1
|
Gomes-de-Souza L, Busnardo C, Santos A, Paz HS, Resstel LB, Planeta CS, Nunes-de-Souza RL, Crestani CC. Functional lateralization in the medial prefrontal cortex control of contextual conditioned emotional responses in rats. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111015. [PMID: 38653363 DOI: 10.1016/j.pnpbp.2024.111015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
A functional lateralization has been reported in control of emotional responses by the medial prefrontal cortex (mPFC). However, a hemisphere asymmetry in involvement of the mPFC in expression of fear conditioning responses has never been reported. Therefore, we investigated whether control by mPFC of freezing and cardiovascular responses during re-exposure to an aversively conditioned context is lateralized. For this, rats had guide cannulas directed to the mPFC implanted bilaterally or unilaterally in the right or left hemispheres. Vehicle or the non-selective synaptic inhibitor CoCl2 was microinjected into the mPFC 10 min before re-exposure to a chamber where the animals had previously received footshocks. A catheter was implanted into the femoral artery before the fear retrieval test for cardiovascular recordings. We observed that bilateral microinjection of CoCl2 into the mPFC reduced both the freezing behavior (enhancing locomotion and rearing) and arterial pressure and heart rate increases during re-exposure to the aversively conditioned context. Unilateral microinjection of CoCl2 into the right hemisphere of the mPFC also decreased the freezing behavior (enhancing locomotion and rearing), but without affecting the cardiovascular changes. Conversely, unilateral synaptic inhibition in the left mPFC did not affect either behavioral or cardiovascular responses during fear retrieval test. Taken together, these results suggest that the right hemisphere of the mPFC is necessary and sufficient for expression of freezing behavior to contextual fear conditioning. However, the control of cardiovascular responses and freezing behavior during fear retrieval test is somehow dissociated in the mPFC, being the former bilaterally processed.
Collapse
Affiliation(s)
- Lucas Gomes-de-Souza
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Cristiane Busnardo
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Adrielly Santos
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Higor S Paz
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Leonardo B Resstel
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cleopatra S Planeta
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Ricardo L Nunes-de-Souza
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.
| |
Collapse
|
2
|
Kreitz S, Mennecke A, Konerth L, Rösch J, Nagel AM, Laun FB, Uder M, Dörfler A, Hess A. 3T vs. 7T fMRI: capturing early human memory consolidation after motor task utilizing the observed higher functional specificity of 7T. Front Neurosci 2023; 17:1215400. [PMID: 37638321 PMCID: PMC10448826 DOI: 10.3389/fnins.2023.1215400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
Objective Functional magnetic resonance imaging (fMRI) visualizes brain structures at increasingly higher resolution and better signal-to-noise ratio (SNR) as field strength increases. Yet, mapping the blood oxygen level dependent (BOLD) response to distinct neuronal processes continues to be challenging. Here, we investigated the characteristics of 7 T-fMRI compared to 3 T-fMRI in the human brain beyond the effect of increased SNR and verified the benefits of 7 T-fMRI in the detection of tiny, highly specific modulations of functional connectivity in the resting state following a motor task. Methods 18 healthy volunteers underwent two resting state and a stimulus driven measurement using a finger tapping motor task at 3 and 7 T, respectively. The SNR for each field strength was adjusted by targeted voxel size variation to minimize the effect of SNR on the field strength specific outcome. Spatial and temporal characteristics of resting state ICA, network graphs, and motor task related activated areas were compared. Finally, a graph theoretical approach was used to detect resting state modulation subsequent to a simple motor task. Results Spatial extensions of resting state ICA and motor task related activated areas were consistent between field strengths, but temporal characteristics varied, indicating that 7 T achieved a higher functional specificity of the BOLD response than 3 T-fMRI. Following the motor task, only 7 T-fMRI enabled the detection of highly specific connectivity modulations representing an "offline replay" of previous motor activation. Modulated connections of the motor cortex were directly linked to brain regions associated with memory consolidation. Conclusion These findings reveal how memory processing is initiated even after simple motor tasks, and that it begins earlier than previously shown. Thus, the superior capability of 7 T-fMRI to detect subtle functional dynamics promises to improve diagnostics and therapeutic assessment of neurological diseases.
Collapse
Affiliation(s)
- Silke Kreitz
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Angelika Mennecke
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Laura Konerth
- Institute for Pharmacology and Toxicology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Julie Rösch
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M. Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frederik B. Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arnd Dörfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Hess
- Institute for Pharmacology and Toxicology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- FAU NeW—Research Center for New Bioactive Compounds, Erlangen, Germany
| |
Collapse
|
3
|
Wolter M, Lapointe T, Baidoo N, Mitchnick KA, Wideman C, Winters BD, Leri F. Double dissociation of perirhinal nicotinic acetylcholine receptors and dopamine D2 receptors in modulation of object memory consolidation by nicotine, cocaine and their conditioned stimuli. Eur Neuropsychopharmacol 2023; 72:50-59. [PMID: 37086715 DOI: 10.1016/j.euroneuro.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/24/2023]
Abstract
There are indications that drug conditioned stimuli (CS) may activate neurochemical systems of memory modulation that are activated by the drugs themselves. To directly test this hypothesis, a cholinergic nicotinic receptor antagonist (mecamylamine; MEC: 0, 10 or 30 µg/side) and a dopamine D2 receptor antagonist (l-741,626: 0, 0.63, 2.5 µg/side) were infused in the perirhinal cortex (PRh) to block modulation of object recognition memory consolidation induced by 0.4 mg/kg nicotine, 20 mg/kg cocaine, or their CSs. To establish these CSs, male Sprague-Dawley rats were confined for 2 h in a chamber, the CS+, after injections of 0.4 mg/kg nicotine, or 20 mg/kg cocaine, and in another chamber, the CS-, after injections of vehicle. This was repeated over 10 days (5 drug/CS+ and 5 vehicle/CS- pairings in total). It was found that the memory enhancing action of post-sample nicotine was blocked by intra-PRh infusions of both MEC doses, and 30 µg/side MEC also blocked the memory enhancing action of the nicotine CS. Interestingly, intra-PRh MEC did not block the memory enhancing effect of cocaine, nor that of the cocaine CS. In contrast, the memory enhancing action of post-sample cocaine administration was blocked by both l-741,626 doses, and 2.5 µg/side also blocked the effect of the cocaine CS, but not the memory effects of nicotine or of the nicotine CS. This functional double dissociation strongly indicates that drug CSs modulate memory consolidation by activating neural systems that are activated by the drugs themselves.
Collapse
Affiliation(s)
- Michael Wolter
- Department of Psychology & Neuroscience Specialization, University of Guelph, ON, N1G 2W1 Canada
| | - Thomas Lapointe
- Department of Psychology & Neuroscience Specialization, University of Guelph, ON, N1G 2W1 Canada
| | - Nana Baidoo
- Department of Psychology & Neuroscience Specialization, University of Guelph, ON, N1G 2W1 Canada
| | | | - Cassidy Wideman
- Department of Psychology & Neuroscience Specialization, University of Guelph, ON, N1G 2W1 Canada
| | - Boyer D Winters
- Department of Psychology & Neuroscience Specialization, University of Guelph, ON, N1G 2W1 Canada
| | - Francesco Leri
- Department of Psychology & Neuroscience Specialization, University of Guelph, ON, N1G 2W1 Canada.
| |
Collapse
|
4
|
Francis T, Wolter M, Leri F. The effects of passive and active administration of heroin, and associated conditioned stimuli, on consolidation of object memory. Sci Rep 2022; 12:20351. [PMID: 36437288 PMCID: PMC9701675 DOI: 10.1038/s41598-022-24585-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/17/2022] [Indexed: 11/28/2022] Open
Abstract
Mode of administration (i.e., active vs passive) could influence the modulatory action that drugs of abuse exert on memory consolidation. Similarly, drug conditioned stimuli modulate memory consolidation and, therefore, acquisition and extinction of this conditioned response could also be influenced by mode of drug administration. Exploring these questions in male Sprague-Dawley rats, Study 1 assessed memory modulation by post-training 0, 0.3 and 1 mg/kg heroin injected subcutaneously in operant chambers (i.e., drug conditioned context). Study 2 asked a similar question but in rats trained to self-administer 0.05 mg/kg/infusion heroin intravenously, as well as in rats that received identical amounts of intravenous heroin but passively, using a yoked design. The period of heroin exposure was followed by repeated drug-free confinement in the conditioned context, and by sessions during which responses on the active lever had no scheduled consequences. Study 2 also included a cue-induced reinstatement session during which lever responses reactivated a light cue previously paired with intravenous heroin infusions. The post-training effects of injected/self-administered/yoked heroin, extinction and reinstatement sessions on memory consolidation were tested using the object location memory task. It was found that post-sample heroin enhanced memory in injected and yoked, but not self-administering, rats. However, post-sample exposure to the heroin cues (i.e., context or/and light cue) modulated memory equally in all groups. Taken together, these data support the conclusion that mode of administration impacts the cognitive consequences of exposure to drugs but not of environmental stimuli linked to their reinforcing effects.
Collapse
Affiliation(s)
- Travis Francis
- grid.34429.380000 0004 1936 8198Department of Psychology and Neuroscience Specialization, University of Guelph, 50 Stone Road East, Guelph, ON N1G 1Y4 Canada
| | - Michael Wolter
- grid.34429.380000 0004 1936 8198Department of Psychology and Neuroscience Specialization, University of Guelph, 50 Stone Road East, Guelph, ON N1G 1Y4 Canada
| | - Francesco Leri
- grid.34429.380000 0004 1936 8198Department of Psychology and Neuroscience Specialization, University of Guelph, 50 Stone Road East, Guelph, ON N1G 1Y4 Canada
| |
Collapse
|
5
|
Paradoxical Enhancement of Spatial Learning Induced by Right Hippocampal Lesion in Rats. Symmetry (Basel) 2021. [DOI: 10.3390/sym13112138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The left–right hemispheric differences in some brain functions are well known in humans. Among them, savant syndrome has unique features, such as exceptional abilities in vision, memory, computation, and music, despite brain abnormalities. In cases of acquired savant and transient savant, brain damage or inhibition is often seen in the left hemisphere, suggesting a link between left hemispheric dysfunction and these talents. On the other hand, some functional left–right differences have been reported in rodent brains, and therefore, unilateral damage in rodents may also result in savant-like enhancements. In the present study, we examined the effects of hippocampal damage on spatial learning in rats with left, right, or bilateral hippocampal lesion. The results showed that learning performance was impaired in the bilateral lesion group, and there was no significant difference in the left lesion group, while performance was enhanced in the right lesion group. These results suggest that damage to the right hippocampus in rats may lead to savant-like enhancement in learning and memory. The construction of the savant model through these results will contribute to the neuroscientific elucidation of the paradoxical phenomenon observed in savants, that some abilities are enhanced despite their brain dysfunction.
Collapse
|
6
|
Neuronal Dopamine D3 Receptors: Translational Implications for Preclinical Research and CNS Disorders. Biomolecules 2021; 11:biom11010104. [PMID: 33466844 PMCID: PMC7830622 DOI: 10.3390/biom11010104] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Dopamine (DA), as one of the major neurotransmitters in the central nervous system (CNS) and periphery, exerts its actions through five types of receptors which belong to two major subfamilies such as D1-like (i.e., D1 and D5 receptors) and D2-like (i.e., D2, D3 and D4) receptors. Dopamine D3 receptor (D3R) was cloned 30 years ago, and its distribution in the CNS and in the periphery, molecular structure, cellular signaling mechanisms have been largely explored. Involvement of D3Rs has been recognized in several CNS functions such as movement control, cognition, learning, reward, emotional regulation and social behavior. D3Rs have become a promising target of drug research and great efforts have been made to obtain high affinity ligands (selective agonists, partial agonists and antagonists) in order to elucidate D3R functions. There has been a strong drive behind the efforts to find drug-like compounds with high affinity and selectivity and various functionality for D3Rs in the hope that they would have potential treatment options in CNS diseases such as schizophrenia, drug abuse, Parkinson’s disease, depression, and restless leg syndrome. In this review, we provide an overview and update of the major aspects of research related to D3Rs: distribution in the CNS and periphery, signaling and molecular properties, the status of ligands available for D3R research (agonists, antagonists and partial agonists), behavioral functions of D3Rs, the role in neural networks, and we provide a summary on how the D3R-related drug research has been translated to human therapy.
Collapse
|
7
|
Chen PS, Jamil A, Liu LC, Wei SY, Tseng HH, Nitsche MA, Kuo MF. Nonlinear Effects of Dopamine D1 Receptor Activation on Visuomotor Coordination Task Performance. Cereb Cortex 2020; 30:5346-5355. [DOI: 10.1093/cercor/bhaa116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023] Open
Abstract
Abstract
Dopamine plays an important role in the modulation of neuroplasticity, which serves as the physiological basis of cognition. The physiological effects of dopamine depend on receptor subtypes, and the D1 receptor is critically involved in learning and memory formation. Evidence from both animal and human studies shows a dose-dependent impact of D1 activity on performance. However, the direct association between physiology and behavior in humans remains unclear. In this study, four groups of healthy participants were recruited, and each group received placebo or medication inducing a low, medium, or high amount of D1 activation via the combination of levodopa and a D2 antagonist. After medication, fMRI was conducted during a visuomotor learning task. The behavioral results revealed an inverted U-shaped effect of D1 activation on task performance, where medium-dose D1 activation led to superior learning effects, as compared to placebo as well as low- and high-dose groups. A respective dose-dependent D1 modulation was also observed for cortical activity revealed by fMRI. Further analysis demonstrated a positive correlation between task performance and cortical activation at the left primary motor cortex. Our results indicate a nonlinear curve of D1 modulation on motor learning in humans and the respective physiological correlates in corresponding brain areas.
Collapse
Affiliation(s)
- Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Asif Jamil
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund 44139, Germany
| | - Lin-Cho Liu
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund 44139, Germany
| | - Shyh-Yuh Wei
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Huai-Hsuan Tseng
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund 44139, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Ruhr University Bochum, Bochum 44789, Germany
| | - Min-Fang Kuo
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund 44139, Germany
| |
Collapse
|