1
|
Ionadi A, Johnson JD. Interaction between corticosterone and PER2 in regulating emotional behaviors in the rat. Psychoneuroendocrinology 2022; 137:105628. [PMID: 34952453 DOI: 10.1016/j.psyneuen.2021.105628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/27/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022]
Abstract
Circadian rhythms play a prominent role in psychiatric health with disruption in rhythms associated with poor mental health. Corticosterone (CORT) is an important hormone in entraining the biological rhythms of many cells throughout the body and coordinating peripheral rhythms with the central master clock. Here, we tested the hypothesis that excess CORT during the circadian trough would lead to a flattening of period genes (Per1 and Per2) rhythms in limbic brain areas, and thus impact emotional behaviors. Male rats were injected daily with 2.5 mg/kg CORT or vehicle for 21 days at either ZT0 or ZT12 and sucrose preference, open field, and forced swim behaviors measured during the dark phase of the light cycle. After three weeks of injections, a reduction in sucrose preference was observed in animals injected with CORT at ZT0 and the reduction significantly correlated with reductions in Per2 mRNA expression in the central amygdala (CeA) and bed nucleus of the stria terminalis (BNST). No changes in behavior or period gene expression were observed in animals injected with CORT at ZT12. DsiRNA was used to directly reduce Per2 levels in either the CeA or BNST and behavior was assessed. Despite reductions in Per2 expression in the CeA, no behavioral changes were observed. In contrast, a reduction in Per2 expression in the BNST was sufficient to reduce sucrose preference. The results demonstrate that CORT significantly contributes to the circadian expression of Period genes in certain limbic brain areas and disruption in diurnal CORT or Per2 expression can lead to impaired emotional behavioral responses.
Collapse
Affiliation(s)
- Amy Ionadi
- Kent State University, School of Biomedical Sciences, Kent, OH 44240, United States
| | - John D Johnson
- Kent State University, School of Biomedical Sciences, Kent, OH 44240, United States; Kent State University, Biological Sciences Department, Kent, OH 44240, United States; Kent State University, Brain Health Research Institute, Kent, OH 44242, United States.
| |
Collapse
|
2
|
Cassimjee N, van Coller R, Slabbert P, Fletcher L, Vaidyanathan J. Longitudinal neuropsychological outcomes in treatment-resistant depression following bed nucleus of the stria terminalis-area deep brain stimulation: a case review. Neurocase 2018; 24:231-237. [PMID: 30507338 DOI: 10.1080/13554794.2018.1549680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Studies have demonstrated the effectiveness of deep brain stimulation (DBS) as a treatment modality for psychiatric conditions. We present a case reviewing the longitudinal neuropsychological performance outcomes following bed nucleus of the stria terminalis-area (BNST) DBS in a patient with treatment-resistant depression (TRD). The cognitive safety of DBS is well documented for various targets, however cognitive outcomes of BNST-area DBS have not been extensively reported for patients with TRD. Neuropsychological assessment was conducted pre- and post-DBS. Twelve months following DBS, augmented general cognitive performance was observed with significant changes in specific domains.
Collapse
Affiliation(s)
- Nafisa Cassimjee
- a Department of Psychology , University of Pretoria , Pretoria , South Africa
| | - Riaan van Coller
- b Department of Neurology , University of Pretoria , South Africa
| | - Pieter Slabbert
- c Neurosurgeon , Pretoria East Hospital , Pretoria , South Africa
| | - Lizelle Fletcher
- d Department of Statistics , University of Pretoria , Pretoria , South Africa
| | | |
Collapse
|
3
|
Li X, Li X. The Antidepressant Effect of Light Therapy from Retinal Projections. Neurosci Bull 2018; 34:359-368. [PMID: 29430586 DOI: 10.1007/s12264-018-0210-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/08/2017] [Indexed: 01/01/2023] Open
Abstract
Observations from clinical trials have frequently demonstrated that light therapy can be an effective therapy for seasonal and non-seasonal major depression. Despite the fact that light therapy is known to have several advantages over antidepressant drugs like a low cost, minimal side-effects, and fast onset of therapeutic effect, the mechanism underlying light therapy remains unclear. So far, it is known that light therapy modulates mood states and cognitive functions, involving circadian and non-circadian pathways from retinas into brain. In this review, we discuss the therapeutic effect of light on major depression and its relationship to direct retinal projections in the brain. We finally emphasize the function of the retino-raphe projection in modulating serotonin activity, which probably underlies the antidepressant effect of light therapy for depression.
Collapse
Affiliation(s)
- Xiaotao Li
- The Brain Cognition and Brain Disease Institute for Collaborative Research of SIAT at CAS and the McGovern Institute at MIT, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China. .,McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Xiang Li
- The Brain Cognition and Brain Disease Institute for Collaborative Research of SIAT at CAS and the McGovern Institute at MIT, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
4
|
Gonzáles MA, Miranda AP, Orrego H, Silva R, Forray MI. Enduring attenuation of norepinephrine synaptic availability and augmentation of the pharmacological and behavioral effects of desipramine by repeated immobilization stress. Neuropharmacology 2017; 117:249-259. [PMID: 28232061 DOI: 10.1016/j.neuropharm.2017.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 01/16/2023]
Abstract
Here we provide evidence that repeated immobilization stress (RIS) in rats induces a persistent increase in noradrenergic activity in the anterior aspects of the anterolateral bed nucleus of the stria terminalis (alBNST). This increase in noradrenergic activity results from both enhanced synthesis and reuptake of norepinephrine (NE). It leads to a decrease in the synaptic availability of NE, which elicits an augmented noradrenergic response to the inhibitors of NE reuptake (NRIs), such as desipramine (DMI), an antidepressant. The enduring depression-like behavior and the augmentation of the climbing behavior seen in repeatedly stressed rats following subchronic administration of DMI in the forced swimming test (FST) might be explained by a dysregulation of noradrenergic transmission observed in alBNST. Taken together, we propose that dysregulation of noradrenergic transmission such as the one described in the present work may represent a mechanism underlying major depressive disorders (MDD) with melancholic features in humans.
Collapse
Affiliation(s)
- Marco A Gonzáles
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ana Pamela Miranda
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Horacio Orrego
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodolfo Silva
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Inés Forray
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
5
|
Reichard RA, Subramanian S, Desta MT, Sura T, Becker ML, Ghobadi CW, Parsley KP, Zahm DS. Abundant collateralization of temporal lobe projections to the accumbens, bed nucleus of stria terminalis, central amygdala and lateral septum. Brain Struct Funct 2017; 222:1971-1988. [PMID: 27704219 PMCID: PMC5378696 DOI: 10.1007/s00429-016-1321-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/28/2016] [Indexed: 10/20/2022]
Abstract
Behavioral flexibility is subserved in part by outputs from the cerebral cortex to telencephalic subcortical structures. In our earlier evaluation of the organization of the cortical-subcortical output system (Reynolds and Zahm, J Neurosci 25:11757-11767, 2005), retrograde double-labeling was evaluated in the prefrontal cortex following tracer injections into pairs of the following subcortical telencephalic structures: caudate-putamen, core and shell of the accumbens (Acb), bed nucleus of stria terminalis (BST) and central nucleus of the amygdala (CeA). The present study was done to assess patterns of retrograde labeling in the temporal lobe after similar paired tracer injections into most of the same telencephalic structures plus the lateral septum (LS). In contrast to the modest double-labeling observed in the prefrontal cortex in the previous study, up to 60-80 % of neurons in the basal and accessory basal amygdaloid nuclei and amygdalopiriform transition area exhibited double-labeling in the present study. The most abundant double-labeling was generated by paired injections into structures affiliated with the extended amygdala, including the CeA, BST and Acb shell. Injections pairing the Acb core with the BST or CeA produced significantly fewer double-labeled neurons. The ventral subiculum exhibited modest amounts of double-labeling associated with paired injections into the Acb, BST, CeA and LS. The results raise the issue of how an extraordinarily collateralized output from the temporal lobe may contribute to behavioral flexibility.
Collapse
Affiliation(s)
- Rhett A Reichard
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Suriya Subramanian
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Mikiyas T Desta
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Tej Sura
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Mary L Becker
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Comeron W Ghobadi
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Kenneth P Parsley
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Daniel S Zahm
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA.
| |
Collapse
|
6
|
Qiu ZK, Li MS, He JL, Liu X, Zhang GH, Lai S, Ma JC, Zeng J, Li Y, Wu HW, Chen Y, Shen YG, Chen JS. Translocator protein mediates the anxiolytic and antidepressant effects of midazolam. Pharmacol Biochem Behav 2015; 139:77-83. [PMID: 26455280 DOI: 10.1016/j.pbb.2015.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/13/2015] [Accepted: 10/07/2015] [Indexed: 02/04/2023]
Abstract
The translocator protein (18 kDa) (TSPO) plays an important role in stress-related disorders, such as anxiety, depression and post-traumatic stress disorder (PTSD), caused by neurosteroids (e.g. allopregnanolone). The present study sought to evaluate the significance of TSPO in anxiolytic and antidepressant effects induced by midazolam. The animals were administrated midazolam (0.25, 0.5 and 1 mg/kg, i.p.) and subjected to behavioral tests, including Vogel-type conflict test, elevated plus-maze test, forced swimming test. Midazolam produced anxiolytic- and antidepressant-like effects Vogel-type conflict test (1 mg/kg, i.p.), elevated plus-maze test (0.5 and 1 mg/kg, i.p.), and forced swimming test (0.5 and 1 mg/kg, i.p.). These effects of Midazolam were totally blocked by the TSPO antagonist PK11195 (3 mg/kg, i.p.). To evaluate the role of allopregnanolone in the anxiolytic- and antidepressant-like effects of midazolam, the animals were decapitated at the end of the behavioral tests. The allopregnanolone levels of the prefrontal cortex and hippocampus were measured by enzyme-linked immunosorbent assay (ELISA). The allopregnanolone level of the prefrontal cortex and hippocampus was increased by midazolam (0.5, 1 mg/kg, i.p.) and the increase was reversed by PK11195 (3 mg/kg, i.p.). Overall, the results indicated that the anxiolytic- and antidepressant-like effects of midazolam were mediated by TSPO, via stimulation of allopregnanolone biosynthesis.
Collapse
Affiliation(s)
- Zhi-Kun Qiu
- Pharmaceutical Department of the First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Ming-Sheng Li
- Department of Anesthesiology, The Centre Hospital of Taian, Taian 271000, PR China
| | - Jia-Li He
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, PR China.
| | - Xu Liu
- Pharmacy Department of General Hospital of Chinese People's Armed Police Forces, Beijing 100039, PR China
| | - Guan-Hua Zhang
- Neurosurgery Department of the Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, PR China
| | - Sha Lai
- Pharmaceutical Department of the First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Jian-Chun Ma
- Pharmaceutical Department of the First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Jia Zeng
- Pharmaceutical Department of the First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Yan Li
- Pharmaceutical Department of the First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Hong-Wei Wu
- Pharmaceutical Department of the First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Yong Chen
- Pharmaceutical Department of the First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Yong-Gang Shen
- Pharmaceutical Department of the First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Ji-Sheng Chen
- Pharmaceutical Department of the First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China.
| |
Collapse
|
7
|
Kash TL, Pleil KE, Marcinkiewcz CA, Lowery-Gionta EG, Crowley N, Mazzone C, Sugam J, Hardaway JA, McElligott ZA. Neuropeptide regulation of signaling and behavior in the BNST. Mol Cells 2015; 38:1-13. [PMID: 25475545 PMCID: PMC4314126 DOI: 10.14348/molcells.2015.2261] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 12/23/2022] Open
Abstract
Recent technical developments have transformed how neuroscientists can probe brain function. What was once thought to be difficult and perhaps impossible, stimulating a single set of long range inputs among many, is now relatively straight-forward using optogenetic approaches. This has provided an avalanche of data demonstrating causal roles for circuits in a variety of behaviors. However, despite the critical role that neuropeptide signaling plays in the regulation of behavior and physiology of the brain, there have been remarkably few studies demonstrating how peptide release is causally linked to behaviors. This is likely due to both the different time scale by which peptides act on and the modulatory nature of their actions. For example, while glutamate release can effectively transmit information between synapses in milliseconds, peptide release is potentially slower [See the excellent review by Van Den Pol on the time scales and mechanisms of release (van den Pol, 2012)] and it can only tune the existing signals via modulation. And while there have been some studies exploring mechanisms of release, it is still not as clearly known what is required for efficient peptide release. Furthermore, this analysis could be complicated by the fact that there are multiple peptides released, some of which may act in contrast. Despite these limitations, there are a number of groups making progress in this area. The goal of this review is to explore the role of peptide signaling in one specific structure, the bed nucleus of the stria terminalis, that has proven to be a fertile ground for peptide action.
Collapse
Affiliation(s)
- Thomas L. Kash
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Kristen E. Pleil
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Catherine A. Marcinkiewcz
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Emily G. Lowery-Gionta
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Nicole Crowley
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Christopher Mazzone
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Jonathan Sugam
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - J. Andrew Hardaway
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Zoe A. McElligott
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| |
Collapse
|