1
|
Zhang Y, Huang W, Shan Z, Zhou Y, Qiu T, Hu L, Yang L, Wang Y, Xiao Z. A new experimental rat model of nocebo-related nausea involving double mechanisms of observational learning and conditioning. CNS Neurosci Ther 2024; 30:e14389. [PMID: 37545429 PMCID: PMC10848046 DOI: 10.1111/cns.14389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/12/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023] Open
Abstract
AIM The nocebo effect, such as nausea and vomiting, is one of the major reasons patients discontinue therapy. The underlying mechanisms remain unknown due to a lack of reliable experimental models. The goal of this study was to develop a new animal model of nocebo-related nausea by combining observational learning and Pavlovian conditioning paradigms. METHODS Male Sprague-Dawley rats with nitroglycerin-induced migraine were given 0.9% saline (a placebo) or LiCl (a nausea inducer) following headache relief, according to different paradigms. RESULTS Both strategies provoked nocebo nausea responses, with the conditioning paradigm having a greater induction impact. The superposition of two mechanisms led to a further increase in nausea responses. A preliminary investigation of the underlying mechanism revealed clearly raised peripheral and central cholecystokinin (CCK) levels, as well as specific changes in the 5-hydroxytryptamine and cannabinoid systems. Brain networks related to emotion, cognition, and visceral sense expressed higher c-Fos-positive neurons, including the anterior cingulate cortex (ACC), insula, basolateral amygdala (BLA), thalamic paraventricular nucleus (PVT), hypothalamic paraventricular nucleus (PVN), nucleus tractus solitarius (NTS), periaqueductal gray (PAG), and dorsal raphe nucleus-dorsal part (DRD). We also found that nausea expectances in the model could last for at least 12 days. CONCLUSION The present study provides a useful experimental model of nocebo nausea that might be used to develop potential molecular pathways and therapeutic strategies for nocebo.
Collapse
Affiliation(s)
- Yu Zhang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Wanbin Huang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Zhengming Shan
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Yanjie Zhou
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Tao Qiu
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Luyu Hu
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Liu Yang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Yue Wang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Zheman Xiao
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| |
Collapse
|
2
|
Cantini D, Choleris E, Kavaliers M. Neurobiology of Pathogen Avoidance and Mate Choice: Current and Future Directions. Animals (Basel) 2024; 14:296. [PMID: 38254465 PMCID: PMC10812398 DOI: 10.3390/ani14020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Animals are under constant threat of parasitic infection. This has influenced the evolution of social behaviour and has strong implications for sexual selection and mate choice. Animals assess the infection status of conspecifics based on various sensory cues, with odours/chemical signals and the olfactory system playing a particularly important role. The detection of chemical cues and subsequent processing of the infection threat that they pose facilitates the expression of disgust, fear, anxiety, and adaptive avoidance behaviours. In this selective review, drawing primarily from rodent studies, the neurobiological mechanisms underlying the detection and assessment of infection status and their relations to mate choice are briefly considered. Firstly, we offer a brief overview of the aspects of mate choice that are relevant to pathogen avoidance. Then, we specifically focus on the olfactory detection of and responses to conspecific cues of parasitic infection, followed by a brief overview of the neurobiological systems underlying the elicitation of disgust and the expression of avoidance of the pathogen threat. Throughout, we focus on current findings and provide suggestions for future directions and research.
Collapse
Affiliation(s)
- Dante Cantini
- Department of Psychology, College of Social and Applied Human Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Elena Choleris
- Department of Psychology, College of Social and Applied Human Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Martin Kavaliers
- Department of Psychology, College of Social and Applied Human Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Department of Psychology, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
3
|
Kavaliers M, Wah DTO, Bishnoi IR, Ossenkopp KP, Choleris E. Disgusted snails, oxytocin, and the avoidance of infection threat. Horm Behav 2023; 155:105424. [PMID: 37678092 DOI: 10.1016/j.yhbeh.2023.105424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Disgust is considered to be a fundamental affective state associated with triggering the behavioral avoidance of infection and parasite/pathogen threat. In humans, and other vertebrates, disgust affects how individuals interact with, and respond to, parasites, pathogens and potentially infected conspecifics and their sensory cues. Here we show that the land snail, Cepaea nemoralis, displays a similar "disgust-like" state eliciting behavioral avoidance responses to the mucus associated cues of infected and potentially infected snails. Brief exposure to the mucus of snails treated with the Gram-negative bacterial endotoxin, lipopolysaccharide (LPS), elicited dose-related behavioral avoidance, including acute antinociceptive responses, similar to those expressed by mammals. In addition, exposure to the mucus cues of LPS treated snails led to a subsequent avoidance of unfamiliar individuals, paralleling the recognition of and avoidance responses exhibited by vertebrates exposed to potential pathogen risk. Further, the avoidance of, and antinociceptive responses to, the mucus of LPS treated snails were attenuated in a dose-related manner by the oxytocin (OT) receptor antagonist, L-368,899. This supports the involvement of OT and OT receptor homologs in the expression of infection avoidance, and consistent with the roles of OT in the modulation of responses to salient social and infection threats by rodents and other vertebrates. These findings with land snails are indicative of evolutionarily conserved disgust-like states associated with OT/OT receptor homolog modulated behavioral avoidance responses to infection and pathogen threat.
Collapse
Affiliation(s)
- Martin Kavaliers
- Department of Psychology, University of Western Ontario, London, Canada; Graduate Program in Neuroscience University of Western Ontario, London, Canada; Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Canada.
| | - Deanne T O Wah
- Department of Psychology, University of Western Ontario, London, Canada
| | - Indra R Bishnoi
- Department of Psychology, University of Western Ontario, London, Canada; Graduate Program in Neuroscience University of Western Ontario, London, Canada
| | - Klaus-Peter Ossenkopp
- Department of Psychology, University of Western Ontario, London, Canada; Graduate Program in Neuroscience University of Western Ontario, London, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Canada
| |
Collapse
|
4
|
Giannotti G, Mottarlini F, Heinsbroek JA, Mandel MR, James MH, Peters J. Oxytocin and orexin systems bidirectionally regulate the ability of opioid cues to bias reward seeking. Transl Psychiatry 2022; 12:432. [PMID: 36195606 PMCID: PMC9532415 DOI: 10.1038/s41398-022-02161-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
As opioid-related fatalities continue to rise, the need for novel opioid use disorder (OUD) treatments could not be more urgent. Two separate hypothalamic neuropeptide systems have shown promise in preclinical OUD models. The oxytocin system, originating in the paraventricular nucleus (PVN), may protect against OUD severity. By contrast, the orexin system, originating in the lateral hypothalamus (LH), may exacerbate OUD severity. Thus, activating the oxytocin system or inhibiting the orexin system are potential therapeutic strategies. The specific role of these systems with regard to specific OUD outcomes, however, is not fully understood. Here, we probed the therapeutic efficacy of pharmacological interventions targeting the orexin or oxytocin system on two distinct metrics of OUD severity in rats-heroin choice (versus choice for natural reward, i.e., food) and cued reward seeking. Using a preclinical model that generates approximately equal choice between heroin and food reward, we examined the impact of exogenously administered oxytocin, an oxytocin receptor antagonist (L-368,899), and a dual orexin receptor antagonist (DORA-12) on opioid choice. Whereas these agents did not alter heroin choice when rewards (heroin and food) were available, oxytocin and DORA-12 each significantly reduced heroin seeking in the presence of competing reward cues when no rewards were available. In addition, the number of LH orexin neurons and PVN oxytocin neurons correlated with specific behavioral economic variables indicative of heroin versus food motivation. These data identify a novel bidirectional role of the oxytocin and orexin systems in the ability of opioid-related cues to bias reward seeking.
Collapse
Affiliation(s)
- Giuseppe Giannotti
- grid.430503.10000 0001 0703 675XDepartment of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Francesca Mottarlini
- grid.430503.10000 0001 0703 675XDepartment of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA ,grid.4708.b0000 0004 1757 2822Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Jasper A. Heinsbroek
- grid.430503.10000 0001 0703 675XDepartment of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Mitchel R. Mandel
- grid.430503.10000 0001 0703 675XDepartment of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Morgan H. James
- grid.430387.b0000 0004 1936 8796Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854 USA
| | - Jamie Peters
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA. .,Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
5
|
Kavaliers M, Ossenkopp KP, Tyson CD, Bishnoi IR, Choleris E. Social factors and the neurobiology of pathogen avoidance. Biol Lett 2022; 18:20210371. [PMID: 35193366 PMCID: PMC8864371 DOI: 10.1098/rsbl.2021.0371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/24/2022] [Indexed: 12/21/2022] Open
Abstract
Although the evolutionary causes and consequences of pathogen avoidance have been gaining increasing interest, there has been less attention paid to the proximate neurobiological mechanisms. Animals gauge the infection status of conspecifics and the threat they represent on the basis of various sensory and social cues. Here, we consider the neurobiology of pathogen detection and avoidance from a cognitive, motivational and affective state (disgust) perspective, focusing on the mechanisms associated with activating and directing parasite/pathogen avoidance. Drawing upon studies with laboratory rodents, we briefly discuss aspects of (i) olfactory-mediated recognition and avoidance of infected conspecifics; (ii) relationships between pathogen avoidance and various social factors (e.g. social vigilance, social distancing (approach/avoidance), social salience and social reward); (iii) the roles of various brain regions (in particular the amygdala and insular cortex) and neuromodulators (neurotransmitters, neuropeptides, steroidal hormones and immune components) in the regulation of pathogen avoidance. We propose that understanding the proximate neurobiological mechanisms can provide insights into the ecological and evolutionary consequences of the non-consumptive effects of pathogens and how, when and why females and males engage in pathogen avoidance.
Collapse
Affiliation(s)
- Martin Kavaliers
- Department of Psychology and Neuroscience Program, University of Western Ontario, London, Ontario, Canada N6A 5C1
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Klaus-Peter Ossenkopp
- Department of Psychology and Neuroscience Program, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Cashmeira-Dove Tyson
- Department of Psychology and Neuroscience Program, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Indra R. Bishnoi
- Department of Psychology and Neuroscience Program, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
6
|
Zhong W, Shahbaz O, Teskey G, Beever A, Kachour N, Venketaraman V, Darmani NA. Mechanisms of Nausea and Vomiting: Current Knowledge and Recent Advances in Intracellular Emetic Signaling Systems. Int J Mol Sci 2021; 22:5797. [PMID: 34071460 PMCID: PMC8198651 DOI: 10.3390/ijms22115797] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Nausea and vomiting are common gastrointestinal complaints that can be triggered by diverse emetic stimuli through central and/or peripheral nervous systems. Both nausea and vomiting are considered as defense mechanisms when threatening toxins/drugs/bacteria/viruses/fungi enter the body either via the enteral (e.g., the gastrointestinal tract) or parenteral routes, including the blood, skin, and respiratory systems. While vomiting is the act of forceful removal of gastrointestinal contents, nausea is believed to be a subjective sensation that is more difficult to study in nonhuman species. In this review, the authors discuss the anatomical structures, neurotransmitters/mediators, and corresponding receptors, as well as intracellular emetic signaling pathways involved in the processes of nausea and vomiting in diverse animal models as well as humans. While blockade of emetic receptors in the prevention of vomiting is fairly well understood, the potential of new classes of antiemetics altering postreceptor signal transduction mechanisms is currently evolving, which is also reviewed. Finally, future directions within the field will be discussed in terms of important questions that remain to be resolved and advances in technology that may help provide potential answers.
Collapse
Affiliation(s)
- Weixia Zhong
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (W.Z.); (G.T.); (V.V.)
| | - Omar Shahbaz
- School of Medicine, Universidad Iberoamericana, Av. Francia 129, Santo Domingo 10203, Dominican Republic;
| | - Garrett Teskey
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (W.Z.); (G.T.); (V.V.)
| | - Abrianna Beever
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (N.K.)
| | - Nala Kachour
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (N.K.)
| | - Vishwanath Venketaraman
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (W.Z.); (G.T.); (V.V.)
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (N.K.)
| | - Nissar A. Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (W.Z.); (G.T.); (V.V.)
| |
Collapse
|
7
|
Kavaliers M, Ossenkopp KP, Choleris E. Pathogens, odors, and disgust in rodents. Neurosci Biobehav Rev 2020; 119:281-293. [PMID: 33031813 PMCID: PMC7536123 DOI: 10.1016/j.neubiorev.2020.09.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 01/04/2023]
Abstract
All animals are under the constant threat of attack by parasites. The mere presence of parasite threat can alter behavior before infection takes place. These effects involve pathogen disgust, an evolutionarily conserved affective/emotional system that functions to detect cues associated with parasites and infection and facilitate avoidance behaviors. Animals gauge the infection status of conspecific and the salience of the threat they represent on the basis of various sensory cues. Odors in particular are a major source of social information about conspecifics and the infection threat they present. Here we briefly consider the origins, expression, and regulation of the fundamental features of odor mediated pathogen disgust in rodents. We briefly review aspects of: (1) the expression of affective states and emotions and in particular, disgust, in rodents; (2) olfactory mediated recognition and avoidance of potentially infected conspecifics and the impact of pathogen disgust and its' fundamental features on behavior; (3) pathogen disgust associated trade-offs; (4) the neurobiological mechanisms, and in particular the roles of the nonapeptide, oxytocin, and steroidal hormones, in the expression of pathogen disgust and the regulation of avoidance behaviors and concomitant trade-offs. Understanding the roles of pathogen disgust in rodents can provide insights into the regulation and expression of responses to pathogens and infection in humans.
Collapse
Affiliation(s)
- Martin Kavaliers
- Department of Psychology and Neuroscience Program, University of Western Ontario, London, Canada; Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Klaus-Peter Ossenkopp
- Department of Psychology and Neuroscience Program, University of Western Ontario, London, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
8
|
Kavaliers M, Choleris E. The role of social cognition in parasite and pathogen avoidance. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0206. [PMID: 29866919 DOI: 10.1098/rstb.2017.0206] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2017] [Indexed: 12/22/2022] Open
Abstract
The acquisition and use of social information are integral to social behaviour and parasite/pathogen avoidance. This involves social cognition which encompasses mechanisms for acquiring, processing, retaining and acting on social information. Social cognition entails the acquisition of social information about others (i.e. social recognition) and from others (i.e. social learning). Social cognition involves assessing other individuals and their infection status and the pathogen and parasite threat they pose and deciding about when and how to interact with them. Social cognition provides a framework for examining pathogen and parasite avoidance behaviours and their associated neurobiological mechanisms. Here, we briefly consider the relationships between social cognition and olfactory-mediated pathogen and parasite avoidance behaviours. We briefly discuss aspects of (i) social recognition of actual and potentially infected individuals and the impact of parasite/pathogen threat on mate and social partner choice; (ii) the roles of 'out-groups' (strangers, unfamiliar individuals) and 'in-groups' (familiar individuals) in the expression of parasite/pathogen avoidance behaviours; (iii) individual and social learning, i.e. the utilization of the pathogen recognition and avoidance responses of others; and (iv) the neurobiological mechanisms, in particular the roles of the nonapeptide, oxytocin and steroid hormones (oestrogens) associated with social cognition and parasite/pathogen avoidance.This article is part of the Theo Murphy meeting issue 'Evolution of pathogen and parasite avoidance behaviours'.
Collapse
Affiliation(s)
- Martin Kavaliers
- Department of Psychology and Neuroscience Program, Social Science Centre, University of Western Ontario, London, Ontario, Canada N6A 5C2 .,Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
9
|
Oxytocin attenuates phencyclidine hyperactivity and increases social interaction and nucleus accumben dopamine release in rats. Neuropsychopharmacology 2019; 44:295-305. [PMID: 30120410 PMCID: PMC6300530 DOI: 10.1038/s41386-018-0171-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022]
Abstract
The pituitary neuropeptide oxytocin promotes social behavior, and is a potential adjunct therapy for social deficits in schizophrenia and autism. Oxytocin may mediate pro-social effects by modulating monoamine release in limbic and cortical areas, which was investigated herein using in vivo microdialysis, after establishing a dose that did not produce accompanying sedative or thermoregulatory effects that could concomitantly influence behavior. The effects of oxytocin (0.03-0.3 mg/kg subcutaneous) on locomotor activity, core body temperature, and social behavior (social interaction and ultrasonic vocalizations) were examined in adult male Lister-hooded rats, using selective antagonists to determine the role of oxytocin and vasopressin V1a receptors. Dopamine and serotonin efflux in the prefrontal cortex and nucleus accumbens of conscious rats were assessed using microdialysis. 0.3 mg/kg oxytocin modestly reduced activity and caused hypothermia but only the latter was attenuated by the V1a receptor antagonist, SR49059 (1 mg/kg intraperitoneal). Oxytocin at 0.1 mg/kg, which did not alter activity and had little effect on temperature, significantly attenuated phencyclidine-induced hyperactivity and increased social interaction between unfamiliar rats without altering the number or pattern of ultrasonic vocalizations. In the same rats, oxytocin (0.1 mg/kg) selectively elevated dopamine overflow in the nucleus accumbens, but not prefrontal cortex, without influencing serotonin efflux. Systemic oxytocin administration attenuated phencyclidine-induced hyperactivity and increased pro-social behavior without decreasing core body temperature and selectively enhanced nucleus accumbens dopamine release, consistent with activation of mesocorticolimbic circuits regulating associative/reward behavior being involved. This highlights the therapeutic potential of oxytocin to treat social behavioral deficits seen in psychiatric disorders such as schizophrenia.
Collapse
|
10
|
Kavaliers M, Ossenkopp KP, Choleris E. Social neuroscience of disgust. GENES BRAIN AND BEHAVIOR 2018; 18:e12508. [DOI: 10.1111/gbb.12508] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/13/2018] [Accepted: 07/26/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Martin Kavaliers
- Department of Psychology and Neuroscience Program; University of Western Ontario; London Ontario Canada
- Department of Psychology and Neuroscience Program; University of Guelph; Guelph Ontario Canada
| | - Klaus-Peter Ossenkopp
- Department of Psychology and Neuroscience Program; University of Western Ontario; London Ontario Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program; University of Guelph; Guelph Ontario Canada
| |
Collapse
|
11
|
Kavaliers M, Choleris E. Out-Group Threat Responses, In-Group Bias, and Nonapeptide Involvement Are Conserved across Vertebrates: (A Comment on Bruintjes et al., "Out-Group Threat Promotes Within-Group Affiliation in a Cooperative Fish"). Am Nat 2017; 189:453-458. [PMID: 28350495 DOI: 10.1086/690838] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The challenges and threats posed by out-groups have major effects on human social behavior and how individuals interact with one another. We briefly review evidence here that out-group threat similarly affects nonhuman animal behavior. Actual and potential threats posed by out-group individuals (unfamiliar and genetically nonrelated individuals of the same species) affect social behavior promoting "out-group" avoidance and "in-group" bias and enhancing in-group (familiar and/or genetically related individuals) affiliation and interactions. Individuals from out-groups present risks of pathogen exposure as well as being threats to resources, territory, and offspring. All of these threats function to promote in-group bias in humans and nonhumans. There are also striking similarities in the underlying neurobiological mechanisms mediating the responses to out-group threat and the expression of in-group bias. In particular, the evolutionarily conserved, hormone-regulated nonapeptide systems (oxytocin, arginine-vasopressin, and homologous neuropeptides and their receptors) are involved in the mediation of the detection and avoidance of out-groups and response to in-groups and facilitation of in-group responses across multiple vertebrate species. Consequently, comparative investigations of both the behavioral expression of and the mechanism underlying out-group avoidance and in-group bias are necessary for a full understanding of the evolution of social behavior and responses to in- and out-groups.
Collapse
|