1
|
Tapia A, Liu X, Malhi NK, Yuan D, Chen M, Southerland KW, Luo Y, Chen ZB. Role of long noncoding RNAs in diabetes-associated peripheral arterial disease. Cardiovasc Diabetol 2024; 23:274. [PMID: 39049097 PMCID: PMC11271017 DOI: 10.1186/s12933-024-02327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease that heightens the risks of many vascular complications, including peripheral arterial disease (PAD). Various types of cells, including but not limited to endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and macrophages (MΦs), play crucial roles in the pathogenesis of DM-PAD. Long non-coding RNAs (lncRNAs) are epigenetic regulators that play important roles in cellular function, and their dysregulation in DM can contribute to PAD. This review focuses on the developing field of lncRNAs and their emerging roles in linking DM and PAD. We review the studies investigating the role of lncRNAs in crucial cellular processes contributing to DM-PAD, including those in ECs, VSMCs, and MΦ. By examining the intricate molecular landscape governed by lncRNAs in these relevant cell types, we hope to shed light on the roles of lncRNAs in EC dysfunction, inflammatory responses, and vascular remodeling contributing to DM-PAD. Additionally, we provide an overview of the research approach and methodologies, from identifying disease-relevant lncRNAs to characterizing their molecular and cellular functions in the context of DM-PAD. We also discuss the potential of leveraging lncRNAs in the diagnosis and therapeutics for DM-PAD. Collectively, this review provides a summary of lncRNA-regulated cell functions contributing to DM-PAD and highlights the translational potential of leveraging lncRNA biology to tackle this increasingly prevalent and complex disease.
Collapse
Affiliation(s)
- Alonso Tapia
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, 91010, USA
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Xuejing Liu
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Naseeb Kaur Malhi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Dongqiang Yuan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Muxi Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Kevin W Southerland
- Division of Vascular and Endovascular Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yingjun Luo
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Zhen Bouman Chen
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, 91010, USA.
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
2
|
Tao Y, Li G, Yang Y, Wang Z, Wang S, Li X, Yu T, Fu X. Epigenomics in aortic dissection: From mechanism to therapeutics. Life Sci 2023; 335:122249. [PMID: 37940070 DOI: 10.1016/j.lfs.2023.122249] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Aortic dissection (AD) has an unfavorable prognosis. It requires early diagnosis, appropriate treatment strategies, and suspicion to recognize symptoms; thus, it is commonly described as an acute aortic emergency. The clinical manifestations of painless AD are complex and variable. However, there is no effective treatment to prevent the progression of AD. Therefore, study of the molecular targets and mechanisms of AD to enable prevention or early intervention is particularly important. Although multiple gene mutations have been proposed as linked to AD development, evidence that multiple epigenetic elements are strongly associated is steadily increasing. These epigenetic processes include DNA methylation, N6-methyladenosine, histone modification, non-histone posttranslational modification, and non-coding RNAs (ncRNAs). Among these processes, resveratrol targeting Sirtuin 1 (SIRT1), 5-azacytidine (5azaC) targeting DNA methyltransferase (DNMT), and vitamin C targeting ten-eleven translocation 2 (Tet2) showed unique advantages in improving AD and vascular dysfunction. Finally, we explored potential epigenetic drugs and diagnostic methods for AD, which might provide options for the future.
Collapse
Affiliation(s)
- Yan Tao
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Gang Li
- Department of Vascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong 250021, China; Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 324 Jingwu Road, Jinan, Shandong 250021, People's Republic of China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Shizhong Wang
- The department of Cardiology surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China.
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China.
| |
Collapse
|
3
|
Jin HJ, Wu ZH, Zhang BF, Deng J, Xu YD, Wang XY, Song ZY, Lu XW, Wang WT, Zheng XT. CDKN2B-AS1 mediates proliferation and migration of vascular smooth muscle cells induced by insulin. Cell Tissue Res 2023; 394:455-469. [PMID: 37907763 DOI: 10.1007/s00441-023-03836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to the intimal hyperplasia in type 2 diabetes mellitus (T2DM) patients after percutaneous coronary intervention. We aimed to investigate the role of lncRNA cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) in VSMC proliferation and migration, as well as the underlying mechanism. T2DM model mice with carotid balloon injury were used in vivo and mouse aortic vascular smooth muscle cells (MOVAS) stimulated by insulin were used in vitro to assess the role of CDKN2B-AS1 in VSMC proliferation and migration following vascular injury in T2DM state. To investigate cell viability and migration, MTT assay and Transwell assay were conducted. To elucidate the underlying molecular mechanisms, the methylation-specific polymerase chain reaction, RNA immunoprecipitation, RNA-pull down, co-immunoprecipitation, and chromatin immunoprecipitation were performed. In vivo, CDKN2B-AS1 was up-regulated in common carotid artery tissues. In vitro, insulin treatment increased CDKN2B-AS1 level, enhanced MOVAS cell proliferation and migration, while the promoting effect was reversed by CDKN2B-AS1 knockdown. CDKN2B-AS1 forms a complex with enhancer of zeste homolog 2 (EZH2) and DNA methyltransferase (cytosine-5) 1 (DNMT1) to regulate smooth muscle 22 alpha (SM22α) methylation levels. In insulin-stimulated cells, SM22α knockdown abrogated the inhibitory effect of CDKN2B-AS1 knockdown on cell viability and migration. Injection of lentivirus-sh-CDKN2B-AS1 relieved intimal hyperplasia in T2DM mice with carotid balloon injury. Up-regulation of CDKN2B-AS1 induced by insulin promotes cell proliferation and migration by targeting SM22α through forming a complex with EZH2 and DNMT1, thereby aggravating the intimal hyperplasia after vascular injury in T2DM.
Collapse
Affiliation(s)
- Hao-Jie Jin
- Department of Vascular Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325015, China
| | - Zi-Heng Wu
- Department of Vascular Surgery, School of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Bao-Fu Zhang
- Department of Vascular Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325015, China
| | - Jie Deng
- Department of Vascular Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325015, China
| | - Yin-Dong Xu
- Department of Vascular Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325015, China
| | - Xin-Yu Wang
- Institute of Ischemia-Reperfusion Injury, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zheng-Yang Song
- Institute of Ischemia-Reperfusion Injury, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xin-Wu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wan-Tie Wang
- Institute of Ischemia-Reperfusion Injury, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Xiang-Tao Zheng
- Department of Vascular Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325015, China.
| |
Collapse
|
4
|
Liu F, Wang Y, Huang X, Liu D, Ding W, Lai H, Wang C, Ji Q. LINC02015 modulates the cell proliferation and apoptosis of aortic vascular smooth muscle cells by transcriptional regulation and protein interaction network. Cell Death Discov 2023; 9:301. [PMID: 37596272 PMCID: PMC10439127 DOI: 10.1038/s41420-023-01601-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023] Open
Abstract
Long intergenic nonprotein coding RNA 2015 (LINC02015) is a long non-coding RNA that has been found elevated in various cell proliferation-related diseases. However, the functions and interactive mechanism of LINC02015 remain unknown. This study aimed to explore the role of LINC02015 in the cell proliferation and apoptosis of vascular smooth muscle cells (VSMCs) to explain the pathogenesis of aortic diseases. Ascending aorta samples and angiotensin-II (AT-II) treated primary human aortic VSMCs (HAVSMCs) were used to evaluate the LINC02015 expression. RNA sequencing, chromatin isolation by RNA purification sequencing, RNA pull-down, and mass spectrometry (MS) were applied to explore the potential interacting mechanisms. LINC02015 expression was found elevated in aortic dissection and AT-II-treated HAVSMCs. Cell proliferation and cell cycle were activated in HAVSMCs with LINC02015 knockdown. The cyclins family and caspase family were found to participate in regulating the cell cycle and apoptosis via the NF-κB signaling pathway. RXRA was discovered as a possible hub gene for LINC02015 transcriptional regulating networks. Besides, the protein interaction network of LINC02015 was revealed with candidate regulating molecules. It was concluded that the knockdown of LINC02015 could promote cell proliferation and inhibit the apoptosis of HAVSMCs through an RXRA-related transcriptional regulation network, which could provide a potential therapeutic target for aortic diseases.
Collapse
Affiliation(s)
- Fangyu Liu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Municipal Institute for Cardiovascular Diseases, Shanghai, 200032, China
| | - Yulin Wang
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xitong Huang
- Department of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Dingqian Liu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenjun Ding
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hao Lai
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chunsheng Wang
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Municipal Institute for Cardiovascular Diseases, Shanghai, 200032, China.
| | - Qiang Ji
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Xu Y, Cao L, Ji S, Shen W. LncRNA ANRIL-mediated miR-181b-5p/S1PR1 axis is involved in the progression of uremic cardiomyopathy through activating T cells. Sci Rep 2022; 12:18027. [PMID: 36302829 PMCID: PMC9613656 DOI: 10.1038/s41598-022-22955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/21/2022] [Indexed: 01/24/2023] Open
Abstract
This study aimed to explore the regulatory role of lncRNA ANRIL/miR-181b-5p/S1PR1 in UC. UC mouse model was established by 5/6th nephrectomy. We detected body weight, serum levels of renal function and inflammatory factors (biochemical analyzer/ELISA), and cardiac parameters (echocardiography). HE and Masson staining showed the pathological changes and fibrosis in myocardial and nephridial tissues. The expression of ANRIL, miR-181b-5p, and S1PR1 were detected by qRT-PCR or Western blot/immunofluorescence. T cells activation was analyzed by Flow cytometry. ANRIL/S1PR1 were up-regulated and miR-181b-5p was down-regulated in UC mice. ANRIL silencing up-regulated miR-181b-5p and down-regulated S1PR1 (a target of miR-181b-5p). ANRIL silencing increased the body weight, recovered renal function [decreased blood urea nitrogen (BUN) and serum creatinine (Scr)] and cardiac function [decreased left ventricular end-diastolic diameter (LVEDD), LV end-systolic diameter (LVESD), LV systolic anterior wall thickness (LVAWS), LV end-diastolic anterior wall thickness (LVAWD), myocardial performance index (MPI), and isovolumic relaxation time (IVRT); increased LV ejection fraction (LVEF), LVEF/MPI, fractional shortening (FS), and E- and A-waves (E/A)], inhibited the inflammation [decreased interferon (IFN)-γ, interleukin (IL)-2, IL-10, and tumor necrosis factor (TNF)-α], and relieved pathological injuries and fibrosis. ANRIL silencing also recovered the viability and inhibited the inflammation of activated T cells in vitro, and inhibited T cell activation in UC mice in vivo. In addition, miR-181b-5p overexpression exhibited same effects with ANRIL silencing in UC. ANRIL silencing inhibited T cell activation through regulating miR-181b-5p/S1PR1, contributing to the remission of UC.
Collapse
Affiliation(s)
- Ying Xu
- grid.417401.70000 0004 1798 6507Urology and Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Luxi Cao
- grid.417401.70000 0004 1798 6507Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Shuiyu Ji
- grid.417401.70000 0004 1798 6507Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Wei Shen
- grid.417401.70000 0004 1798 6507Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
6
|
Emerging Role of Non-Coding RNAs in Aortic Dissection. Biomolecules 2022; 12:biom12101336. [PMID: 36291545 PMCID: PMC9599213 DOI: 10.3390/biom12101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Aortic dissection (AD) is a fatal cardiovascular acute disease with high incidence and mortality, and it seriously threatens patients’ lives and health. The pathogenesis of AD mainly includes vascular inflammation, extracellular matrix degradation, and phenotypic conversion as well as apoptosis of vascular smooth muscle cells (VSMCs); however, its detailed mechanisms are still not fully elucidated. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are an emerging class of RNA molecules without protein-coding ability, and they play crucial roles in the progression of many diseases, including AD. A growing number of studies have shown that the dysregulation of ncRNAs contributes to the occurrence and development of AD by modulating the expression of specific target genes or the activity of related proteins. In addition, some ncRNAs exhibit great potential as promising biomarkers and therapeutic targets in AD treatment. In this review, we systematically summarize the recent findings on the underlying mechanism of ncRNA involved in AD regulation and highlight their clinical application as biomarkers and therapeutic targets in AD treatment. The information reviewed here will be of great benefit to the development of ncRNA-based therapeutic strategies for AD patients.
Collapse
|
7
|
Tracking an Elusive Killer: State of the Art of Molecular-Genetic Knowledge and Laboratory Role in Diagnosis and Risk Stratification of Thoracic Aortic Aneurysm and Dissection. Diagnostics (Basel) 2022; 12:diagnostics12081785. [PMID: 35892496 PMCID: PMC9329974 DOI: 10.3390/diagnostics12081785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023] Open
Abstract
The main challenge in diagnosing and managing thoracic aortic aneurysm and dissection (TAA/D) is represented by the early detection of a disease that is both deadly and “elusive”, as it generally grows asymptomatically prior to rupture, leading to death in the majority of cases. Gender differences exist in aortic dissection in terms of incidence and treatment options. Efforts have been made to identify biomarkers that may help in early diagnosis and in detecting those patients at a higher risk of developing life-threatening complications. As soon as the hereditability of the TAA/D was demonstrated, several genetic factors were found to be associated with both the syndromic and non-syndromic forms of the disease, and they currently play a role in patient diagnosis/prognosis and management-guidance purposes. Likewise, circulating biomarker could represent a valuable resource in assisting the diagnosis, and several studies have attempted to identify specific molecules that may help with risk stratification outside the emergency department. Even if promising, those data lack specificity/sensitivity, and, in most cases, they need more testing before entering the “clinical arena”. This review summarizes the state of the art of the laboratory in TAA/D diagnostics, with particular reference to the current and future role of molecular-genetic testing.
Collapse
|
8
|
Hu YY, Cheng XM, Wu N, Tao Y, Wang XN. Non-coding RNAs Regulate the Pathogenesis of Aortic Dissection. Front Cardiovasc Med 2022; 9:890607. [PMID: 35498004 PMCID: PMC9051029 DOI: 10.3389/fcvm.2022.890607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Aortic dissection (AD) is a fatal cardiovascular disease. It is caused by a rupture of the aortic intima or bleeding of the aortic wall that leads to the separation of different aortic wall layers. Patients with untreated AD have a mortality rate of 1–2% per hour after symptom onset. Therefore, effective biomarkers and therapeutic targets are needed to reduce AD-associated mortality. With the development of molecular technology, researchers have begun to explore the pathogenesis of AD at gene and protein levels, and have made some progress, but the pathogenesis of AD remains unclear. Non-coding RNAs, such as microRNAs, lncRNAs, and circRNAs, have been identified as basic regulators of gene expression and are found to play a key role in the pathogenesis of AD. Thus, providing a theoretical basis for developing these non-coding RNAs as clinical biomarkers and new therapeutic targets for AD in the future. Previous studies on the pathogenesis of AD focused on miRNAs, but recently, there have been an increasing number of studies that explore the role of lncRNAs, and circRNAs in AD. This review summarizes the existing knowledge on the roles of various non-coding RNAs in the pathogenesis of AD, discusses their potential role as clinical biomarkers and therapeutic targets, states the limitations of existing evidence, and recommends future avenues of research on the pathogenesis of AD.
Collapse
|
9
|
Zhang S, Zhao S, Han X, Zhang Y, Jin X, Yuan Y, Zhao X, Luo Y, Zhou Y, Gao Y, Yu H, Sun D, Xu W, Yan S, Gong Y, Li Y. Lnc-C2orf63-4-1 Confers VSMC Homeostasis and Prevents Aortic Dissection Formation via STAT3 Interaction. Front Cell Dev Biol 2021; 9:792051. [PMID: 34938738 PMCID: PMC8685433 DOI: 10.3389/fcell.2021.792051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
Emerging evidence indicates that long non-coding RNAs (lncRNAs) serve as a critical molecular regulator in various cardiovascular diseases. Here, we aimed to identify and functionally characterize lncRNAs as potential mediators in the development of thoracic aortic dissection (TAD). We identified that a novel lncRNA, lnc-C2orf63-4-1, was lowly expressed in aortic samples of TAD patients and angiotensin II (Ang II)-challenged vascular smooth muscle cells (VSMCs), which was correlated with clinically aortic expansion. Besides, overexpression of lnc-C2orf63-4-1 significantly attenuated Ang II-induced apoptosis, phenotypic switching of VSMCs and degradation of extracellular matrix both in vitro and in vivo. A customized transcription factor array identified that signal transducer and activator of transcription 3 (STAT3) functioned as the main downstream effector. Mechanistically, dual-luciferase report analysis and RNA antisense purification (RAP) assay indicated that lnc-C2orf63-4-1 directly decreased the expression of STAT3, which was depend on the reduced stabilization of STAT3 mRNA. Importantly, up-regulation of STAT3 efficiently reversed the protective role of lnc-C2orf63-4-1 against Ang II-mediated vascular remodeling. Therefore, lnc-C2orf63-4-1 negatively regulated the expression of STAT3 and prevented the development of aortic dissection. Our study revealed that lnc-C2orf63-4-1 played a critical role in vascular homeostasis, and its dysfunction exacerbated Ang II-induced pathological vascular remodeling.
Collapse
Affiliation(s)
- Song Zhang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shiqi Zhao
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xuejie Han
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yun Zhang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xuexin Jin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yue Yuan
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xinbo Zhao
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yingchun Luo
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yun Zhou
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yunlong Gao
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hui Yu
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Danghui Sun
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Wei Xu
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Sen Yan
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yongtai Gong
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yue Li
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China.,The Cell Transplantation Key Laboratory of National Health Commission, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Harbin Medical University, Ministry of Education, Harbin, China.,Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin, China.,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, China.,Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, China
| |
Collapse
|
10
|
LncRNA CDKN2B-AS1 in atherosclerosis: Friend or foe? Int J Cardiol 2021; 343:106. [PMID: 34506826 DOI: 10.1016/j.ijcard.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022]
|
11
|
Zhang H, Bian C, Tu S, Yin F, Guo P, Zhang J, Song X, Liu Q, Chen C, Han Y. Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in human aortic dissection. BMC Genomics 2021; 22:724. [PMID: 34620091 PMCID: PMC8495997 DOI: 10.1186/s12864-021-08012-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Background Many studies on long chain non-coding RNAs (lncRNAs) are published in recent years. But the roles of lncRNAs in aortic dissection (AD) are still unclear and should be further examined. The present work focused on determining the molecular mechanisms underlying lncRNAs regulation in aortic dissection on the basis of the lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) network. Methods This study collected the lncRNAs (GSE52093), mRNAs (GSE52093) and miRNAs (GSE92427) expression data within human tissue samples with aortic dissection group and normal group based on Gene Expression Omnibus (GEO) database. Results This study identified three differentially expressed lncRNAs (DELs), 19 differentially expressed miRNAs (DEmiRs) and 1046 differentially expressed mRNAs (DEGs) identified regarding aortic dissection. Furthermore, we constructed a lncRNA-miRNA-mRNA network through three lncRNAs (including two with up-regulation and one with down-regulation), five miRNAs (five with up-regulation), as well as 211 mRNAs (including 103 with up-regulation and 108 with down-regulation). Simultaneously, we conducted functional enrichment and pathway analyses on genes within the as-constructed ceRNA network. According to our PPI/ceRNA network and functional enrichment analysis results, four critical genes were found (E2F2, IGF1R, BDNF and PPP2R1B). In addition, E2F2 level was possibly modulated via lncRNA FAM87A-hsa-miR-31-5p/hsa-miR-7-5p or lncRNA C9orf106-hsa-miR-7-5p. The expression of IGF1R may be regulated by lncRNA FAM87A-hsa-miR-16-5p/hsa-miR-7-5p or lncRNA C9orf106-hsa-miR-7-5p. Conclusion In conclusion, the ceRNA interaction axis we identified is a potentially critical target for treating AD. Our results shed more lights on the possible pathogenic mechanism in AD using a lncRNA-associated ceRNA network.
Collapse
Affiliation(s)
- Hao Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China
| | - Ce Bian
- Department of Cardiovascular Surgery, The General Hospital of the PLA Rocket Force, Beijing Normal University, Beijing, China
| | - Simei Tu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China
| | - Fanxing Yin
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China
| | - Panpan Guo
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China
| | - Jian Zhang
- Department for Vascular Surgery, First Hospital of China Medical University, Shenyang, China
| | - Xiaotong Song
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China
| | - Qingyang Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China
| | - Chen Chen
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Yanshuo Han
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China.
| |
Collapse
|