1
|
Ilchibaeva T, Tsybko A, Lipnitskaya M, Eremin D, Milutinovich K, Naumenko V, Popova N. Brain-Derived Neurotrophic Factor (BDNF) in Mechanisms of Autistic-like Behavior in BTBR Mice: Crosstalk with the Dopaminergic Brain System. Biomedicines 2023; 11:biomedicines11051482. [PMID: 37239153 DOI: 10.3390/biomedicines11051482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Disturbances in neuroplasticity undoubtedly play an important role in the development of autism spectrum disorders (ASDs). Brain neurotransmitters and brain-derived neurotrophic factor (BDNF) are known as crucial players in cerebral and behavioral plasticity. Such an important neurotransmitter as dopamine (DA) is involved in the behavioral inflexibility of ASD. Additionally, much evidence from human and animal studies implicates BDNF in ASD pathogenesis. Nonetheless, crosstalk between BDNF and the DA system has not been studied in the context of an autistic-like phenotype. For this reason, the aim of our study was to compare the effects of either the acute intracerebroventricular administration of a recombinant BDNF protein or hippocampal adeno-associated-virus-mediated BDNF overexpression on autistic-like behavior and expression of key DA-related and BDNF-related genes in BTBR mice (a widely recognized model of autism). The BDNF administration failed to affect autistic-like behavior but downregulated Comt mRNA in the frontal cortex and hippocampus; however, COMT protein downregulation in the hippocampus and upregulation in the striatum were insignificant. BDNF administration also reduced the receptor TrkB level in the frontal cortex and midbrain and the BDNF/proBDNF ratio in the striatum. In contrast, hippocampal BDNF overexpression significantly diminished stereotypical behavior and anxiety; these alterations were accompanied only by higher hippocampal DA receptor D1 mRNA levels. The results indicate an important role of BDNF in mechanisms underlying anxiety and repetitive behavior in ASDs and implicates BDNF-DA crosstalk in the autistic-like phenotype of BTBR mice.
Collapse
Affiliation(s)
- Tatiana Ilchibaeva
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Anton Tsybko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Marina Lipnitskaya
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Dmitry Eremin
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Kseniya Milutinovich
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Vladimir Naumenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Nina Popova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| |
Collapse
|
2
|
Horton KKA, Goonawardena AV, Sesay J, Howlett AC, Hampson RE. Systemic Blockade of the CB 1 Receptor Augments Hippocampal Gene Expression Involved in Synaptic Plasticity but Perturbs Hippocampus-Dependent Learning Task. Cannabis Cannabinoid Res 2019; 4:33-41. [PMID: 31032421 DOI: 10.1089/can.2018.0061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chronic and acute agonism as well as acute antagonism of CB1 receptors reveal modulation of learning and memory during stable performance of a delayed-nonmatch-to-sample (DNMS) memory task. However, it remains unclear how chronic blockade of the CB1 receptor alters acquisition of the behavioral task. We examined the effects of chronic rimonabant exposure during DNMS task acquisition to determine if blockade of the CB1 receptor with the antagonist rimonabant enhanced acquisition of operant task. Long-Evans rats, trained in the DNMS task before imposition of the trial delay, were surgically implanted with osmotic mini pumps to administer rimonabant (1.0 mg/kg/day) or vehicle (dimethyl sulfoxide/Tween-80/Saline). Following surgical recovery, DNMS training was resumed with the imposition of gradually longer delays (1-30 sec). The number of days required to achieve stable performance with either increasing length of delay or reversal of task contingency was compared between vehicle and rimonabant-treated rats. Following the completion of DNMS training, animals were euthanized, and both hippocampi were harvested for gene expression assay analysis. Rimonabant treatment animals required more time to achieve stable DNMS performance than vehicle-treated controls. Quantitative real-time polymerase chain reaction analysis revealed that the expressions of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit, brain-derived neurotrophic factor, and synapsin 1 (Syn1) were significantly increased. These results are consistent with rimonabant increasing mRNAs for proteins associated with hippocampal synapse remodeling, but that those alterations did not necessarily accelerate the acquisition of an operant behavioral task that required learning new contingencies.
Collapse
Affiliation(s)
- Kofi-Kermit A Horton
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina.,Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Anushka V Goonawardena
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina.,Biosciences Division, SRI International, Menlo Park, California
| | - John Sesay
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Robert E Hampson
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| |
Collapse
|
3
|
Petzold A, Psotta L, Brigadski T, Endres T, Lessmann V. Chronic BDNF deficiency leads to an age-dependent impairment in spatial learning. Neurobiol Learn Mem 2015; 120:52-60. [PMID: 25724412 DOI: 10.1016/j.nlm.2015.02.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 02/07/2015] [Accepted: 02/17/2015] [Indexed: 10/23/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a crucial mediator of neural plasticity and, consequently, of memory formation. In hippocampus-dependent learning tasks BDNF also seems to play an essential role. However, there are conflicting results concerning the spatial learning ability of aging BDNF(+/-) mice in the Morris water maze paradigm. To evaluate the effect of chronic BDNF deficiency in the hippocampus on spatial learning throughout life, we conducted a comprehensive study to test differently aged BDNF(+/-) mice and their wild type littermates in the Morris water maze and to subsequently quantify their hippocampal BDNF protein levels as well as expression levels of TrkB receptors. We observed an age-dependent learning deficit in BDNF(+/-) animals, starting at seven months of age, despite stable hippocampal BDNF protein expression and continual decline of TrkB receptor expression throughout aging. Furthermore, we detected a positive correlation between hippocampal BDNF protein levels and learning performance during the probe trial in animals that showed a good learning performance during the long-term memory test.
Collapse
Affiliation(s)
- Anne Petzold
- Institute for Physiology, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Laura Psotta
- Institute for Physiology, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Tanja Brigadski
- Institute for Physiology, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Thomas Endres
- Institute for Physiology, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Volkmar Lessmann
- Institute for Physiology, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
4
|
Ozawa T, Yamada K, Ichitani Y. Hippocampal BDNF treatment facilitates consolidation of spatial memory in spontaneous place recognition in rats. Behav Brain Res 2014; 263:210-6. [DOI: 10.1016/j.bbr.2014.01.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 12/25/2022]
|
5
|
Craveiro LM, Weinmann O, Roschitzki B, Gonzenbach RR, Zörner B, Montani L, Yee BK, Feldon J, Willi R, Schwab ME. Infusion of anti-Nogo-A antibodies in adult rats increases growth and synapse related proteins in the absence of behavioral alterations. Exp Neurol 2013; 250:52-68. [DOI: 10.1016/j.expneurol.2013.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 09/10/2013] [Accepted: 09/16/2013] [Indexed: 11/26/2022]
|
6
|
Cisplatin inhibits hippocampal cell proliferation and alters the expression of apoptotic genes. Neurotox Res 2013; 25:369-80. [PMID: 24277158 DOI: 10.1007/s12640-013-9443-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/11/2013] [Accepted: 11/14/2013] [Indexed: 12/13/2022]
Abstract
The hippocampus, which is critical for memory and spatial navigation, contains a proliferating stem cell niche that is especially vulnerable to antineoplastic drugs such as cisplatin. Although the damaging effects of cisplatin have recently been recognized, the molecular mechanisms underlying its toxic effects on this vital region are largely unknown. Using a focused apoptosis gene array, we analyzed the early cisplatin-induced changes in gene expression in the hippocampus of adult Sprague-Dawley rats and compared the results to those from the inferior colliculus, a non-mitotic auditory region resistant to cisplatin-induced cell death. Two days after a 12 mg/kg dose of cisplatin, significant increases were observed in five proapoptotic genes: Bik, Bid, Bok, Trp53p2, and Card6 and a significant decrease in one antiapoptotic gene Bcl2a1. In contrast, Nol3, an antiapoptotic gene, showed a significant increase in expression. The cisplatin-induced increase in Bid mRNA and decrease in Bcl2a1 mRNA were accompanied by a corresponding increase and decrease of their respective proteins in the hippocampus. In contrast, the cisplatin-induced changes in Bcl2a1, Bid, Bik, and Bok gene expression in the inferior colliculus were strikingly different from those in the hippocampus consistent with the greater susceptibility of the hippocampus to cisplatin toxicity. Cisplatin also significantly reduced immunolabeling of the cell proliferation marker Ki67 in the subgranular zone of the hippocampus 2 days post-treatment. These results indicate that cisplatin-induced hippocampal cell death is mediated by increased expression of proapoptotic and decreased antiapoptotic genes and proteins that likely inhibit hippocampal cell proliferation.
Collapse
|
7
|
Cho HJ, Sung YH, Lee SH, Chung JY, Kang JM, Yi JW. Isoflurane Induces Transient Anterograde Amnesia through Suppression of Brain-Derived Neurotrophic Factor in Hippocampus. J Korean Neurosurg Soc 2013; 53:139-44. [PMID: 23634262 PMCID: PMC3638265 DOI: 10.3340/jkns.2013.53.3.139] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 08/18/2012] [Accepted: 02/25/2013] [Indexed: 11/27/2022] Open
Abstract
Objective Transient anterograde amnesia is occasionally observed in a number of conditions, including migraine, focal ischemia, venous flow abnormalities, and after general anesthesia. The inhalation anesthetic, isoflurane, is known to induce transient anterograde amnesia. We examined the involvement of brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase B (TrkB) in the underlying mechanisms of the isoflurane-induced transient anterograde amnesia. Methods Adult male Sprague-Dawley rats were divided into three groups : the control group, the 10 minutes after recovery from isoflurane anesthesia group, and the 2 hours after recovery from isoflurane anesthesia group (n=8 in each group). The rats in the isoflurane-exposed groups were anesthetized with 1.2% isoflurane in 75% nitrous oxide and 25% oxygen for 2 hours in a Plexiglas anesthetizing chamber. Short-term memory was determined using the step-down avoidance task. BDNF and TrkB expressions in the hippocampus were evaluated by immunofluorescence staining and western blot analysis. Results Latency in the step-down avoidance task was decreased 10 minutes after recovery from isoflurane anesthesia, whereas it recovered to the control level 2 hours after isoflurane anesthesia. The expressions of BDNF and TrkB in the hippocampus were decreased immediately after isoflurane anesthesia but were increased 2 hours after isoflurane anesthesia. Conclusion In this study, isoflurane anesthesia induced transient anterograde amnesia, and the expressions of BDNF and TrkB in the hippocampus might be involved in the underlying mechanisms of this transient anterograde amnesia.
Collapse
Affiliation(s)
- Han-Jin Cho
- Department of Emergency Medicine, Korea University College of Medicine, Ansan Hospital, Ansan, Korea
| | | | | | | | | | | |
Collapse
|
8
|
Hansen KF, Karelina K, Sakamoto K, Wayman GA, Impey S, Obrietan K. miRNA-132: a dynamic regulator of cognitive capacity. Brain Struct Funct 2012; 218:817-31. [PMID: 22706759 DOI: 10.1007/s00429-012-0431-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 05/12/2012] [Indexed: 11/27/2022]
Abstract
Within the central nervous system, microRNAs have emerged as important effectors of an array of developmental, physiological, and cognitive processes. Along these lines, the CREB-regulated microRNA miR-132 has been shown to influence neuronal maturation via its effects on dendritic arborization and spinogenesis. In the mature nervous system, dysregulation of miR-132 has been suggested to play a role in a number of neurocognitive disorders characterized by aberrant synaptogenesis. However, little is known about the inducible expression and function of miR-132 under normal physiological conditions in vivo. Here, we begin to explore this question within the context of learning and memory. Using in situ hybridization, we show that the presentation of a spatial memory task induced a significant ~1.5-fold increase in miR-132 expression within the CA1, CA3, and GCL excitatory cell layers of the hippocampus. To examine the role of miR-132 in hippocampal-dependent learning and memory, we employ a doxycycline-regulated miR-132 transgenic mouse strain to drive varying levels of transgenic miR-132 expression. These studies revealed that relatively low levels of transgenic miR-132 expression, paralleling the level of expression in the hippocampus following a spatial memory task, significantly enhanced cognitive capacity. In contrast, higher (supra-physiological) levels of miR-132 (>3-fold) inhibited learning. Interestingly, both the impaired cognition and elevated levels of dendritic spines resulting from supra-physiological levels of transgenic miR-132 were reversed by doxycycline suppression of transgene expression. Together, these data indicate that miR-132 functions as a key activity-dependent regulator of cognition, and that miR-132 expression must be maintained within a limited range to ensure normal learning and memory formation.
Collapse
Affiliation(s)
- Katelin F Hansen
- Department of Neuroscience, Ohio State University, Graves Hall, Rm 4118, 333 W. 10th Ave, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
9
|
Molecular and behavioral changes associated with adult hippocampus-specific SynGAP1 knockout. Learn Mem 2012; 19:268-81. [PMID: 22700469 DOI: 10.1101/lm.026351.112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The synaptic Ras/Rap-GTPase-activating protein (SynGAP1) plays a unique role in regulating specific downstream intracellular events in response to N-methyl-D-aspartate receptor (NMDAR) activation. Constitutive heterozygous loss of SynGAP1 disrupts NMDAR-mediated physiological and behavioral processes, but the disruptions might be of developmental origin. Therefore, the precise role of SynGAP1 in the adult brain, including its relative functional significance within specific brain regions, remains unexplored. The present study constitutes the first attempt in achieving adult hippocampal-specific SynGAP1 knockout using the Cre/loxP approach. Here, we report that this manipulation led to a significant numerical increase in both small and large GluA1 and NR1 immunoreactive clusters, many of which were non-opposed to presynaptic terminals. In parallel, the observed marked decline in the amplitude of spontaneous excitatory currents (sEPSCs) and inter-event intervals supported the impression that SynGAP1 loss might facilitate the accumulation of extrasynaptic glutamatergic receptors. In addition, SynGAP1-mediated signaling appears to be critical for the proper integration and survival of newborn neurons. The manipulation impaired reversal learning in the probe test of the water maze and induced a delay-dependent impairment in spatial recognition memory. It did not significantly affect anxiety or reference memory acquisition but induced a substantial elevation in spontaneous locomotor activity in the open field test. Thus, the present study demonstrates the functional significance of SynGAP1 signaling in the adult brain by capturing several changes that are dependent on NMDAR and hippocampal integrity.
Collapse
|
10
|
Kim JE, Ji ES, Seo JH, Lee MH, Cho S, Pak YK, Seo TB, Kim CJ. Alcohol exposure induces depression-like behavior by decreasing hippocampal neuronal proliferation through inhibition of the BDNF-ERK pathway in gerbils. Anim Cells Syst (Seoul) 2012. [DOI: 10.1080/19768354.2011.640352] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
11
|
Peleg-Raibstein D, Luca E, Wolfrum C. Maternal high-fat diet in mice programs emotional behavior in adulthood. Behav Brain Res 2012; 233:398-404. [PMID: 22633920 DOI: 10.1016/j.bbr.2012.05.027] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/08/2012] [Accepted: 05/14/2012] [Indexed: 01/06/2023]
Abstract
The maternal environment has a significant role in the normal development of the fetus and may have long-term impact on brain development including critical central pathways such as the gamma-aminobutyric acid (GABA), serotonergic and the neurotrophin systems. For example, maternal malnutrition plays an important role in programming many aspects of physiology and behavior including predisposition to mental-health related disorders such as anxiety. Here we investigated the effects of maternal high-fat diet or control diet for nine weeks (prior to gestation, gestation and lactation) on the adult offspring with respect to anxiety related behaviors as well as exploration and conditioned fear response. We found that offspring born to high-fat diet mothers showed increased anxiety-like behaviors, but intact conditioned fear response and exploratory behavior. In addition, brain-derived neurotrophic factor (BDNF) was significantly increased in the dorsal hippocampus, while GABA(A) alpha2 receptor subunit and 5-hydroxytryptamine 1A (5-HT1A) receptor showed increased levels in the ventral hippocampus. In summary, these findings suggest that maternal high-fat diet consumption during critical periods in the development of the fetus, might increase the risk of abnormal behaviors in adulthood related to anxiety.
Collapse
Affiliation(s)
- Daria Peleg-Raibstein
- The Swiss Federal Institute of Technology, ETH Zürich, Institute of Food Nutrition and Health, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland.
| | | | | |
Collapse
|
12
|
Pardon MC. Role of neurotrophic factors in behavioral processes: implications for the treatment of psychiatric and neurodegenerative disorders. VITAMINS AND HORMONES 2010; 82:185-200. [PMID: 20472139 DOI: 10.1016/s0083-6729(10)82010-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Neurotrophins are important regulators of neuronal function in the developing and adult brain and thus play a critical role in sustaining normal behavioral function. Brain-derived neurotrophic factor (BDNF) has been the most widely studied neurotrophin because of its important role as modulator of synaptic plasticity, which is essential to the regulation of experience-dependent behavior. Extensive work implicates BDNF in hippocampus-dependent forms of learning and memory, although it also regulates other cognitive processes. A role for BDNF in anxiety-related disorders and aggressive behavior can also be suspected. More importantly, BDNF signaling has recently emerged as a key player in the development of drug addiction and is well known to be involved in adaptation to stress and stress-related disorders. NGF in the other hand is thought to be involved in aggression and alcohol dependence. Finally, BDNF appears to participate in the therapeutic effects of drugs and interventions capable of reversing or attenuating behavioral disturbances relevant to psychiatric and neurodegenerative disorders. Compounds mimicking BDNF signaling, however, are unlikely to be used in a clinical context, given their adverse side effects and pharmacokinetic limitations.
Collapse
Affiliation(s)
- Marie-Christine Pardon
- School of Biomedical Sciences, Institute of Neuroscience, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, United Kingdom
| |
Collapse
|
13
|
Viosca J, Malleret G, Bourtchouladze R, Benito E, Vronskava S, Kandel ER, Barco A. Chronic enhancement of CREB activity in the hippocampus interferes with the retrieval of spatial information. Learn Mem 2009; 16:198-209. [PMID: 19237642 DOI: 10.1101/lm.1220309] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The activation of cAMP-responsive element-binding protein (CREB)-dependent gene expression is thought to be critical for the formation of different types of long-term memory. To explore the consequences of chronic enhancement of CREB function on spatial memory in mammals, we examined spatial navigation in bitransgenic mice that express in a regulated and restricted manner a constitutively active form of CREB, VP16-CREB, in forebrain neurons. We found that chronic enhancement of CREB activity delayed the acquisition of an allocentric strategy to solve the hidden platform task. The ability to turn on and off transgene expression allowed us to dissect the role of CREB in dissociable memory processes. In mice in which transgene expression was turned on during memory acquisition, turning off the transgene re-established the access to the memory trace, whereas in mice in which transgene expression was turned off during acquisition, turning on the transgene impaired memory expression in a reversible manner, indicating that CREB enhancement specifically interfered with the retrieval of spatial information. The defects on spatial navigation in mice with chronic enhancement of CREB function were not corrected by conditions that increased further CREB-dependent activation of hippocampal memory systems, such as housing in an enriched environment. These results along with previous findings in CREB-deficient mutants indicate that the relationship of CREB-mediated plasticity to spatial memory is an inverted-U function, and that optimal learning in the water maze requires accurate regulation of this pathway.
Collapse
Affiliation(s)
- Jose Viosca
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Alicante 03550, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Fragkouli A, Pachnis V, Stylianopoulou F. Sex differences in water maze performance and cortical neurotrophin levels of LHX7 null mutant mice. Neuroscience 2008; 158:1224-33. [PMID: 19095044 DOI: 10.1016/j.neuroscience.2008.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/20/2008] [Accepted: 11/13/2008] [Indexed: 01/08/2023]
Abstract
Mice lacking both alleles of the LIM-homeobox gene Lhx7 display dramatically reduced number of forebrain cholinergic neurons. Given the fact that sex differences are consistently observed in forebrain cholinergic function, in the present study we investigated whether the absence of LHX7 differentially affects water maze performance in the two sexes. Herein we demonstrate that LHX7 null mutants display a sex-dependent impairment in water maze, with females appearing more affected than males. Moreover, neurotrophin assessment revealed a compensatory increase of brain-derived neurotrophic factor and neurotrophin 3 in the neocortex of both male and female mutants and an increase of nerve growth factor levels only in the females. Nevertheless, the compensatory increase of cortical neurotrophin levels did not restore cognitive abilities of Lhx7 homozygous mutants. Finally, our analysis revealed that cortical neurotrophin levels correlate negatively with water maze proficiency, indicating that there is an optimal neurotrophin level for successful cognitive performance.
Collapse
Affiliation(s)
- A Fragkouli
- Department of Basic Sciences, University of Athens, 11527 Athens, Greece
| | | | | |
Collapse
|