1
|
Qualhato G, Cirqueira Dias F, Rocha TL. Hazardous effects of plastic microfibres from facial masks to aquatic animal health: Insights from zebrafish model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175555. [PMID: 39168327 DOI: 10.1016/j.scitotenv.2024.175555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Facial masks are a source of plastic microfibres (PMFs) in the aquatic environment, an emerging risk factor for aquatic organisms. However, little is known concerning its impact during the early developmental stages of fish. Thus, the current study aimed to evaluate the potential interaction and developmental toxicity of PMFs derived from leachate of surgical masks (SC-Msk) and N-95 facial masks (N95-Msk) using a multi-biomarker approach in developing zebrafish (Danio rerio). PMFs from both facial masks were obtained and characterized by multiple techniques. Zebrafish embryos were exposed to environmentally relevant concentrations of PMFs from both facial masks (1000, 10,000, and 100,000 particle L-1), and the toxicity was analysed in terms of mortality, hatching rate, neurotoxicity, cardiotoxicity, morphological changes, reactive oxygen species (ROS) levels, cell viability, and behavioural impairments. The results showed that both facial masks can release PMFs, but the N95-Msk produced a higher concentration of PMFs than SC-Msk. Both PMFs can interact with zebrafish chorion and don't cause effects on embryo mortality and hatching; however, zebrafish embryos showed cardiotoxic effects, and larvae showed increased agitation, average speed, and distance travelled, indicating the behavioural impairments induced by PMFs derived from facial masks. Overall, results showed the risk of PMFs to the health of freshwater fish, indicating the need for greater attention to the disposal and ecotoxicological effects of facial masks on aquatic organisms.
Collapse
Affiliation(s)
- Gabriel Qualhato
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil; Department of Morphology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Felipe Cirqueira Dias
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
2
|
Tan JXM, Ang RJW, Wee CL. Larval Zebrafish as a Model for Mechanistic Discovery in Mental Health. Front Mol Neurosci 2022; 15:900213. [PMID: 35813062 PMCID: PMC9263853 DOI: 10.3389/fnmol.2022.900213] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/25/2022] [Indexed: 12/23/2022] Open
Abstract
Animal models are essential for the discovery of mechanisms and treatments for neuropsychiatric disorders. However, complex mental health disorders such as depression and anxiety are difficult to fully recapitulate in these models. Borrowing from the field of psychiatric genetics, we reiterate the framework of 'endophenotypes' - biological or behavioral markers with cellular, molecular or genetic underpinnings - to reduce complex disorders into measurable behaviors that can be compared across organisms. Zebrafish are popular disease models due to the conserved genetic, physiological and anatomical pathways between zebrafish and humans. Adult zebrafish, which display more sophisticated behaviors and cognition, have long been used to model psychiatric disorders. However, larvae (up to 1 month old) are more numerous and also optically transparent, and hence are particularly suited for high-throughput screening and brain-wide neural circuit imaging. A number of behavioral assays have been developed to quantify neuropsychiatric phenomena in larval zebrafish. Here, we will review these assays and the current knowledge regarding the underlying mechanisms of their behavioral readouts. We will also discuss the existing evidence linking larval zebrafish behavior to specific human behavioral traits and how the endophenotype framework can be applied. Importantly, many of the endophenotypes we review do not solely define a diseased state but could manifest as a spectrum across the general population. As such, we make the case for larval zebrafish as a promising model for extending our understanding of population mental health, and for identifying novel therapeutics and interventions with broad impact.
Collapse
Affiliation(s)
| | | | - Caroline Lei Wee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
3
|
Morro B, Broughton R, Balseiro P, Handeland SO, Mackenzie S, Doherty MK, Whitfield PD, Shimizu M, Gorissen M, Sveier H, Albalat A. Endoplasmic reticulum stress as a key mechanism in stunted growth of seawater rainbow trout (Oncorhynchus mykiss). BMC Genomics 2021; 22:824. [PMID: 34781893 PMCID: PMC8594166 DOI: 10.1186/s12864-021-08153-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/01/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Rainbow trout (Oncorhynchus mykiss) is a salmonid species with a complex life-history. Wild populations are naturally divided into freshwater residents and sea-run migrants. Migrants undergo an energy-demanding adaptation for life in seawater, known as smoltification, while freshwater residents display these changes in an attenuated magnitude and rate. Despite this, in seawater rainbow trout farming all fish are transferred to seawater. Under these circumstances, weeks after seawater transfer, a significant portion of the fish die (around 10%) or experience growth stunting (GS; around 10%), which represents an important profitability and welfare issue. The underlying causes leading to GS in seawater-transferred rainbow trout remain unknown. In this study, we aimed at characterising the GS phenotype in seawater-transferred rainbow trout using untargeted and targeted approaches. To this end, the liver proteome (LC-MS/MS) and lipidome (LC-MS) of GS and fast-growing phenotypes were profiled to identify molecules and processes that are characteristic of the GS phenotype. Moreover, the transcription, abundance or activity of key proteins and hormones related to osmoregulation (Gill Na+, K + -ATPase activity), growth (plasma IGF-I, and liver igf1, igfbp1b, ghr1 and ctsl) and stress (plasma cortisol) were measured using targeted approaches. RESULTS No differences in Gill Na+, K + -ATPase activity and plasma cortisol were detected between the two groups. However, a significant downregulation in plasma IGF-I and liver igf1 transcription pointed at this growth factor as an important pathomechanism for GS. Changes in the liver proteome revealed reactive-oxygen-species-mediated endoplasmic reticulum stress as a key mechanism underlying the GS phenotype. From the lipidomic analysis, key observations include a reduction in triacylglycerols and elevated amounts of cardiolipins, a characteristic lipid class associated with oxidative stress, in GS phenotype. CONCLUSION While the triggers to the activation of endoplasmic reticulum stress are still unknown, data from this study point towards a nutritional deficiency as an underlying driver of this phenotype.
Collapse
Affiliation(s)
- Bernat Morro
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | | | - Pablo Balseiro
- NORCE AS, Bergen, Norway.,Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Sigurd O Handeland
- NORCE AS, Bergen, Norway.,Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Simon Mackenzie
- Institute of Aquaculture, University of Stirling, Stirling, UK.,NORCE AS, Bergen, Norway
| | - Mary K Doherty
- Institute of Health Research and Innovation, Centre for Health Science, University of the Highlands and Islands, Scotland, UK
| | - Phillip D Whitfield
- Institute of Health Research and Innovation, Centre for Health Science, University of the Highlands and Islands, Scotland, UK.,Institute of Infection, Immunity and Inflammation, University of Glasgow, Scotland, UK
| | - Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, Sapporo, Japan
| | - Marnix Gorissen
- Department of Animal Ecology and Physiology, Radboud University, Institute of Water and Wetland Research, Nijmegen, The Netherlands
| | | | - Amaya Albalat
- Institute of Aquaculture, University of Stirling, Stirling, UK.
| |
Collapse
|
4
|
Clayman CL, Connaughton VP. Neurochemical and Behavioral Consequences of Ethanol and/or Caffeine Exposure: Effects in Zebrafish and Rodents. Curr Neuropharmacol 2021; 20:560-578. [PMID: 34766897 DOI: 10.2174/1570159x19666211111142027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
Zebrafish are increasingly being utilized to model the behavioral and neurochemical effects of pharmaceuticals and, more recently, pharmaceutical interactions. Zebrafish models of stress establish that both caffeine and ethanol influence anxiety, though few studies have implemented co-administration to assess the interaction of anxiety and reward-seeking. Caffeine exposure in zebrafish is teratogenic, causing developmental abnormalities in the cardiovascular, neuromuscular, and nervous systems of embryos and larvae. Ethanol is also a teratogen and, as an anxiolytic substance, may be able to offset the anxiogenic effects of caffeine. Co-exposure to caffeine and alcohol impacts neuroanatomy and behavior in adolescent animal models, suggesting stimulant substances may moderate the impact of alcohol on neural circuit development. Here, we review the literature describing neuropharmacological and behavioral consequences of caffeine and/or alcohol exposure in the zebrafish model, focusing on neurochemistry, locomotor effects, and behavioral assessments of stress/anxiety as reported in adolescent/juvenile and adult animals. The purpose of this review is twofold: (1) describe the work in zebrafish documenting the effects of ethanol and/or caffeine exposure and (2) compare these zebrafish studies with comparable experiments in rodents. We focus on specific neurochemical pathways (dopamine, serotonin, adenosine, GABA, adenosine), anxiety-type behaviors (assessed with novel tank, thigmotaxis, shoaling), and locomotor changes resulting from both individual and co-exposure. We compare findings in zebrafish with those in rodent models, revealing similarities across species and identifying conservation of mechanisms that potentially reinforce co-addiction.
Collapse
Affiliation(s)
- Carly L Clayman
- Department of Biology and Center for Neuroscience and Behavior American University, Washington, DC 20016, United States
| | - Victoria P Connaughton
- Department of Biology and Center for Neuroscience and Behavior American University, Washington, DC 20016, United States
| |
Collapse
|
5
|
Eachus H, Choi MK, Ryu S. The Effects of Early Life Stress on the Brain and Behaviour: Insights From Zebrafish Models. Front Cell Dev Biol 2021; 9:657591. [PMID: 34368117 PMCID: PMC8335398 DOI: 10.3389/fcell.2021.657591] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/20/2021] [Indexed: 01/27/2023] Open
Abstract
The early life period represents a window of increased vulnerability to stress, during which exposure can lead to long-lasting effects on brain structure and function. This stress-induced developmental programming may contribute to the behavioural changes observed in mental illness. In recent decades, rodent studies have significantly advanced our understanding of how early life stress (ELS) affects brain development and behaviour. These studies reveal that ELS has long-term consequences on the brain such as impairment of adult hippocampal neurogenesis, altering learning and memory. Despite such advances, several key questions remain inadequately answered, including a comprehensive overview of brain regions and molecular pathways that are altered by ELS and how ELS-induced molecular changes ultimately lead to behavioural changes in adulthood. The zebrafish represents a novel ELS model, with the potential to contribute to answering some of these questions. The zebrafish offers some important advantages such as the ability to non-invasively modulate stress hormone levels in a whole animal and to visualise whole brain activity in freely behaving animals. This review discusses the current status of the zebrafish ELS field and its potential as a new ELS model.
Collapse
Affiliation(s)
- Helen Eachus
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Min-Kyeung Choi
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Soojin Ryu
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom.,Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
6
|
Benktander J, Sundh H, Sundell K, Murugan AVM, Venkatakrishnan V, Padra JT, Kolarevic J, Terjesen BF, Gorissen M, Lindén SK. Stress Impairs Skin Barrier Function and Induces α2-3 Linked N-Acetylneuraminic Acid and Core 1 O-Glycans on Skin Mucins in Atlantic Salmon, Salmo salar. Int J Mol Sci 2021; 22:ijms22031488. [PMID: 33540792 PMCID: PMC7867331 DOI: 10.3390/ijms22031488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
The skin barrier consists of mucus, primarily comprising highly glycosylated mucins, and the epithelium. Host mucin glycosylation governs interactions with pathogens and stress is associated with impaired epithelial barrier function. We characterized Atlantic salmon skin barrier function during chronic stress (high density) and mucin O-glycosylation changes in response to acute and chronic stress. Fish held at low (LD: 14–30 kg/m3) and high densities (HD: 50-80 kg/m3) were subjected to acute stress 24 h before sampling at 17 and 21 weeks after start of the experiment. Blood parameters indicated primary and secondary stress responses at both sampling points. At the second sampling, skin barrier function towards molecules was reduced in the HD compared to the LD group (Papp mannitol; p < 0.01). Liquid chromatography–mass spectrometry revealed 81 O-glycan structures from the skin. Fish subjected to both chronic and acute stress had an increased proportion of large O-glycan structures. Overall, four of the O-glycan changes have potential as indicators of stress, especially for the combined chronic and acute stress. Stress thus impairs skin barrier function and induces glycosylation changes, which have potential to both affect interactions with pathogens and serve as stress indicators.
Collapse
Affiliation(s)
- John Benktander
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9C, 405 30 Gothenburg, Sweden; (J.B.); (A.V.M.M.); (V.V.); (J.T.P.)
| | - Henrik Sundh
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden; (H.S.); (K.S.)
| | - Kristina Sundell
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden; (H.S.); (K.S.)
| | - Abarna V. M. Murugan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9C, 405 30 Gothenburg, Sweden; (J.B.); (A.V.M.M.); (V.V.); (J.T.P.)
| | - Vignesh Venkatakrishnan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9C, 405 30 Gothenburg, Sweden; (J.B.); (A.V.M.M.); (V.V.); (J.T.P.)
| | - János Tamás Padra
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9C, 405 30 Gothenburg, Sweden; (J.B.); (A.V.M.M.); (V.V.); (J.T.P.)
| | | | | | - Marnix Gorissen
- Radboud University, Institute for Water and Wetland Research, Department of Animal Ecology & Physiology, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands;
| | - Sara K. Lindén
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9C, 405 30 Gothenburg, Sweden; (J.B.); (A.V.M.M.); (V.V.); (J.T.P.)
- Correspondence: ; Tel.: +46-(0)-31-786-3057
| |
Collapse
|
7
|
A fish is not a mouse: understanding differences in background genetics is critical for reproducibility. Lab Anim (NY) 2020; 50:19-25. [PMID: 33268901 DOI: 10.1038/s41684-020-00683-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
Poorly controlled background genetics in animal models contributes to the lack of reproducibility that is increasingly recognized in biomedical research. The laboratory zebrafish, Danio rerio, has been an important model organism for decades in many research areas, yet inbred strains and traditionally managed outbred stocks are not available for this species. Sometimes incorrectly referred to as 'inbred strains' or 'strains', zebrafish wild-type lines possess background genetics that are often not well characterized, and breeding practices for these lines have not been consistent over time or among institutions. In this Perspective, we trace key milestones in the history of one of the most widely used genetic backgrounds, the AB line, to illustrate the dynamic complexity within an example background that is largely invisible when reading the scientific literature. Failure to adequately control for genetic background compromises the validity of experimental outcomes. We therefore propose that authors provide as much specific detail about the origin and genetic makeup of zebrafish lines as is reasonable and possible, and that the terms used to describe background genetics be applied in a way that is consistent with other fish and mammalian model organisms. We strongly encourage the adoption of genetic monitoring for the characterization of existing zebrafish lines, to help detect genetic contamination in breeding colonies and to verify the level of genetic heterogeneity in breeding colonies over time. Careful attention to background genetics will improve transparency and reproducibility, therefore improving the utility of the zebrafish as a model organism.
Collapse
|
8
|
Samaras A, Pavlidis M. A Modified Protocol for Cortisol Analysis in Zebrafish ( Danio rerio), Individual Embryos, and Larvae. Zebrafish 2020; 17:394-399. [PMID: 33090929 DOI: 10.1089/zeb.2020.1898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A modified protocol for the extraction and analysis of cortisol in individual zebrafish, Danio rerio, embryo, and larva samples has been developed and evaluated. Recovery efficiency of the method was high, specifically calculated at 93.8% ± 6.5%. Dilution tests showed high parallelism, while increasing the number of individuals used in each extraction sample resulted in a linear, although slightly underestimated, increase of cortisol yield. Results of cortisol content from 0, 3, and 5 days postfertilization (dpf) fish using the proposed protocol were within the range of most published studies analyzing cortisol in pooled samples of 10-30 individuals. Moreover, 5 dpf larvae had significantly higher cortisol levels than embryos, a pattern commonly observed in literature. Finally, application of an osmotic stress in 5 dpf larvae led to a statistically significant increase in cortisol content.
Collapse
|
9
|
Hare AJ, Zimmer AM, LePabic R, Morgan AL, Gilmour KM. Early-life stress influences ion balance in developing zebrafish (Danio rerio). J Comp Physiol B 2020; 191:69-84. [PMID: 33064210 DOI: 10.1007/s00360-020-01319-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/16/2020] [Accepted: 09/29/2020] [Indexed: 11/25/2022]
Abstract
As a key endocrine axis involved in responding to stress, the hypothalamic-pituitary-interrenal axis plays dual roles in mobilizing energy and maintaining ionic/osmotic balance in fishes. Although these roles have been examined independently in detail in adult fishes, less attention has been paid to the effects of an endogenous stress response during early life, particularly with respect to its potential effects on ionic/osmotic balance. The present study tested the hypothesis that exposure of zebrafish to stress during early development would alter ion balance later in life. Zebrafish at three developmental stages (4, 7, or 15 days post-fertilization, dpf) were subjected to an air-exposure stressor twice a day for 2 days, causing elevation of whole-body cortisol levels. Individuals stressed early in life exhibited decreased survival and growth, altered cortisol responses to a subsequent air-exposure stressor, and increased whole-body Na+ and Ca2+ concentrations. Changes in whole-body Ca2+ concentrations were accompanied by increased ionocyte abundance at 7 dpf and increased rates of Ca2+ uptake from the environment. Differences in whole-body ion concentrations at 15 and 35 dpf were not accompanied by altered ion uptake rates. Across all ages examined, air-exposure stress experienced at 7 dpf was particularly effective at eliciting phenotypic changes, suggesting a critical window at this age for a stress response to influence development. These findings demonstrate that early-life stress in zebrafish triggers developmental plasticity, with age-dependent effects on both the cortisol stress axis and ion balance.
Collapse
Affiliation(s)
- A J Hare
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
- Department of Integrative Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada.
| | - A M Zimmer
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - R LePabic
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - A L Morgan
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - K M Gilmour
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
10
|
van den Bos R, Cromwijk S, Tschigg K, Althuizen J, Zethof J, Whelan R, Flik G, Schaaf M. Early Life Glucocorticoid Exposure Modulates Immune Function in Zebrafish ( Danio rerio) Larvae. Front Immunol 2020; 11:727. [PMID: 32411141 PMCID: PMC7201046 DOI: 10.3389/fimmu.2020.00727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/31/2020] [Indexed: 11/17/2022] Open
Abstract
In this study we have assessed the effects of increased cortisol levels during early embryonic development on immune function in zebrafish (Danio rerio) larvae. Fertilized eggs were exposed to either a cortisol-containing, a dexamethasone-containing (to stimulate the glucocorticoid receptor selectively) or a control medium for 6 h post-fertilization (0–6 hpf). First, we measured baseline expression of a number of immune-related genes (socs3a, mpeg1.1, mpeg1.2, and irg1l) 5 days post-fertilization (dpf) in larvae of the AB and TL strain to assess the effectiveness of our exposure procedure and potential strain differences. Cortisol and dexamethasone strongly up-regulated baseline expression of these genes independent of strain. The next series of experiments were therefore carried out in larvae of the AB strain only. We measured neutrophil/macrophage recruitment following tail fin amputation (performed at 3 dpf) and phenotypical changes as well as survival following LPS-induced sepsis (150 μg/ml; 4–5 dpf). Dexamethasone, but not cortisol, exposure at 0–6 hpf enhanced neutrophil recruitment 4 h post tail fin amputation. Cortisol and dexamethasone exposure at 0–6 hpf led to a milder phenotype (e.g., less tail fin damage) and enhanced survival following LPS challenge compared to control exposure. Gene-expression analysis showed accompanying differences in transcript abundance of tlr4bb, cxcr4a, myd88, il1β, and il10. These data show that early-life exposure to cortisol, which may be considered to be a model or proxy of maternal stress, induces an adaptive response to immune challenges, which seems mediated via the glucocorticoid receptor.
Collapse
Affiliation(s)
- Ruud van den Bos
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Suzanne Cromwijk
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Katharina Tschigg
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Joep Althuizen
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Jan Zethof
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Robert Whelan
- Animal Sciences and Health Cluster, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Gert Flik
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Marcel Schaaf
- Animal Sciences and Health Cluster, Institute of Biology, Leiden University, Leiden, Netherlands
| |
Collapse
|
11
|
Wakamatsu Y, Ogino K, Hirata H. Swimming capability of zebrafish is governed by water temperature, caudal fin length and genetic background. Sci Rep 2019; 9:16307. [PMID: 31704960 PMCID: PMC6841939 DOI: 10.1038/s41598-019-52592-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022] Open
Abstract
Several zebrafish strains such as AB, Tübingen (TU), Wild India Kolkata (WIK) and Tupfel long fin (TL) have been established for genetic study. Each strain has its morphological and behavioral traits. Motor traits, however, have not been explored in zebrafish strains. We here applied a treadmill for fish (swimmill) and measured swimming capability of adult zebrafish by critical swimming speed, which is the maximum water velocity in which fish can keep swimming. First, we confirmed that swimming capability does not vary between female and male. Second, we found that the appropriate water temperature for swimming was between 16 and 30 °C. Third, our fin clip experiments using long-finned zebrafish revealed that they can exhibit high swimming capability when the caudal fin length was set between 3 and 10 mm, implying that long-finned zebrafish are unfavorable for fast swimming. Finally, we compared swimming capability of several zebrafish strains and demonstrated that WIK fish was significantly less capable of swimming despite that they have short caudal fin (~9 mm). The offspring of WIK fish were less capable of swimming, while hybrids of WIK and TU showed high swimming performance comparable to TU. Thus, lower swimming capability of WIK strain is inheritable as a motor trait.
Collapse
Affiliation(s)
- Yuma Wakamatsu
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, 252-5258, Japan
| | - Kazutoyo Ogino
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, 252-5258, Japan
| | - Hiromi Hirata
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, 252-5258, Japan.
| |
Collapse
|