietary supplement of LR-JB1™, even in the presence of continued stress, which also resulted in a reduction of stress-induced behavior in a rat model of depressive-like disorder.
Collapse
Affiliation(s)
| | - Wendy Oakden
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Tymoteusz Słowik
- Center of Experimental Medicine, Medical University of Lublin, Lublin, Poland
| | - Agata Chudzik
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Anna Pankowska
- Department of Radiography, Medical University of Lublin, Lublin, Poland
| | - Artur Łazorczyk
- Department of Radiography, Medical University of Lublin, Lublin, Poland
| | - Paulina Kozioł
- Department of Radiography, Medical University of Lublin, Lublin, Poland
| | - Marta Andres-Mach
- Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
| | - Radosław Pietura
- Department of Radiography, Medical University of Lublin, Lublin, Poland
| | - Radosław Rola
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Greg J Stanisz
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Lublin, Poland; Department of Medical Biophysics, University of Toronto, ON, Canada
| | - Anna Orzylowska
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|