1
|
Shi L, Sun T, Huo D, Geng L, Zhao C, Xia W. ETV5-Mediated Transcriptional Repression of DDIT4 Blocks Macrophage Pro-Inflammatory Activation in Diabetic Atherosclerosis. Cardiovasc Toxicol 2025:10.1007/s12012-024-09956-0. [PMID: 39864045 DOI: 10.1007/s12012-024-09956-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025]
Abstract
Atherosclerosis risk is elevated in diabetic patients, but the underlying mechanism such as the involvement of macrophages remains unclear. Here, we investigated the underlying mechanism related to the pro-inflammatory activation of macrophages in the development of diabetic atherosclerosis. Bioinformatics tools were used to analyze the macrophage-related transcriptome differences in patients with atherosclerosis and diabetic mice. LDLR-/- mice with DDIT4 depletion were generated and fed a Western diet to induce atherosclerosis. DDIT4 expression was elevated in diabetic mice and patients with atherosclerosis. Macrophage proinflammatory factors F4/80, Il-6, and TNFα were reduced in DDIT4-/-LDLR-/- mice and necrotic areas were decreased in the aortic root. Atherosclerotic plaque stability was increased in DDIT4-/-LDLR-/- mice, as evidenced by increased collagen and smooth muscle cell content. DDIT4, regulated by ETV5, acted on macrophages, affecting lipid accumulation, migration capacity, and pro-inflammatory responses. Knockdown of ETV5 increased expression of DDIT4 and pro-inflammatory factors in macrophages, increased necrotic core area in the aortic root, and decreased stability of atherosclerotic plaques in mice, which was abated by DDIT4 knockdown. The findings provide new insight into how diabetes promotes atherosclerosis and support a model wherein loss of ETV5 sustains transcription of DDIT4 and the pro-inflammatory activation of macrophages.
Collapse
Affiliation(s)
- Lili Shi
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Harbin, 150001, Heilongjiang, PR China
| | - Tingting Sun
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Harbin, 150001, Heilongjiang, PR China
| | - Di Huo
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Harbin, 150001, Heilongjiang, PR China
| | - Lin Geng
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Harbin, 150001, Heilongjiang, PR China
| | - Chao Zhao
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Harbin, 150001, Heilongjiang, PR China
| | - Wenbo Xia
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Harbin, 150001, Heilongjiang, PR China.
| |
Collapse
|
2
|
Wu Y, Xu Y, Xu L. Pharmacological therapy targeting the immune response in atherosclerosis. Int Immunopharmacol 2024; 141:112974. [PMID: 39168023 DOI: 10.1016/j.intimp.2024.112974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease characterized by the formation of atherosclerotic plaques that consist of numerous cells including smooth muscle cells, endothelial cells, immune cells, and foam cells. The most abundant innate and adaptive immune cells, including neutrophils, monocytes, macrophages, B cells, and T cells, play a pivotal role in the inflammatory response, lipoprotein metabolism, and foam cell formation to accelerate atherosclerotic plaque formation. In this review, we have discussed the underlying mechanisms of activated immune cells in promoting AS and reviewed published clinical trials for the treatment of AS by suppressing immune cell activation. We have also presented some crucial shortcomings of current clinical trials. Lastly, we have discussed the therapeutic potential of novel compounds, including herbal medicine and dietary food, in alleviating AS in animals. Despite these limitations, further clinical trials and experimental studies will enhance our understanding of the mechanisms modulated by immune cells and promote widespread drug use to treat AS by suppressing immune system-induced inflammation.
Collapse
Affiliation(s)
- Yirong Wu
- Department of Cardiology, Hangzhou First People's Hospital, 310006 Zhejiang, China
| | - Yizhou Xu
- Department of Cardiology, Hangzhou First People's Hospital, 310006 Zhejiang, China.
| | - Linhao Xu
- Department of Cardiology, Hangzhou First People's Hospital, 310006 Zhejiang, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Translational Medicine Research Center, Hangzhou First People's Hospital, Hangzhou 310006, Zhejiang, China.
| |
Collapse
|
3
|
Inui H, Nishida M, Ichii M, Nakaoka H, Asaji M, Ide S, Saito S, Saga A, Omatsu T, Tanaka K, Kanno K, Chang J, Zhu Y, Okada T, Okuzaki D, Matsui T, Ohama T, Koseki M, Morii E, Hosen N, Yamashita S, Sakata Y. XCR1 + conventional dendritic cell-induced CD4 + T helper 1 cell activation exacerbates cardiac remodeling after ischemic myocardial injury. J Mol Cell Cardiol 2023; 176:68-83. [PMID: 36739942 DOI: 10.1016/j.yjmcc.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/02/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Cardiac remodeling has no established therapies targeting inflammation. CD4+ T-cell subsets have been reported to play significant roles in healing process after ischemic myocardial injury, but their detailed mechanisms of activation remain unknown. To explore immune reactions during cardiac remodeling, we applied a non-surgical model of coronary heart disease (CHD) induced by a high-fat diet (HFD-CHD) in SR-BI-/-/ApoeR61h/h mice. Flow cytometry analyses throughout the period of progressive cardiac dysfunction revealed that CD4+ T Helper 1 (Th1) cells were predominantly activated in T-cell subsets. Probucol was reported to attenuate cardiac dysfunction after coronary artery ligation model (ligation-MI) in rats. To determine whether probucol suppress cardiac remodeling after HFD-CHD, we treated SR-BI-/-/ApoeR61h/h mice with probucol. We found treatment with probucol in HFD-CHD mice reduced cardiac dysfunction, with attenuated activation of Th1 cells. RNA-seq analyses revealed that probucol suppressed the expression of CXCR3, a Th1-related chemokine receptor, in the heart. XCR1+ cDC1 cells, which highly expresses the CXCR3 ligands CXCL9 and CXCL10, were predominantly activated after HFD-CHD. XCR1+ cDC1 lineage skewing of pre-DC progenitors was observed in bone marrow, with subsequent systemic expansion of XCR1+ cDC1 cells after HFD-CHD. Activation of CXCR3+ Th1 cell and XCR1+ cDC1 cells was also observed in ligation-MI. Notably, post-MI depletion of XCR1+ cDC1 cells suppressed CXCR3+ Th1 cell activation and prevented cardiac dysfunction. In patient autopsy samples, CXCR3+ Th1 and XCR1+ cDC1 cells infiltrated the infarcted area. In this study, we identified a critical role of XCR1+ cDC1-activated CXCR3+ Th1 cells in ischemic cardiac remodeling.
Collapse
Affiliation(s)
- Hiroyasu Inui
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Makoto Nishida
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan; Health and Counseling Center, Osaka University, Suita, Japan.
| | - Michiko Ichii
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | | | - Masumi Asaji
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Seiko Ide
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan; Health and Counseling Center, Osaka University, Suita, Japan
| | - Shigeyoshi Saito
- Division of Health Sciences, Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ayami Saga
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takashi Omatsu
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Katsunao Tanaka
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kotaro Kanno
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Jiuyang Chang
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yinghong Zhu
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takeshi Okada
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
| | - Takahiro Matsui
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tohru Ohama
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan; Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Eiichi Morii
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Naoki Hosen
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan; Laboratory of Cellular Immunotherapy, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan
| | | | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
4
|
Wang Q, Chen Z, Guo J, Peng X, Zheng Z, Chen H, Liu H, Ma Y, Zhu J. Atorvastatin-induced tolerogenic dendritic cells improve cardiac remodeling by suppressing TLR-4/NF-κB activation after myocardial infarction. Inflamm Res 2023; 72:13-25. [PMID: 36315279 DOI: 10.1007/s00011-022-01654-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Myocardial infarction (MI) caused by ischemic cardiomyocyte necrosis induces inflammatory responses that strongly affect ventricular remodeling. Tolerogenic dendritic cells (tDCs) can suppress this effect on inflammatory responses. However, the precise role of atorvastatin-induced tDCs in ventricular remodeling after MI remains unclear. METHODS To explore the effect of necrotic cardiomyocytes (SNC) and/or atorvastatin on DC function, the expression of CD40, CD80, CD86, and MHC-II was determined using flow cytometry. The protein levels of TLR-4/NF-κB-related molecules were evaluated using western blotting. The infarct area after MI was determined via 2,3,5-triphenyltetrazolium chloride staining. The TUNEL assay was employed to evaluate the apoptosis of cardiomyocytes in heart sections. Masson's trichrome method was used to determine the extent of fibrosis. RESULTS Compared to the DCs co-cultured with PBS (control), cells co-cultured with Supernatant-IM or Supernatant-NH produced higher levels of inflammatory cytokines, including TNF-α, IL-1, IL-6, IL-12P40, and IL-8. This cytokine production was impaired by atorvastatin treatment. SNC treatment induced DC maturation and enhanced inflammatory cytokine secretion and oxidative stress through TLR-4/NF-κB pathway activation. Compared to that in the PBS-treated group, the left ventricular ejection fraction was significantly improved after tDC treatment. Additionally, compared to that in the PBS-treated group, tDC treatment reduced the left ventricular end-diastolic and end-systolic diameters in mice. Furthermore, treatment with tDCs improved the left ventricular systolic function, attenuated inflammatory cell infiltration, and reduced cardiomyocyte apoptosis, myocardial fibrosis, and infarct size compared to those in the control group. CONCLUSIONS Adoptive transfer of atorvastatin-induced tDCs alleviated post-infarction cardiomyocyte apoptosis and myocardial fibrosis in association with decreased inflammatory cell infiltration and inhibited oxidative stress, likely by suppressing TLR-4/NF-κB activation after myocardial infarction.
Collapse
Affiliation(s)
- Qian Wang
- Department of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Zhaoyang Chen
- Heart Center of Fujian Province, Union Hospital, Fujian Medical University, 29 Xin-Quan Road, Fuzhou, 350001, People's Republic of China
| | - Junjie Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China.,Qingdao Municipal Key Laboratory of Hypertension, Qingdao, Shandong, People's Republic of China
| | - Xiaoping Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China.,Jiangxi Hypertension Research Institute, Nanchang, People's Republic of China
| | - Zeqi Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China.,Jiangxi Hypertension Research Institute, Nanchang, People's Republic of China
| | - Hang Chen
- Heart Center of Fujian Province, Union Hospital, Fujian Medical University, 29 Xin-Quan Road, Fuzhou, 350001, People's Republic of China
| | - Haibo Liu
- Department of Cardiology, Qingpu Branch of Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Yuanji Ma
- Department of Cardiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Jianbing Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China. .,Jiangxi Hypertension Research Institute, Nanchang, People's Republic of China.
| |
Collapse
|
5
|
Chen KQ, Ke BY, Cheng L, Guan MT, Wang ZB, Wang SZ. Research and Progress of Probucol in Nonalcoholic Fatty Liver Disease. Mini Rev Med Chem 2023; 23:1905-1911. [PMID: 36967462 DOI: 10.2174/1389557523666230324092842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 03/29/2023]
Abstract
With the development of the social economy over the last 30 years, non-alcoholic fatty liver disease (NAFLD) is affected by unhealthy living habits and eating styles and has gradually become an increasingly serious public health problem. It is very important to investigate the pathogenesis and treatment of NAFLD for the development of human health. Probucol is an antioxidant with a bis-phenol structure. Although probucol is a clinically used cholesterol-lowering and antiatherosclerosis drug, its mechanism has not been elucidated in detail. This paper reviews the chemical structure, pharmacokinetics and pharmacological research of probucol. Meanwhile, this paper reviews the mechanism of probucol in NAFLD. We also analyzed and summarized the experimental models and clinical trials of probucol in NAFLD. Although current therapeutic strategies for NAFLD are not effective, we hope that through further research on probucol, we will be able to find suitable treatments to solve this problem in the future.
Collapse
Affiliation(s)
- Ke-Qian Chen
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Bo-Yi Ke
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Lu Cheng
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Meng-Ting Guan
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Zong-Bao Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| |
Collapse
|
6
|
Peroxisome Proliferator-Activated Receptor-γ Antagonizes LOX-1-Mediated Endothelial Injury by Transcriptional Activation of miR-590-5p. PPAR Res 2019; 2019:2715176. [PMID: 31354796 PMCID: PMC6632502 DOI: 10.1155/2019/2715176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/07/2019] [Accepted: 05/27/2019] [Indexed: 02/03/2023] Open
Abstract
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is one of the major receptors expressed on the endothelium of arterial wall with a key role in endothelial dysfunction and the development of atherosclerosis. Recent evidence suggested that LOX-1 is upregulated under the condition of insulin resistance and could be suppressed by the antidiabetic drugs. We previously also confirmed that Thiazolidinedione (TZD) has the inhibitory effect on LOX-1 in ox-LDL-induced endothelial cells. However, the underlying mechanism is unclear. Here we showed that Rosiglitazone treatment significantly attenuated the expressions of LOX-1, ICAM-1, VCAM-1, p47phox, and the atherosclerotic lesions in ApoE−/− mice with high-fat diet. In vitro, we revealed that Rosiglitazone inhibited LOX-1 by regulating miR-590-5p. Ox-LDL-mediated ICAM-1, VCAM-1, and p47phox were significantly reduced by Rosiglitazone, but all reversed after pretreating the cells with antagomiR-590-5p. Induction with Rosiglitazone activated PPAR-γ and promoted its nuclear translocation in cultured human umbilical vein endothelial cells (HUVECs). The nuclear PPAR-γ upregulated the miR-590-5p level through binding to its transcriptional promoter region. Retaining PPAR-γ in cytoplasm by transfecting with PPAR-γ⊿NLS plasmid in HUVECs failed to activate miR-590-5p. Mutation of the promoter region of PPAR-γ also reduced the miR-590-5p promoter luciferase activity. Collectively, these data indicated that PPAR-γ may have the therapeutic potential in atherosclerosis via the transcriptional regulation of miR-590-5p in endothelial cells.
Collapse
|
7
|
Liu D, Yang G, Zhao X, Yang H. Effects of probucol on atherosclerotic plaque and soluble thrombomodulin in patients with coronary heart disease. Exp Ther Med 2018; 16:886-890. [PMID: 30116341 PMCID: PMC6090215 DOI: 10.3892/etm.2018.6264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/30/2018] [Indexed: 11/26/2022] Open
Abstract
This study explored the effects of probucol on atherosclerotic plaques and soluble thrombomodulin in patients with coronary heart disease (CHD). Five hundred and eighty-three patients with CHD who were admitted to Jining First People's Hospital from February 2013 to February 2014. A total of 300 of them received conventional treatment, and were assigned to the control group, while the remaining 283 patients were treated with probucol in addition to the conventional treatment, and were assigned to the observation group. A retrospective analysis was performed on the total cholesterol levels, atherosclerotic plaque sizes, and soluble thrombomodulin levels. Probucol was administered at a dose of 500 mg twice a day for a period of 16 weeks. The total cholesterol level decreased gradually over time during the treatment. After 8 weeks of treatment, the total cholesterol level in the observation group was lower than that in the control group (P<0.05). After 8 weeks of treatment, the atherosclerotic plaque area in the observation group decreased compared with that before treatment (P<0.05). After 8 and 16 weeks of treatment, the plaque area in the observation group was smaller than that in the control group (P<0.05). The soluble thrombomodulin level at any time-point after treatment was lower than that before treatment in both groups (P<0.05). At the same time-point, the level in the observation group was lower than that in the control group (P<0.05). The total cholesterol and soluble thrombomodulin levels were positively correlated with the atherosclerotic plaque area (r=0.841, P=0.001; r=0.725, P=0.008). When patients with CHD were treated with probucol in addition to the conventional treatment, a reduction of the atherosclerotic plaque area, as well as a decrease of both the total cholesterol and soluble thrombomodulin levels, was observed. Overall, patients with CHD experienced improved symptoms following treatment with probucol.
Collapse
Affiliation(s)
- Donghai Liu
- Department of Emergency, The First People's Hospital of Jining, Jining, Shandong 272011, P.R. China
| | - Guoping Yang
- Department of Cardiology, Zibo Zhoucun People's Hospital, Zibo, Shandong 255000, P.R. China
| | - Xuebin Zhao
- Department of Emergency, The First People's Hospital of Jining, Jining, Shandong 272011, P.R. China
| | - Huanzhi Yang
- Department of Neurology, Binzhou City Central Hospital, Binzhou, Shandong 251700, P.R. China
| |
Collapse
|
8
|
Zhang M, Hou Y, Shen Y, Guo X, Shang D, Zhang D. Probucol reverses homocysteine induced inflammatory monocytes differentiation and oxidative stress. Eur J Pharmacol 2018; 818:67-73. [PMID: 29055785 DOI: 10.1016/j.ejphar.2017.10.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
Abstract
Reactive oxygen species have been demonstrated to involve in homocysteine-induced Ly-6Chi monocytes differentiation. Probucol is an anti-oxidant agent that has been used to treat atherosclerosis. We sought to evaluate the effect and potential mechanism of probucol on homocysteine-induced inflammatory monocytes differentiation. The primary mouse splenocytes suspensions were initiated by recombinant interferon-γ and cultured with L-homocysteine in the presence or absence of probucol. The cells were co-incubated with monoclonal antibodies to CD11b-PE and Ly-6C FITC. Flow cytometry analysis was performed on BD FACS caliber. Data were analyzed using the FlowJo software. Mononuclear cells were gated according to the lower granular and larger size, distinguished with granulocytes and lymphocytes. Monocytes were defined as CD11b+ mononuclear cells and further divided into three groups based on their Ly-6C expressions, Ly-6Chi, Ly-6Cmid and Ly-6Clow subsets. The productions of reactive oxygen species in monocytes subsets were detected by 2',7'-dichlorofluorescein-diacetate (DCFH-DA) containing monocytes were marked as DCFH-DA+ cells in both Ly-6C+ and Ly-6C- subsets. The activity of nicotinamide adenine dinucleotide phosphate oxidase in THP-1 cells was measured by assay kit on enzyme-labelling instrument. L-homocysteine promoted inflammatory monocytes differentiation and its reactive oxygen species productions in dose-dependent manner. Probucol dose-dependently suppressed the differentiation and reactive oxygen species productions of inflammatory monocytes induced by L-homocysteine. Furthermore, the increased NADPH oxidase activity induced by L-homocysteine was significantly reversed by probucol in THP-1 cells. Probucol prevented L-homocysteine-induced inflammatory monocytes differentiation and its reactive oxygen species generation probably through inhibiting NADPH oxidase activity.
Collapse
Affiliation(s)
- Minli Zhang
- Department of Cardiology, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, PR China.
| | - Yuchen Hou
- Department of Cardiology, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, PR China.
| | - Yali Shen
- Department of Cardiology, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, PR China.
| | - Xu Guo
- Department of Cardiology, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, PR China.
| | - Deshu Shang
- Department of Cell Biology, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City 110122, Liaoning Province, PR China.
| | - Daqing Zhang
- Department of Cardiology, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, PR China.
| |
Collapse
|
9
|
Shen C, Wang C, Han S, Wang Z, Dong Z, Zhao X, Wang P, Zhu H, Sun X, Ma X, Zhu H, Zou Y, Hu K, Ge J, Sun A. Aldehyde dehydrogenase 2 deficiency negates chronic low-to-moderate alcohol consumption-induced cardioprotecion possibly via ROS-dependent apoptosis and RIP1/RIP3/MLKL-mediated necroptosis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1912-1918. [DOI: 10.1016/j.bbadis.2016.11.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/27/2016] [Accepted: 11/08/2016] [Indexed: 12/31/2022]
|
10
|
Yang S, Zhao L, Han Y, Liu Y, Chen C, Zhan M, Xiong X, Zhu X, Xiao L, Hu C, Liu F, Zhou Z, Kanwar YS, Sun L. Probucol ameliorates renal injury in diabetic nephropathy by inhibiting the expression of the redox enzyme p66Shc. Redox Biol 2017; 13:482-497. [PMID: 28728079 PMCID: PMC5514499 DOI: 10.1016/j.redox.2017.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/28/2017] [Accepted: 07/02/2017] [Indexed: 12/19/2022] Open
Abstract
AIMS Probucol is an anti-hyperlipidemic agent and a potent antioxidant drug that can delay progression of diabetic nephropathy (DN) and reverses renal oxidative stress in diabetic animal models; however, the mechanisms underlying these effects remain unclear. p66Shc is a newly recognized mediator of mitochondrial ROS production in renal cells under high-glucose (HG) ambience. We previously showed that p66Shc can serve as a biomarker for renal oxidative injury in DN patients and that p66Shc up-regulation is correlated with renal damage in vivo and in vitro. Here, we determined whether probucol ameliorates renal injury in DN by inhibiting p66Shc expression. RESULTS We found that the expression of SIRT1, Ac-H3 and p66Shc in kidneys of DN patients was altered. Also, probucol reduced the levels of serum creatinine, urine protein and LDL-c and attenuated renal oxidative injury and fibrosis in STZ induced diabetic mice. In addition, probucol reversed p-AMPK, SIRT1, Ac-H3 and p66Shc expression. Correlation analyses showed that p66Shc expression was correlated with p-AMPK and Sirt1 expression and severity of renal injury. In vitro pretreatment of HK-2 cells with p-AMPK and SIRT1 siRNA negated the beneficial effects of probucol. Furthermore, we noted that probucol activates p-AMPK and Sirt1 and inhibits p66shc mRNA transcription by facilitating the binding of Sirt1 to the p66Shc promoter and modulation of Ac-H3 expression in HK-2 cells under HG ambience. INNOVATION AND CONCLUSION Our results suggest for the first time that probucol ameliorates renal damage in DN by epigenetically suppressing p66Shc expression via the AMPK-SIRT1-AcH3 pathway.
Collapse
Affiliation(s)
- Shikun Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China; Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Zhao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China
| | - Chao Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China
| | - Ming Zhan
- Department of Nephrology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China
| | - Xiaofen Xiong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China
| | - Xuejing Zhu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China
| | - Chun Hu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China
| | - Fuyou Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China
| | - Zhiguang Zhou
- Diabetes Center, and Institute of Metabolism and Endocrinology, Key Laboratory of Diabetes Immunology, Ministry of Education, China
| | - Yashpal S Kanwar
- Department of Pathology & Medicine, Northwestern University, Chicago, USA
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China.
| |
Collapse
|
11
|
Trans-Fatty Acids Aggravate Obesity, Insulin Resistance and Hepatic Steatosis in C57BL/6 Mice, Possibly by Suppressing the IRS1 Dependent Pathway. Molecules 2016; 21:molecules21060705. [PMID: 27248994 PMCID: PMC6273562 DOI: 10.3390/molecules21060705] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/12/2016] [Accepted: 05/19/2016] [Indexed: 12/14/2022] Open
Abstract
Trans-fatty acid consumption has been reported as a risk factor for metabolic disorders and targeted organ damages. Nonetheless, little is known about the roles and mechanisms of trans-fatty acids in obesity, insulin resistance (IR) and hepatic steatosis. Adult C57BL/6 male mice were fed with four different diets for 20 weeks: normal diet (ND), high fat diet (HFD), low trans-fatty acids diet (LTD) and high trans-fatty acid diet (HTD). The diet-induced metabolic disorders were assessed by evaluating body weight, glucose tolerance test, hepatic steatosis and plasma lipid profiles post 20-week diet. Histological (H&E, Oil-Red-O) staining and western blot analysis were employed to assess liver steatosis and potential signaling pathways. After 20-weeks of diet, the body weights of the four groups were 29.61 ± 1.89 g (ND), 39.04 ± 4.27 g (HFD), 34.09 ± 2.62 g (LTD) and 43.78 ± 4.27 g (HTD) (p < 0.05), respectively. HFD intake significantly impaired glucose tolerance, which was impaired further in the mice consuming the HTD diet. The effect was further exacerbated by HTD diet. Moreover, the HTD group exhibited significantly more severe liver steatosis compared with HFD group possibly through regulating adipose triglyceride lipase. The group consuming the HTD also exhibited significantly reduced levels of IRS1, phosphor-PKC and phosphor-AKT. These results support our hypothesis that consumption of a diet high in trans-fatty acids induces higher rates of obesity, IR and hepatic steatosis in male C57BL/6 mice, possibly by suppressing the IRS1dependent pathway.
Collapse
|
12
|
Zheng B, Yang L, Wen C, Huang X, Xu C, Lee KH, Xu J. Curcumin analog L3 alleviates diabetic atherosclerosis by multiple effects. Eur J Pharmacol 2016; 775:22-34. [PMID: 26852952 DOI: 10.1016/j.ejphar.2016.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/03/2016] [Accepted: 02/03/2016] [Indexed: 11/19/2022]
Abstract
L3, an analog of curcumin, is a compound isolated from a traditional Chinese medicine Turmeric. In this paper, we aims to explore the efficacy of L3 on diabetic atherosclerosis and the related mechanism. The effect of L3 was studied on glucose and lipid metabolism, antioxidant status, atherosclerosis-related indexes and pathological changes of main organs in the mice model of diabetes induced by streptozotocin and high-fat diet. The results showed that L3 treatment could meliorate dyslipidemia and hyperglycemia, reduce oxidative stress, enhance the activity of antioxidases, increase the nitric oxide level in plasma and aortic arch, decrease the production of reactive oxygen species in pancreas and lectin-like oxidized low-density lipoprotein receptor-1 expression in aortic arch, and meliorate the fatty and atherosclerotic degeneration in aortic arch, thereby preventing the development of diabetes and its complications. These results suggested that L3 can alleviate the diabetic atherosclerosis by multiple effects. This study provided scientific basis for the further research and clinical application of L3.
Collapse
Affiliation(s)
- Bin Zheng
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China; Fuijan Provincial Key Laboratory of Natural Medicine Pharmacology, Fuzhou 350004, China; Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Liu Yang
- Fuijan Provincial Key Laboratory of Natural Medicine Pharmacology, Fuzhou 350004, China; Department of Medical Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Caixia Wen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China; Fuijan Provincial Key Laboratory of Natural Medicine Pharmacology, Fuzhou 350004, China
| | - Xiuwang Huang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China; Fuijan Provincial Key Laboratory of Natural Medicine Pharmacology, Fuzhou 350004, China
| | - Chenxia Xu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China; Fuijan Provincial Key Laboratory of Natural Medicine Pharmacology, Fuzhou 350004, China; Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Kuan-Han Lee
- School of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan
| | - Jianhua Xu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China; Fuijan Provincial Key Laboratory of Natural Medicine Pharmacology, Fuzhou 350004, China.
| |
Collapse
|