1
|
Bortolasci CC, Kidnapillai S, Spolding B, Truong TTT, Connor T, Swinton C, Panizzutti B, Liu ZSJ, Sanigorski A, Dean OM, Crowley T, Richardson M, Bozaoglu K, Vlahos K, Cowdery S, Watmuff B, Steyn SF, Wolmarans DW, Engelbrecht BJ, Perry C, Drummond K, Pang T, Jamain S, Gray L, McGee SL, Harvey BH, Kim JH, Leboyer M, Berk M, Walder K. Use of a gene expression signature to identify trimetazidine for repurposing to treat bipolar depression. Bipolar Disord 2023; 25:661-670. [PMID: 36890661 PMCID: PMC10946906 DOI: 10.1111/bdi.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
OBJECTIVES The aim of this study was to repurpose a drug for the treatment of bipolar depression. METHODS A gene expression signature representing the overall transcriptomic effects of a cocktail of drugs widely prescribed to treat bipolar disorder was generated using human neuronal-like (NT2-N) cells. A compound library of 960 approved, off-patent drugs were then screened to identify those drugs that affect transcription most similar to the effects of the bipolar depression drug cocktail. For mechanistic studies, peripheral blood mononuclear cells were obtained from a healthy subject and reprogrammed into induced pluripotent stem cells, which were then differentiated into co-cultured neurons and astrocytes. Efficacy studies were conducted in two animal models of depressive-like behaviours (Flinders Sensitive Line rats and social isolation with chronic restraint stress rats). RESULTS The screen identified trimetazidine as a potential drug for repurposing. Trimetazidine alters metabolic processes to increase ATP production, which is thought to be deficient in bipolar depression. We showed that trimetazidine increased mitochondrial respiration in cultured human neuronal-like cells. Transcriptomic analysis in induced pluripotent stem cell-derived neuron/astrocyte co-cultures suggested additional mechanisms of action via the focal adhesion and MAPK signalling pathways. In two different rodent models of depressive-like behaviours, trimetazidine exhibited antidepressant-like activity with reduced anhedonia and reduced immobility in the forced swim test. CONCLUSION Collectively our data support the repurposing of trimetazidine for the treatment of bipolar depression.
Collapse
Affiliation(s)
- Chiara C. Bortolasci
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Srisaiyini Kidnapillai
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Briana Spolding
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Trang T. T. Truong
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Timothy Connor
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Courtney Swinton
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Bruna Panizzutti
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Zoe S. J. Liu
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Andrew Sanigorski
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Olivia M. Dean
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
- The Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
| | - Tamsyn Crowley
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
- Bioinformatics Core Research Facility (BCRF)Deakin UniversityGeelongAustralia
| | - Mark Richardson
- Bioinformatics Core Research Facility (BCRF)Deakin UniversityGeelongAustralia
| | - Kiymet Bozaoglu
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
| | - Katerina Vlahos
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Stephanie Cowdery
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Brad Watmuff
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Stephan F. Steyn
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health SciencesNorth‐West UniversityPotchefstroomSouth Africa
| | - De Wet Wolmarans
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health SciencesNorth‐West UniversityPotchefstroomSouth Africa
| | - Barend J. Engelbrecht
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health SciencesNorth‐West UniversityPotchefstroomSouth Africa
| | - Christina Perry
- The Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
| | - Katherine Drummond
- The Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
| | - Terence Pang
- The Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
| | - Stéphane Jamain
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, AP‐HP, DMU IMPACT, FHU ADAPTFondation FondaMentalCréteilFrance
| | - Laura Gray
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
- The Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
| | - Sean L. McGee
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Brian H. Harvey
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health SciencesNorth‐West UniversityPotchefstroomSouth Africa
- SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Mental Health and Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Jee Hyun Kim
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
- The Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
| | - Marion Leboyer
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, AP‐HP, DMU IMPACT, FHU ADAPTFondation FondaMentalCréteilFrance
| | - Michael Berk
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
- The Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
- Orygen, The National Centre of Excellence in Youth Mental HealthParkvilleAustralia
| | - Ken Walder
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| |
Collapse
|
2
|
Khanra S, Reddy P, Giménez-Palomo A, Park CHJ, Panizzutti B, McCallum M, Arumugham SS, Umesh S, Debnath M, Das B, Venkatasubramanian G, Ashton M, Turner A, Dean OM, Walder K, Vieta E, Yatham LN, Pacchiarotti I, Reddy YCJ, Goyal N, Kesavan M, Colomer L, Berk M, Kim JH. Metabolic regulation to treat bipolar depression: mechanisms and targeting by trimetazidine. Mol Psychiatry 2023; 28:3231-3242. [PMID: 37386057 PMCID: PMC10618096 DOI: 10.1038/s41380-023-02134-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/14/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Bipolar disorder's core feature is the pathological disturbances in mood, often accompanied by disrupted thinking and behavior. Its complex and heterogeneous etiology implies that a range of inherited and environmental factors are involved. This heterogeneity and poorly understood neurobiology pose significant challenges to existing drug development paradigms, resulting in scarce treatment options, especially for bipolar depression. Therefore, novel approaches are needed to discover new treatment options. In this review, we first highlight the main molecular mechanisms known to be associated with bipolar depression-mitochondrial dysfunction, inflammation and oxidative stress. We then examine the available literature for the effects of trimetazidine in said alterations. Trimetazidine was identified without a priori hypothesis using a gene-expression signature for the effects of a combination of drugs used to treat bipolar disorder and screening a library of off-patent drugs in cultured human neuronal-like cells. Trimetazidine is used to treat angina pectoris for its cytoprotective and metabolic effects (improved glucose utilization for energy production). The preclinical and clinical literature strongly support trimetazidine's potential to treat bipolar depression, having anti-inflammatory and antioxidant properties while normalizing mitochondrial function only when it is compromised. Further, trimetazidine's demonstrated safety and tolerability provide a strong rationale for clinical trials to test its efficacy to treat bipolar depression that could fast-track its repurposing to address such an unmet need as bipolar depression.
Collapse
Affiliation(s)
- Sourav Khanra
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Preethi Reddy
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Anna Giménez-Palomo
- Bipolar and Depressive Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Biomedical Research Networking Center (CIBERSAM), Madrid, Spain
| | - Chun Hui J Park
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Bruna Panizzutti
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Madeleine McCallum
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Shyam Sundar Arumugham
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Shreekantiah Umesh
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Monojit Debnath
- Department of Human Genetics, NIMHANS, Bengaluru, Karnataka, India
| | - Basudeb Das
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Ganesan Venkatasubramanian
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Melanie Ashton
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Alyna Turner
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Olivia M Dean
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Ken Walder
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Biomedical Research Networking Center (CIBERSAM), Madrid, Spain
| | - Lakshmi N Yatham
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Isabella Pacchiarotti
- Bipolar and Depressive Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Biomedical Research Networking Center (CIBERSAM), Madrid, Spain
| | - Y C Janardhan Reddy
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Nishant Goyal
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Muralidharan Kesavan
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Lluc Colomer
- Bipolar and Depressive Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Biomedical Research Networking Center (CIBERSAM), Madrid, Spain
| | - Michael Berk
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia.
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| | - Jee Hyun Kim
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia.
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
3
|
Hou S, Tian Z, Zhao D, Liang Y, Dai S, Ji Q, Fan Z, Liu Z, Liu M, Yang Y. Efficacy and Optimal Dose of Coenzyme Q10 Supplementation on Inflammation-Related Biomarkers: A GRADE-Assessed Systematic Review and Updated Meta-Analysis of Randomized Controlled Trials. Mol Nutr Food Res 2023; 67:e2200800. [PMID: 37118903 DOI: 10.1002/mnfr.202200800] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/23/2023] [Indexed: 04/30/2023]
Abstract
SCOPE Coenzyme Q10 (CoQ10) has become a popular nutritional supplement due to its wide range of beneficial biological effects. Previous meta-analyses show that the attenuation of CoQ10 on inflammatory biomarkers remains controversial. This meta-analysis aims to assess the efficacy and optimal dose of CoQ10 supplementation on inflammatory indicators in the general population. METHODS AND RESULTS Databases are searched up to December 2022 resulting in 6713 articles, of which 31 are retrieved for full-text assessment and included 1517 subjects. Double-blind randomized controlled trials (RCTs) of CoQ10 supplementation are eligible if they contain C reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). CoQ10 supplementation can significantly reduce the levels of circulating CRP (SMD: -0.40, 95% CI: [-0.67 to -0.13], p = 0.003), IL-6 (SMD: -0.67, 95% CI: [-1.01 to -0.33], p < 0.001), and TNF-α (SMD: -1.06, 95% CI: [-1.59 to -0.52], p < 0.001) and increase the concentration of circulating CoQ10. CONCLUSION This meta-analysis provides evidence for CoQ10 supplementation to reduce the level of inflammatory mediators in the general population and proposes that daily supplementation of 300-400 mg CoQ10 show superior inhibition of inflammatory factors.
Collapse
Affiliation(s)
- Shanshan Hou
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, P. R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
| | - Zezhong Tian
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, P. R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
| | - Dan Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, P. R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
| | - Ying Liang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, P. R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
| | - Suming Dai
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, P. R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
| | - Qiuhua Ji
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, P. R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
| | - Zhiying Fan
- School of Public Health, Baotou Medical College, Baotou, Inner Mongolia, 014040, P. R. China
| | - Zhihao Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, P. R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
| | - Meitong Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, P. R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
| | - Yan Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, P. R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
- China-DRIs Expert Committee, Beijing, P. R. China
| |
Collapse
|
4
|
Dai S, Tian Z, Zhao D, Liang Y, Liu M, Liu Z, Hou S, Yang Y. Effects of Coenzyme Q10 Supplementation on Biomarkers of Oxidative Stress in Adults: A GRADE-Assessed Systematic Review and Updated Meta-Analysis of Randomized Controlled Trials. Antioxidants (Basel) 2022; 11:antiox11071360. [PMID: 35883851 PMCID: PMC9311997 DOI: 10.3390/antiox11071360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Evidence shows that exogenous CoQ10 supplementation may potentially attenuate oxidative stress status. However, its effective dose and evidence certainty require further evaluation in the general population via more updated randomized controlled trials (RCTs). Databases (PubMed, Embase and Cochrane Library) were searched up to 30 March 2022. Evidence certainty was assessed using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach. Thirty-four RCTs containing 2012 participants were included in this review. Pooled effects of significant increase in total antioxidant capacity (TAC) (standardized mean difference: 1.83, 95%CI: [1.07, 2.59], p < 0.001) and significant reduction in malondialdehyde (MDA) concentrations (−0.77, [−1.06, −0.47], p < 0.001) were shown after CoQ10 supplementation compared to placebo. However, we could not determine that there was a significant increase in circulating superoxide dismutase (SOD) levels yet (0.47, [0.00, 0.94], p = 0.05). Subgroup analyses implied that CoQ10 supplementation was more beneficial to people with coronary artery disease or type 2 diabetes. Additionally, taking 100−150 mg/day CoQ10 supplement had better benefits for the levels of TAC, MDA and SOD (all p < 0.01). These results to a statistically significant extent lent support to the efficacy and optimal dose of CoQ10 supplementation on attenuating oxidative stress status in adults.
Collapse
Affiliation(s)
- Suming Dai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Zezhong Tian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Dan Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Ying Liang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Meitong Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhihao Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Shanshan Hou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Yan Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
- China-DRIs Expert Committee on Other Food Substances, Guangzhou 510080, China
- Correspondence:
| |
Collapse
|
5
|
Antioxidant and Anti-Inflammatory Effects of Coenzyme Q10 Supplementation on Infectious Diseases. Healthcare (Basel) 2022; 10:healthcare10030487. [PMID: 35326965 PMCID: PMC8953254 DOI: 10.3390/healthcare10030487] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022] Open
Abstract
With the appearance of new viruses and infectious diseases (ID) such as COVID-19 in 2019, as well as the lack of specific pharmacological tools for the management of patients with severe complications or comorbidities, it is important to search for adjuvant treatments that help improve the prognosis of infectious disease patients. It is also important that these treatments limit the oxidative and hyperinflammatory damage caused as a response to pathogenic agents, since, in some cases, an inflammatory syndrome may develop that worsens the patient’s prognosis. The potential benefits of complementary nutrients and dietary interventions in the treatment of pathological processes in which oxidative stress and inflammation play a fundamental role have been widely evaluated. Coenzyme Q10 (CoQ10) is a supplement that has been shown to protect cells and be effective in cardiovascular diseases and obesity. Additionally, some studies have proposed it as a possible adjuvant treatment in viral infections. Preclinical and clinical studies have shown that CoQ10 has anti-inflammatory and antioxidant effects, and effects on mitochondrial dysfunction, which have been linked to the inflammatory response.
Collapse
|
6
|
Bubnova MG, Aronov DM. Efficacy of trimetazidine - an inhibitor of free fatty acids oxidation in the treatment of patients with stable angina pectoris and heart failure. KARDIOLOGIIA 2021; 61:65-76. [PMID: 34882080 DOI: 10.18087/cardio.2021.11.n1801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Aim To evaluate efficacy of modified-release trimetazidine (TMZ) included into the standard therapy for patients with stable angina and chronic heart failure (CHF) as a part of a subgroup analysis in the PERSPECTIVE study.Material and methods The study included 806 patients: group 1 (n=691), patients receiving a standard therapy and modified-release TMZ (TMZ group); and group 2 (n=115), patients receiving a standard therapy (control group). Total duration of the study was 12 months.Results In the TMZ group, the weekly number of angina attacks decreased by 41.9% (p<0.0001) in 2 months and by 69.6 % (from baseline, р<0.0001) in 12 months, and the frequency of nitroglycerine dosing decreased by 40.8 % (р<0.0001) and 67.7 % (р<0.0001), respectively. In the control group, the respective values did not change. In the TMZ group compared to the control group, the QT interval was shorter (7.9 %; р<0.05), the left ventricular (LV) end-systolic dimension was reduced (13.4 %; р<0.01), interventricular septal thickness and LV posterior wall thickness were decreased (9.5 %; р<0.01 and 12.2 %; р<0.01, respectively), and the ejection fraction was increased (11.4; р<0.05). Following the TMZ treatment, the leukocyte count in peripheral blood was decreased (5.3 %; р<0.01) and the serum concentration of high-sensitivity C-reactive protein was decreased (30.7 %; р<0.01) vs. increases of these indexes in the control group (17.9 %; р<0.05 and 17.8 %; р<0.05, respectively). The proportion of patients hospitalized for exacerbation of CHF or angina for 12 months was 8.6 % in the TMZ group and 15.7 % in the control group (p=0,001).Conclusion In patients with stable angina and CHF, inclusion of modified-release TMZ into the standard therapy decreases the number of angina attacks, reduces the activity of inflammatory factors, and improves the course of disease.
Collapse
Affiliation(s)
- M G Bubnova
- National Medical Research Center for Therapy and Preventive Medicine, Moscow
| | - D M Aronov
- National Medical Research Center for Therapy and Preventive Medicine, Moscow
| |
Collapse
|
7
|
Shu H, Peng Y, Hang W, Zhou N, Wang DW. Trimetazidine in Heart Failure. Front Pharmacol 2021; 11:569132. [PMID: 33597865 PMCID: PMC7883591 DOI: 10.3389/fphar.2020.569132] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
Heart failure is a systemic syndrome caused by multiple pathological factors. Current treatments do not have satisfactory outcomes. Several basic studies have revealed the protective effect of trimetazidine on the heart, not only by metabolism modulation but also by relieving myocardial apoptosis, fibrosis, autophagy, and inflammation. Clinical studies have consistently indicated that trimetazidine acts as an adjunct to conventional treatments and improves the symptoms of heart failure. This review summarizes the basic pathological changes in the myocardium, with an emphasis on the alteration of cardiac metabolism in the development of heart failure. The clinical application of trimetazidine in heart failure and the mechanism of its protective effects on the myocardium are carefully discussed, as well as its main adverse effects. The intention of this review is to highlight this treatment as an effective alternative against heart failure and provide additional perspectives for future studies.
Collapse
Affiliation(s)
- Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijian Hang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Zozina VI, Covantev S, Goroshko OA, Krasnykh LM, Kukes VG. Coenzyme Q10 in Cardiovascular and Metabolic Diseases: Current State of the Problem. Curr Cardiol Rev 2018; 14:164-174. [PMID: 29663894 PMCID: PMC6131403 DOI: 10.2174/1573403x14666180416115428] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 12/12/2022] Open
Abstract
The burden of cardiovascular and metabolic diseases is increasing with every year. Although the management of these conditions has improved greatly over the years, it is still far from perfect. With all of this in mind, there is a need for new methods of prophylaxis and treatment. Coenzyme Q10 (CoQ10) is an essential compound of the human body. There is growing evidence that CoQ10 is tightly linked to cardiometabolic disorders. Its supplementation can be useful in a variety of chronic and acute disorders. This review analyses the role of CoQ10 in hypertension, ischemic heart disease, myocardial infarction, heart failure, viral myocarditis, cardiomyopathies, cardiac toxicity, dyslipidemia, obesity, type 2 diabetes mellitus, metabolic syndrome, cardiac procedures and resuscitation.
Collapse
Affiliation(s)
- Vladlena I Zozina
- Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Serghei Covantev
- Laboratory of Allergology and Clinical Immunology, State University of Medicine and Pharmacy «Nicolae Testemitanu», Chisinau, Moldova, Republic of
| | - Olga A Goroshko
- Federal State Budgetary Institution "Scientific Centre for Expert Evaluation of Medical Products" of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Liudmila M Krasnykh
- Federal State Budgetary Institution "Scientific Centre for Expert Evaluation of Medical Products" of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Vladimir G Kukes
- Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| |
Collapse
|