1
|
Xiao SJ, Xu XK, Chen W, Xin JY, Yuan WL, Zu XP, Shen YH. Traditional Chinese medicine Euodiae Fructus: botany, traditional use, phytochemistry, pharmacology, toxicity and quality control. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:6. [PMID: 36790599 PMCID: PMC9931992 DOI: 10.1007/s13659-023-00369-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Euodiae Fructus, referred to as "Wuzhuyu" in Chinese, has been used as local and traditional herbal medicines in many regions, especially in China, Japan and Korea, for the treatment of gastrointestinal disorders, headache, emesis, aphtha, dermatophytosis, dysentery, etc. Substantial investigations into their chemical and pharmacological properties have been performed. Recently, interest in this plant has been focused on the different structural types of alkaloids like evodiamine, rutaecarpine, dehydroevodiamine and 1-methyl-2-undecyl-4(1H)-quinolone, which exhibit a wide range of pharmacological activities in preclinical models, such as anticancer, antibacterial, anti-inflammatory, anti-cardiovascular disease, etc. This review summarizes the up-to-date and comprehensive information concerning the botany, traditional uses, phytochemistry, pharmacology of Euodiae Fructus together with the toxicology and quality control, and discusses the possible direction and scope for future research on this plant.
Collapse
Affiliation(s)
- Si-Jia Xiao
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Xi-Ke Xu
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Wei Chen
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Jia-Yun Xin
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wen-Lin Yuan
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Xian-Peng Zu
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China.
| | - Yun-Heng Shen
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
2
|
Deng J, Lin X, Li Q, Cai XY, Wu LW, Wang W, Zhang B, Li YL, Hu J, Lin NM. Decreased INPP5B expression predicts poor prognosis in lung adenocarcinoma. Cancer Cell Int 2022; 22:189. [PMID: 35568951 PMCID: PMC9107680 DOI: 10.1186/s12935-022-02609-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/06/2022] [Indexed: 12/03/2022] Open
Abstract
Background Inositol Polyphosphate-5-Phosphatase B (INPP5B), a inositol 5-phosphatase, plays an important role in many biological processes through phosphorylating PI(4,5)P2 and/or PI(3,4,5)P3 at the 5-position. Nevertheless, little is known about its function and cellular pathways in tumors. This study aims to investigate the potential role of INPP5B as a diagnostic and prognostic biomarker for lung adenocarcinoma (LUAD), as well as its biological functions and molecular mechanisms in LUAD. Methods TCGA, GEO, CTPAC, and HPA datasets were used for differential expression analysis and pathological stratification comparison. The prognostic and diagnostic role of INPP5B was determined by Kaplan–Meier curves, univariate and multivariate Cox regression analysis, and receiver operating characteristics (ROC) curve analyses. The potential mechanism of INPP5B was explored through GO, KEGG, and GSEA enrichment analysis, as well as GeneMANIA and STRING protein–protein interaction (PPI) network. PicTar, PITA, and miRmap databases were used for exploring miRNA targeting INPP5B. In molecular biology experiments, immunohistochemical analyses and Western blot analyses were used to determine protein expression. Co-immunoprecipitation assay was used to detect protein–protein interactions. CCK8 assays and colony formation assays were used for the measurement of cell proliferation. Cell cycle was assessed by PI staining with flow cytometry. Cell migration was performed by Transwell assays and wound healing assays. Result INPP5B was decreased in LUAD tissues compared with normal adjacent tissues. And the low expression of INPP5B was associated with late-stage pathological features. In addition, INPP5B was found to be a significant independent prognostic and diagnostic factor for LUAD patients. Hsa-miR-582-5p was predicted as a negative regulator of INPP5B mRNA expression. INPP5B was significantly correlated with the expression of PTEN and the activity of PI3K/AKT signaling pathways, as determined by enrichment analysis and PPI network. In vitro experiments partially confirmed the aforementioned findings. INPP5B could interact directly with PTEN. INPP5B overexpression inhibited LUAD cell proliferation and migration while downregulating the AKT pathway. Conclusion Our results demonstrated that INPP5B could inhibit the proliferation and metastasis of LUAD cells. It could serve as a novel diagnostic and prognostic biomarker for LUAD patients. Trial registration LUAD tissues and corresponding para-cancerous tissues were collected from 10 different LUAD patients at Hangzhou First People’s Hospital. The Ethics Committee of Hangzhou First People’s Hospital has approved this study. (registration number: IIT-20210907-0031-01; registration date: 2021.09.13) Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02609-8.
Collapse
Affiliation(s)
- Jun Deng
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xu Lin
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qi Li
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiao-Yu Cai
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.,Department of Clinical Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Lin-Wen Wu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.,Department of Clinical Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Wei Wang
- Department of Pathology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.,Department of Clinical Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yang-Ling Li
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.,Department of Clinical Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Neng-Ming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China. .,Department of Clinical Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China. .,Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, 310024, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Lin JY, Yeh TH. Rutaecarpine administration inhibits cancer cell growth in allogenic TRAMP-C1 prostate cancer mice correlating with immune balance in vivo. Biomed Pharmacother 2021; 139:111648. [PMID: 33945915 DOI: 10.1016/j.biopha.2021.111648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Rutaecarpine (Rut) is a plant alkaloid abundant in Euodia ruticarpa which is a Chinese herbal medicine used for treating various cancers. However, the Rut administration effect on prostate cancer in vivo remains unclear. AIM In the present study we established an allogenic TRAMP-C1 prostate cancer mouse model to evaluate the Rut administration effect and mechanism in vivo. METHODS To unravel the Rut administration effect on prostate cancer in vivo, C57BL/6J male mice (8 weeks old) were randomly grouped (n = 9), subcutaneously loaded with TRAMP-C1 prostate cancer cells and immediately given daily by gavage with Rut dissolved in soybean oil at 7 mg (low dose), 35 mg (medium dose), and 70 mg/kg b.w./day (high dose) for successive 39 days. RESULTS Rut administration significantly and dose-dependently reduced both tumor volume and solid prostate cancer weight in allogenic TRAMP-C1 male mice. Rut administration markedly increased (TNF-α+IFN-γ) (Th1-)/IL-10 (Th2-) cytokine secretion ratios by splenocytes and TNF-α (M1-)/IL-10 (M2-) cytokine secretion ratios by macrophages as compared to those of dietary control group, suggesting that Rut administration in vivo regulates the immune balance toward Th1- and M1-polarized characteristics. Decreased CD19+, CD4+ and CD8+ lymphocytes in the peripheral blood of allogenic TRAMP-C1 mice were significantly elevated by Rut administration. Tumor weights positively correlated with TNF-α secretions by splenocytes, suggesting that there is a tumor cachexia in the tumor-bearing mice. Tumor weights negatively correlated with IgG (Th1-antibody) levels in the sera, suggesting that Th1-polarized immune balance may inhibit prostate cancer cell growth. CONCLUSIONS Our results evidenced that Rut administration suppresses prostate cancer cell growth in mice subcutaneously loaded with TRAMP-C1 cells and correlated the anti-cancer effects with Th1-polarized immune balance in vivo.
Collapse
Affiliation(s)
- Jin-Yuarn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan.
| | - Tzu-He Yeh
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan
| |
Collapse
|
4
|
Ma J, Yang R, Guo H, Zhang K, Liu J, Feng Y, Zhou J, Jin R, Li Z, Guo D, Yan YG, Zhu H, Tang Y. Synthesis, Antitumor Activity, Oil-Water Partition Coefficient, and Theoretical Calculation of 2 New Rutaecarpine Derivatives With Methoxy Groups. Nat Prod Commun 2021. [DOI: 10.1177/1934578x21991686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Two rutaecarpine (RUT) derivatives, substituted with methoxy groups, namely, 2-methoxyl rutaecarpine (RUT-OCH3, 3a), and 2,10-dimethoxy rutaecarpine (RUT-(OCH3)2, 3b), were synthesized and characterized using 1H nuclear magnetic resonance (NMR), 13C NMR and mass spectra. The in vitro antitumor activities of compounds RUT, 3a, and 3b against A549, H1299, and HepG2 cells were studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. The results showed that the activity of compounds 3a and 3b was stronger than that of compound RUT, and the activity of compound 3a was stronger than that of 3b, indicating that the activity of the compounds was improved after structural modification. The apparent oil-water partition coefficients of compound RUT, 3a, and 3b were explored using ultraviolet spectrometry. The results indicated that hydrophobicity affects the physicochemical properties of the molecules and influences antitumor activities. In addition, the Natural Electron Configuration, frontier molecular orbital (highest occupied molecular orbital, lowest unoccupied molecular orbital) bandgaps of compounds have been studied based on density functional theory (DFT) by means of DFT-B3LYP/6‐31G (d) in Gaussian 16. The calculation results showed that bandgap of 3a is highest, indicating that the stability of 3a is weakest, so 3a has higher activity than RUT and 3b, which agrees with the results of antitumor activities experiment.
Collapse
Affiliation(s)
- Jingjing Ma
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Ruolan Yang
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Hui Guo
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Keyao Zhang
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Jingli Liu
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Yifan Feng
- Institute of Modern Physics, Shaanxi Key Laboratory for Theoretical Physics Frontier, Northwest University, Xi’an, Shaanxi, China
| | - Jing Zhou
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Ruyi Jin
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Zhi Li
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Dongyan Guo
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Yong-gang Yan
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Haiyan Zhu
- Institute of Modern Physics, Shaanxi Key Laboratory for Theoretical Physics Frontier, Northwest University, Xi’an, Shaanxi, China
| | - Yuping Tang
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| |
Collapse
|
5
|
Liu XQ, Jin J, Li Z, Jiang L, Dong YH, Cai YT, Wu MF, Wang JN, Ma TT, Wen JG, Liu MM, Li J, Wu YG, Meng XM. Rutaecarpine derivative Cpd-6c alleviates acute kidney injury by targeting PDE4B, a key enzyme mediating inflammation in cisplatin nephropathy. Biochem Pharmacol 2020; 180:114132. [PMID: 32622666 DOI: 10.1016/j.bcp.2020.114132] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Acute kidney injury (AKI), characterized by a rapid decline in renal function, is triggered by an acute inflammatory response that leads to kidney damage. An effective treatment for AKI is lacking. Using in vitro and in vivo AKI models, our laboratory has identified a series of anti-inflammatory molecules and their derivatives. In the current study, we identified the protective role of rutaecarpine (Ru) on renal tubules. We obtained a series of 3-aromatic sulphonamide-substituted Ru derivatives exhibiting enhanced renoprotective and anti-inflammatory function. We identified Compound-6c(Cpd-6c) as having the best activity and examined its protective effect against cisplatin nephropathy both in vivo and in vitro in cisplatin-stimulated tubular epithelial cells (TECs). Our results showed that Cpd-6c restored renal function more effectively than Ru, as evidenced by reduced blood urea nitrogen and serum creatinine levels in mice. Cpd-6c alleviated tubular injury, as shown by PAS staining and molecular analysis of kidney injury molecule-1 (KIM-1), with both prevention and treatment protocols in cisplatin-treated mice. Moreover, Cpd-6c decreased kidney inflammation, oxidative stress and programmed cell death. These results have also been confirmed in cisplatin-treated TECs. Using web-prediction algorithms, molecular docking, and cellular thermal shift assay (CETSA), we identified phosphodiesterase 4B (PDE4B) as a Cpd-6c target. In addition, we firstly found that PDE4B was up-regulated significantly in the serum of AKI patients. After identifying the function of PDE4B in cisplatin-treated tubular epithelial cells by siRNA transfection or PDE4 inhibitor rolipram, we showed that Cpd-6c treatment did not protect against cisplatin-induced injury in PDE4B knockdown TECs, thus indicating that Cpd-6c exerts its renoprotective and anti-oxidative effects via the PDE4B-dependent pathway. Collectively, Cpd-6c might serve as a potential therapeutic agent for AKI and PDE4B may be highly involved in the initiation and progression of AKI.
Collapse
Affiliation(s)
- Xue-Qi Liu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Juan Jin
- School of Basic Medical Sciences, Anhui Medical University, Anhui, China
| | - Zeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Ling Jiang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Yu-Hang Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Yu-Ting Cai
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Ming-Fei Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Tao-Tao Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Yong-Gui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China; The Center for Scientific Research of Anhui Medical University, Hefei, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
6
|
Wang M, Wu Y, Yu Y, Fu Y, Yan H, Wang X, Li T, Peng W, Luo D. Rutaecarpine prevented ox-LDL-induced VSMCs dysfunction through inhibiting overexpression of connexin 43. Eur J Pharmacol 2019; 853:84-92. [DOI: 10.1016/j.ejphar.2019.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 01/29/2023]
|
7
|
Rutaecarpine: A promising cardiovascular protective alkaloid from Evodia rutaecarpa (Wu Zhu Yu). Pharmacol Res 2019; 141:541-550. [DOI: 10.1016/j.phrs.2018.12.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022]
|