1
|
Masarone D, Kittleson M, Pollesello P, Tedford RJ, Pacileo G. Use of Levosimendan in Patients with Pulmonary Hypertension: What is the Current Evidence? Drugs 2023; 83:195-201. [PMID: 36652192 DOI: 10.1007/s40265-022-01833-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 01/19/2023]
Abstract
Pulmonary hypertension, defined as an increase in mean arterial pressure > 20 mmHg, is a chronic and progressive condition with high mortality and morbidity. Drug therapy of patients with pulmonary hypertension is based on the distinctive pathophysiologic aspect that characterizes the different groups. However, recently, levosimendan, a calcium-sensitizing agent with inotropic, pulmonary vasodilator, and cardioprotective properties, has been shown to be an effective and safe therapeutic strategy for patients with pulmonary arterial hypertension (in addition to specific drugs) and pulmonary hypertension associated with left heart disease (as possible treatment). This review provides a comprehensive overview of the current evidence on the use of levosimendan in patients with pulmonary hypertension.
Collapse
Affiliation(s)
- Daniele Masarone
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital Naples, Via Leonardo Bianchi 1, 80100, Naples, Italy.
| | - Michelle Kittleson
- Department of Cardiology, Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Piero Pollesello
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | | - Giuseppe Pacileo
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital Naples, Via Leonardo Bianchi 1, 80100, Naples, Italy
| |
Collapse
|
2
|
Masarone D, Kittleson MM, Pollesello P, Marini M, Iacoviello M, Oliva F, Caiazzo A, Petraio A, Pacileo G. Use of Levosimendan in Patients with Advanced Heart Failure: An Update. J Clin Med 2022; 11:6408. [PMID: 36362634 PMCID: PMC9659135 DOI: 10.3390/jcm11216408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/04/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022] Open
Abstract
Levosimendan is an inodilator drug that, given its unique pharmacological actions and safety profile, represents a viable therapeutic option in patients with heart failure with reduced ejection fraction in the advanced stage of the disease (advHFrEF). Pulsed levosimendan infusion in patients with advHFrEF improves symptoms and clinical and hemodynamic status, prevents recurrent hospitalizations, and enables optimization of guidelines-directed medical therapy. Furthermore, considering its proprieties on right ventricular function and pulmonary circulation, levosimendan could be helpful for the prevention and treatment of the right ventricular dysfunction post-implanting a left ventricular assist device. However, to date, evidence on this issue is scarce and has yielded mixed results. Finally, preliminary experiences indicate that treatment with levosimendan at scheduled intervals may serve as a "bridge to transplant" strategy in patients with advHFrEF. In this review, we summarized the clinical pharmacology of levosimendan, the available evidence in the treatment of patients with advHFrEF, as well as a hypothesis for its use in patients with advanced heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Daniele Masarone
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital Naples, 80131 Naples, Italy
| | - Michelle M. Kittleson
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai, Los Angeles, CA 90048, USA
| | | | - Marco Marini
- Cardiology Division, Cardiovascular Department, Azienda Ospedaliero Universitaria Ospedali Riuniti di Ancona Umberto I-GM Lancisi-G Salesi, 60126 Ancona, Italy
| | - Massimo Iacoviello
- Intensive Cardiac Care Unit, De Gasperis Cardio Center, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Fabrizio Oliva
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Angelo Caiazzo
- Heart Transplant Unit, Department of Cardiac Surgery and Transplant, AORN dei Colli-Monaldi Hospital, 80131 Naples, Italy
| | - Andrea Petraio
- Heart Transplant Unit, Department of Cardiac Surgery and Transplant, AORN dei Colli-Monaldi Hospital, 80131 Naples, Italy
| | - Giuseppe Pacileo
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital Naples, 80131 Naples, Italy
| |
Collapse
|
3
|
Abstract
INTRODUCTION Acute kidney injury (AKI) is a clinically critical disease exhibiting an acute decline in renal function. The lack of an effective prevention and treatment method equates to a high morbidity and mortality rate. Consequently, over the past few decades, many therapeutic drugs with different mechanisms of action have been proposed and gradually applied to the clinic. The involved drug mechanisms evaluated have included hemodynamic modulation, anti-inflammatory, antioxidant, repair agents, metabolic derangement and mitochondrial function. AREAS COVERED The authors of this review provide the reader with a reference point for the latest advances in pharmacotherapy in acute kidney injury. This is achieved by the evaluation of the latest data collected on potential therapeutic drugs with different mechanisms of action, as well as their preclinical and clinical impact on AKI. EXPERT OPINION Presently, the vast majority of drugs are still in clinical development, which is a huge challenge. Nevertheless, in addition to current chemical drugs and gene therapy strategies, the advent of mesenchymal stem cell treatments and other emerging pharmaceutical strategies could enable clinicians to better treat AKI. Due to the nonselective distribution and low bioavailability of some of the latest pharmaceutical strategies, there is hope that these treatment options may provide more efficacious avenues.
Collapse
Affiliation(s)
- Yali Xu
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ping Zou
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaojing Cao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
4
|
Kong X, Hu X, Hua B, Fedele F, Farmakis D, Pollesello P. Levosimendan in Europe and China: An Appraisal of Evidence and Context. Eur Cardiol 2021; 16:e42. [PMID: 34815750 PMCID: PMC8591618 DOI: 10.15420/ecr.2021.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/27/2021] [Indexed: 11/29/2022] Open
Abstract
The calcium sensitiser levosimendan (SIMDAX; Orion Pharma) has been in clinical use for the management of acute heart failure and a range of related syndromes in many countries around the world for two decades. More recently, levosimendan has become available in China. The authors have examined the profile of levosimendan in clinical trials conducted inside and outside China and grouped the findings under six headings: effects on haemodynamics, effects on natriuretic peptides, effect on symptoms of heart failure, renal effects, effect on survival, and safety profile. Their conclusions are that under each of these headings there are reasonable grounds to expect that the effects and clinical benefits established in trials and with wider clinical use in Europe and elsewhere will accrue also to Chinese patients. Therefore, the authors are confident that global experience with levosimendan provides a reliable guide to its optimal use and likely therapeutic effects in patients in China.
Collapse
Affiliation(s)
- Xiangqing Kong
- First Affiliated Hospital, Nanjing Medical University Nanjing, China
| | - Xinqun Hu
- Second Xiangya Hospital, Zhongnan University Changsha, China
| | - Baotong Hua
- First Affiliated Hospital, Kunming Medical University Kunming, China
| | - Francesco Fedele
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, University 'La Sapienza' Rome, Italy
| | | | | |
Collapse
|
5
|
Burkhoff D, Rich S, Pollesello P, Papp Z. Levosimendan-induced venodilation is mediated by opening of potassium channels. ESC Heart Fail 2021; 8:4454-4464. [PMID: 34716759 PMCID: PMC8712848 DOI: 10.1002/ehf2.13669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/27/2021] [Indexed: 02/01/2023] Open
Abstract
Unique vascular responses adhere to the cardiovascular efficacy of the inodilator levosimendan. In particular, selective venodilation appears to explain its clinical benefit during pulmonary hypertension complicated by heart failure with preserved ejection fraction. Vasodilators increase vessel diameter in various parts of the vascular system to different degrees and thereby influence blood pressure, its distribution, and organ perfusion depending on their mechanisms of action. Levosimendan and its long‐lived active metabolite OR‐1896 mobilize a set of vasodilatory mechanisms, that is, the opening of the ATP‐sensitive K+ channels and other K+ channels on top of a highly selective inhibition of the phosphodiesterase III enzyme. A vessel‐specific combination of the above vasodilator mechanisms—in concert with cardiac effects and cardiovascular reflex regulations—illustrates the pharmacological profile of levosimendan in various cardiovascular disorders. While levosimendan has been known to be an inotrope, its properties as an activator of ATP‐sensitive K+ channels have gone largely ignored with respect to clinical applications. Here, we provide a summary of what is known about the ATP‐sensitive K+ channel properties in preclinical studies and now for the first time, its ATP‐sensitive K+ channel properties in a clinical trial.
Collapse
Affiliation(s)
| | - Stuart Rich
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Zoltán Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, 22 Móricz Zsigmond Str., Debrecen, H-4032, Hungary.,HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
6
|
Armandeh M, Bameri B, Baeeri M, Haghi-Aminjan H, Rahimifard M, Hassani S, Hooshangi Shayesteh MR, Khalid M, Samadi M, Hosseini R, Masoudi Fard M, Abdollahi M. The role of levosimendan in phosphine-induced cardiotoxicity: evaluation of electrocardiographic, echocardiographic, and biochemical parameters. Toxicol Mech Methods 2021; 31:631-643. [PMID: 34219611 DOI: 10.1080/15376516.2021.1950248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aluminum phosphide (AlP) causes serious poisoning in which severe cardiac suppression is the significant lethal consequence. According to evidence, levosimendan can exert outstanding cardiac support and protection in different pathological conditions. This study aimed to investigate the mechanisms by which levosimendan may alleviate cardiovascular toxicity due to AlP intoxication in the rat model. The groups included control group (normal saline only), sole levosimendan groups (12, 24, 48 μg/kg), AlP group (10 mg/kg), and AlP + levosimendan groups receiving 12, 24, 48 μg/kg levosimendan intraperitoneally 30 min after AlP administration. Electrocardiographic (ECG) parameters (QRS and PR duration and ST height), heart rate, and blood pressure were monitored for 180 minutes. Also, after 24 h of poisoning, echocardiography was applied to assess left ventricle function. Evaluation of the biochemical parameters in heart tissue, including mitochondrial complexes I, II, IV activity, ADP/ATP ratio, the rate of apoptosis, malondialdehyde (MDA), lactate, and troponin I levels, were done after 12 and 24 h. AlP-induced ECG abnormalities (PR duration and ST height), reduction in heart rate, blood pressure, cardiac output, ejection fraction, and stroke volume were improved by levosimendan administration. Besides, levosimendan significantly improved complex IV activity, the ADP/ATP ratio, apoptosis, MDA, lactate, and troponin I level following AlP-poisoning. Our results suggest that levosimendan might alleviate AlP-induced cardiotoxicity by modulating mitochondrial activity and improving cardiac function. However, the potential clinical use of levosimendan in this toxicity needs more investigations.
Collapse
Affiliation(s)
- Maryam Armandeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (P SRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Behnaz Bameri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (P SRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (P SRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahban Rahimifard
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (P SRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (P SRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Hooshangi Shayesteh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (P SRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Madiha Khalid
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (P SRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahedeh Samadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rohollah Hosseini
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Masoudi Fard
- Department of Surgery & Radiology, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (P SRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Demirgan S, Akyol O, Temel Z, Şengelen A, Pekmez M, Ulaş O, Sevdi MS, Erkalp K, Selcan A. Intranasal levosimendan prevents cognitive dysfunction and apoptotic response induced by repeated isoflurane exposure in newborn rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1553-1567. [PMID: 33772342 DOI: 10.1007/s00210-021-02077-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/03/2021] [Indexed: 12/25/2022]
Abstract
Anesthetic-induced toxicity in early life may lead to risk of cognitive decline at later ages. Notably, multiple exposures to isoflurane (ISO) cause acute apoptotic cell death in the developing brain and long-term cognitive dysfunction. This study is the first to investigate whether levosimendan (LVS), known for its protective myocardial properties, can prevent anesthesia-induced apoptotic response in brain cells and learning and memory impairment. Postnatal day (P)7 Wistar albino pups were randomly assigned to groups consisting of an equal number of males and females in this laboratory investigation. We treated rats with LVS (0.8 mg/kg/day) intranasally 30 min before each ISO exposure (1.5%, 3 h) at P7+9+11. We selected DMSO as the drug vehicle. Also, the control group at P7+9+11 received 50% O2 for 3 h instead of ISO. Neuroprotective activity of LVS against ISO-induced cognitive dysfunction was evaluated by Morris water maze. Expression of apoptotic-related proteins was detected in the whole brain using western blot. LVS pretreatment significantly prevented anesthesia-induced deficit in spatial learning (at P28-32) and memory (at P33, P60, and P90). No sex-dependent difference occurred on any day of the training and probe trial. Intranasal LVS was also found to significantly prevent the ISO-induced apoptosis by reducing Bax and cleaved caspase-3, and by increasing Bcl-2 and Bcl-xL. Our findings support pretreatment with intranasal LVS application as a simple strategy in daily clinical practice in pediatric anesthesia to protect infants and children from the risk of general anesthesia-induced cell death and cognitive declines.
Collapse
Affiliation(s)
- Serdar Demirgan
- T.C. Health Ministry, Anesthesiology and Reanimation Clinic, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, 34134, Vezneciler-Fatih/Istanbul, Turkey
| | - Onat Akyol
- T.C. Health Ministry, Anesthesiology and Reanimation Clinic, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Zeynep Temel
- Department of Neuroscience Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Aslıhan Şengelen
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, 34134, Vezneciler-Fatih/Istanbul, Turkey.
| | - Murat Pekmez
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Ozancan Ulaş
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, 34134, Vezneciler-Fatih/Istanbul, Turkey
| | - Mehmet Salih Sevdi
- T.C. Health Ministry, Anesthesiology and Reanimation Clinic, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Kerem Erkalp
- T.C. Health Ministry, Anesthesiology and Reanimation Clinic, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Ayşin Selcan
- T.C. Health Ministry, Anesthesiology and Reanimation Clinic, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
8
|
Heringlake M, Alvarez J, Bettex D, Bouchez S, Fruhwald S, Girardis M, Grossini E, Guarracino F, Herpain A, Toller W, Tritapepe L, Pollesello P. An update on levosimendan in acute cardiac care: applications and recommendations for optimal efficacy and safety. Expert Rev Cardiovasc Ther 2021; 19:325-335. [PMID: 33739204 DOI: 10.1080/14779072.2021.1905520] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: In the 20 years since its introduction to the palette of intravenous hemodynamic therapies, the inodilator levosimendan has established itself as a valuable asset for the management of acute decompensated heart failure. Its pharmacology is notable for delivering inotropy via calcium sensitization without an increase in myocardial oxygen consumption.Areas covered: Experience with levosimendan has led to its applications expanding into perioperative hemodynamic support and various critical care settings, as well as an array of situations associated with acutely decompensated heart failure, such as right ventricular failure, cardiogenic shock with multi-organ dysfunction, and cardio-renal syndrome. Evidence suggests that levosimendan may be preferable to milrinone for patients in cardiogenic shock after cardiac surgery or for weaning from extracorporeal life support and may be superior to dobutamine in terms of short-term survival, especially in patients on beta-blockers. Positive effects on kidney function have been noted, further differentiating levosimendan from catecholamines and phosphodiesterase inhibitors.Expert opinion:Levosimendan can be a valuable resource in the treatment of acute cardiac dysfunction, especially in the presence of beta-blockers or ischemic cardiomyopathy. When attention is given to avoiding or correcting hypovolemia and hypokalemia, an early use of the drug in the treatment algorithm is preferred.
Collapse
Affiliation(s)
- Matthias Heringlake
- Klinik Für Anästhesie Und Intensivmedizin, Herz- Und Diabeteszentrum Mecklenburg Vorpommern, Karlsburg, Germany
| | - Julian Alvarez
- Department of Anesthesia and Surgical ICU, University of Santiago De Compostela, Santiago De Compostela, Spain
| | - Dominique Bettex
- Institute for Anaesthesiology, University Zürich and University Hospital Zürich, Zürich, Switzerland
| | - Stefaan Bouchez
- Department of Anesthesiology, University Hospital, Ghent, Belgium
| | - Sonja Fruhwald
- Department of Anaesthesiology and Intensive Care Medicine, Division of Anaesthesiology for Cardiovascular Surgery and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Massimo Girardis
- Struttura Complessa Di Anestesia 1, Policlinico Di Modena, Modena, Italy
| | - Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, Università Piemonte Orientale, Novara, Italy
| | - Fabio Guarracino
- Dipartimento Di Anestesia E Rianimazione, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Antoine Herpain
- Department of Intensive Care, Erasme University Hospital, Université Libre De Bruxelles, Brussels, Belgium
| | - Wolfgang Toller
- Department of Anaesthesiology and Intensive Care Medicine, Division of Anaesthesiology for Cardiovascular Surgery and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Luigi Tritapepe
- UOC Anestesia E Rianimazione, Azienda Ospedaliera San Camillo-Forlanini, Rome, Italy; and
| | | |
Collapse
|
9
|
|
10
|
Potential of the Cardiovascular Drug Levosimendan in the Management of Amyotrophic Lateral Sclerosis: An Overview of a Working Hypothesis. J Cardiovasc Pharmacol 2020; 74:389-399. [PMID: 31730560 DOI: 10.1097/fjc.0000000000000728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Levosimendan is a calcium sensitizer that promotes myocyte contractility through its calcium-dependent interaction with cardiac troponin C. Administered intravenously, it has been used for nearly 2 decades to treat acute and advanced heart failure and to support the heart function in various therapy settings characterized by low cardiac output. Effects of levosimendan on noncardiac muscle suggest a possible new application in the treatment of people with amyotrophic lateral sclerosis (ALS), a neuromuscular disorder characterized by progressive weakness, and eventual paralysis. Previous attempts to improve the muscle response in ALS patients and thereby maintain respiratory function and delay progression of disability have produced some mixed results. Continuing this line of investigation, levosimendan has been shown to enhance in vitro the contractility of the diaphragm muscle fibers of non-ALS patients and to improve in vivo diaphragm neuromuscular efficiency in healthy subjects. Possible positive effects on respiratory function in people with ALS were seen in an exploratory phase 2 study, and a phase 3 clinical trial is now underway to evaluate the potential benefit of an oral form of levosimendan on both respiratory and overall functions in patients with ALS. Here, we will review the various known pharmacologic effects of levosimendan, considering their relevance to people living with ALS.
Collapse
|
11
|
Poveda-Jaramillo R. Heart Dysfunction in Sepsis. J Cardiothorac Vasc Anesth 2020; 35:298-309. [PMID: 32807603 DOI: 10.1053/j.jvca.2020.07.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 06/11/2020] [Accepted: 07/05/2020] [Indexed: 12/24/2022]
Abstract
Cardiac involvement during sepsis frequently occurs. A series of molecules induces a set of changes at the cellular level that result in the malfunction of the myocardium. The understanding of these molecular alterations has simultaneously promoted the implementation of diagnostic strategies that are much more precise and allowed the advance of the therapeutics. The heart is a vital organ for survival. Its well-being ensures the adequate supply of essential elements for organs and tissues.
Collapse
|
12
|
Papp Z, Agostoni P, Alvarez J, Bettex D, Bouchez S, Brito D, Černý V, Comin-Colet J, Crespo-Leiro MG, Delgado JF, Édes I, Eremenko AA, Farmakis D, Fedele F, Fonseca C, Fruhwald S, Girardis M, Guarracino F, Harjola VP, Heringlake M, Herpain A, Heunks LM, Husebye T, Ivancan V, Karason K, Kaul S, Kivikko M, Kubica J, Masip J, Matskeplishvili S, Mebazaa A, Nieminen MS, Oliva F, Papp JG, Parissis J, Parkhomenko A, Põder P, Pölzl G, Reinecke A, Ricksten SE, Riha H, Rudiger A, Sarapohja T, Schwinger RH, Toller W, Tritapepe L, Tschöpe C, Wikström G, von Lewinski D, Vrtovec B, Pollesello P. Levosimendan Efficacy and Safety: 20 years of SIMDAX in Clinical Use. Card Fail Rev 2020; 6:e19. [PMID: 32714567 PMCID: PMC7374352 DOI: 10.15420/cfr.2020.03] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Levosimendan was first approved for clinic use in 2000, when authorisation was granted by Swedish regulatory authorities for the haemodynamic stabilisation of patients with acutely decompensated chronic heart failure. In the ensuing 20 years, this distinctive inodilator, which enhances cardiac contractility through calcium sensitisation and promotes vasodilatation through the opening of adenosine triphosphate-dependent potassium channels on vascular smooth muscle cells, has been approved in more than 60 jurisdictions, including most of the countries of the European Union and Latin America. Areas of clinical application have expanded considerably and now include cardiogenic shock, takotsubo cardiomyopathy, advanced heart failure, right ventricular failure and pulmonary hypertension, cardiac surgery, critical care and emergency medicine. Levosimendan is currently in active clinical evaluation in the US. Levosimendan in IV formulation is being used as a research tool in the exploration of a wide range of cardiac and non-cardiac disease states. A levosimendan oral form is at present under evaluation in the management of amyotrophic lateral sclerosis. To mark the 20 years since the advent of levosimendan in clinical use, 51 experts from 23 European countries (Austria, Belgium, Croatia, Cyprus, Czech Republic, Estonia, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, Russia, Slovenia, Spain, Sweden, Switzerland, UK and Ukraine) contributed to this essay, which evaluates one of the relatively few drugs to have been successfully introduced into the acute heart failure arena in recent times and charts a possible development trajectory for the next 20 years.
Collapse
Affiliation(s)
- Zoltán Papp
- Department of Cardiology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| | - Piergiuseppe Agostoni
- Department of Clinical Sciences and Community Health, Centro Cardiologico Monzino, IRCCS Milan, Italy
| | - Julian Alvarez
- Department of Surgery, School of Medicine, University of Santiago de Compostela Santiago de Compostela, Spain
| | - Dominique Bettex
- Institute of Anaesthesiology, University Hospital of Zurich Zurich, Switzerland
| | - Stefan Bouchez
- Department of Anaesthesiology, University Hospital Ghent, Belgium
| | - Dulce Brito
- Cardiology Department, Centro Hospitalar Universitario Lisboa Norte, CCUI, Faculdade de Medicina, Universidade de Lisboa Lisbon, Portugal
| | - Vladimir Černý
- Department of Anaesthesiology, Perioperative Medicine and Intensive Care, Masaryk Hospital, J.E. Purkinje University Usti nad Labem, Czech Republic
| | - Josep Comin-Colet
- Heart Diseases Institute, Hospital Universitari de Bellvitge Barcelona, Spain
| | - Marisa G Crespo-Leiro
- Complexo Hospitalario Universitario A Coruña (CHUAC), CIBERCV, Instituto de Investigacion Biomedica A Coruña (INIBIC), Universidad de a Coruña (UDC) La Coruña, Spain
| | - Juan F Delgado
- Heart Failure and Transplant Program, Cardiology Department, University Hospital 12 Octubre Madrid, Spain
| | - Istvan Édes
- Department of Cardiology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| | - Alexander A Eremenko
- Department of Cardiac Intensive Care, Petrovskii National Research Centre of Surgery, Sechenov University Moscow, Russia
| | - Dimitrios Farmakis
- Department of Cardiology, Medical School, University of Cyprus Nicosia, Cyprus
| | - Francesco Fedele
- Department of Cardiovascular, Respiratory, Nephrology, Anaesthesiology and Geriatric Sciences, La Sapienza University of Rome Rome, Italy
| | - Cândida Fonseca
- Heart Failure Clinic, São Francisco Xavier Hospital, CHLO Lisbon, Portugal
| | - Sonja Fruhwald
- Department of Anaesthesiology and Intensive Care Medicine, Division of Anaesthesiology for Cardiovascular Surgery and Intensive Care Medicine, Medical University of Graz Graz, Austria
| | - Massimo Girardis
- Struttura Complessa di Anestesia 1, Policlinico di Modena Modena, Italy
| | - Fabio Guarracino
- Dipartimento di Anestesia e Terapie Intensive, Azienda Ospedaliero-Universitaria Pisana Pisa, Italy
| | - Veli-Pekka Harjola
- Emergency Medicine, Meilahti Central University Hospital, University of Helsinki Helsinki, Finland
| | - Matthias Heringlake
- Department of Anaesthesiology and Intensive Care Medicine, University of Lübeck Lübeck, Germany
| | - Antoine Herpain
- Department of Intensive Care, Hôpital Erasme Brussels, Belgium
| | - Leo Ma Heunks
- Department of Intensive Care Medicine, Amsterdam UMC Amsterdam, the Netherlands
| | - Tryggve Husebye
- Department of Cardiology, Oslo University Hospital Ullevaal Oslo, Norway
| | - Višnja Ivancan
- Department of Anaesthesiology, Reanimatology and Intensive Care, University Hospital Centre Zagreb, Croatia
| | - Kristjan Karason
- Departments of Cardiology and Transplantation, Sahlgrenska University Hospital Gothenburg, Sweden
| | - Sundeep Kaul
- Intensive Care Unit, National Health Service Leeds, UK
| | - Matti Kivikko
- Global Medical Affairs, R&D, Orion Pharma Espoo, Finland
| | - Janek Kubica
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University Torun, Poland
| | - Josep Masip
- Intensive Care Department, Consorci Sanitari Integral, University of Barcelona Barcelona, Spain
| | | | - Alexandre Mebazaa
- Department of Anaesthesiology and Critical Care Medicine, AP-HP, Saint Louis and Lariboisière University Hospitals Paris, France
| | | | - Fabrizio Oliva
- Department of Cardiology, Niguarda Ca'Granda Hospital Milan, Italy
| | - Julius-Gyula Papp
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, University of Szeged Szeged, Hungary
| | - John Parissis
- Second Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens Athens, Greece
| | - Alexander Parkhomenko
- Emergency Cardiology Department, National Scientific Centre MD Strazhesko Institute of Cardiology Kiev, Ukraine
| | - Pentti Põder
- Department of Cardiology, North Estonia Medical Centre Tallinn, Estonia
| | - Gerhard Pölzl
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck Innsbruck, Austria
| | - Alexander Reinecke
- Klinik für Innere Medizin III, Kardiologie, Universitätsklinikum Schleswig-Holstein Kiel, Germany
| | - Sven-Erik Ricksten
- Department of Anaesthesiology and Intensive Care, Sahlgrenska University Hospital Gothenburg, Sweden
| | - Hynek Riha
- Cardiothoracic Anaesthesiology and Intensive Care, Department of Anaesthesiology and Intensive Care Medicine, Institute for Clinical and Experimental Medicine Prague, Czech Republic
| | - Alain Rudiger
- Department of Medicine, Spittal Limmattal Schlieren, Switzerland
| | | | - Robert Hg Schwinger
- Medizinische Klinik II, Klinikum Weiden, Teaching Hospital of University of Regensburg Weiden, Germany
| | - Wolfgang Toller
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz Graz, Austria
| | - Luigi Tritapepe
- Anaesthesia and Intensive Care Division, San Camillo-Forlanini Hospital Rome, Italy
| | - Carsten Tschöpe
- Department of Cardiology, Campus Virchow Klinikum, Charité - University Medicine Berlin Berlin, Germany
| | - Gerhard Wikström
- Institute of Medical Sciences, Uppsala University Uppsala, Sweden
| | - Dirk von Lewinski
- Department of Cardiology, Myokardiale Energetik und Metabolismus Research Unit, Medical University of Graz Graz, Austria
| | - Bojan Vrtovec
- Advanced Heart Failure and Transplantation Centre, Department of Cardiology, University Clinical Centre Ljubljana, Slovenia
| | | |
Collapse
|
13
|
Papp Z, Agostoni P, Alvarez J, Bettex D, Bouchez S, Brito D, Černý V, Comin-Colet J, Crespo-Leiro MG, Delgado JF, Édes I, Eremenko AA, Farmakis D, Fedele F, Fonseca C, Fruhwald S, Girardis M, Guarracino F, Harjola VP, Heringlake M, Herpain A, Heunks LMA, Husebye T, Ivancan V, Karason K, Kaul S, Kivikko M, Kubica J, Masip J, Matskeplishvili S, Mebazaa A, Nieminen MS, Oliva F, Papp JG, Parissis J, Parkhomenko A, Põder P, Pölzl G, Reinecke A, Ricksten SE, Riha H, Rudiger A, Sarapohja T, Schwinger RHG, Toller W, Tritapepe L, Tschöpe C, Wikström G, von Lewinski D, Vrtovec B, Pollesello P. Levosimendan Efficacy and Safety: 20 Years of SIMDAX in Clinical Use. J Cardiovasc Pharmacol 2020; 76:4-22. [PMID: 32639325 PMCID: PMC7340234 DOI: 10.1097/fjc.0000000000000859] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Levosimendan was first approved for clinical use in 2000, when authorization was granted by Swedish regulatory authorities for the hemodynamic stabilization of patients with acutely decompensated chronic heart failure (HF). In the ensuing 20 years, this distinctive inodilator, which enhances cardiac contractility through calcium sensitization and promotes vasodilatation through the opening of adenosine triphosphate-dependent potassium channels on vascular smooth muscle cells, has been approved in more than 60 jurisdictions, including most of the countries of the European Union and Latin America. Areas of clinical application have expanded considerably and now include cardiogenic shock, takotsubo cardiomyopathy, advanced HF, right ventricular failure, pulmonary hypertension, cardiac surgery, critical care, and emergency medicine. Levosimendan is currently in active clinical evaluation in the United States. Levosimendan in IV formulation is being used as a research tool in the exploration of a wide range of cardiac and noncardiac disease states. A levosimendan oral form is at present under evaluation in the management of amyotrophic lateral sclerosis. To mark the 20 years since the advent of levosimendan in clinical use, 51 experts from 23 European countries (Austria, Belgium, Croatia, Cyprus, Czech Republic, Estonia, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, Russia, Slovenia, Spain, Sweden, Switzerland, the United Kingdom, and Ukraine) contributed to this essay, which evaluates one of the relatively few drugs to have been successfully introduced into the acute HF arena in recent times and charts a possible development trajectory for the next 20 years.
Collapse
Affiliation(s)
- Zoltán Papp
- Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Piergiuseppe Agostoni
- Department of Clinical Sciences and Community Health, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Julian Alvarez
- Department of Surgery, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Dominique Bettex
- Institute of Anaesthesiology, University Hospital of Zurich, Zurich, Switzerland
| | - Stefan Bouchez
- Department of Anaesthesiology, University Hospital, Ghent, Belgium
| | - Dulce Brito
- Cardiology Department, Centro Hospitalar Universitario Lisboa Norte, CCUI, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Vladimir Černý
- Department of Anaesthesiology, Perioperative Medicine and Intensive Care, Masaryk Hospital, J.E. Purkinje University, Usti nad Labem, Czech Republic
| | - Josep Comin-Colet
- Heart Diseases Institute, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Marisa G. Crespo-Leiro
- Complexo Hospitalario Universitario A Coruña (CHUAC), CIBERCV, Instituto de Investigacion Biomedica A Coruña (INIBIC), Universidad de a Coruña (UDC), La Coruña, Spain
| | - Juan F. Delgado
- Heart Failure and Transplant Program, Cardiology Department, University Hospital 12 Octubre, Madrid, Spain
| | - István Édes
- Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Alexander A. Eremenko
- Department of Cardiac Intensive Care, Petrovskii National Research Centre of Surgery, Sechenov University, Moscow, Russia
| | - Dimitrios Farmakis
- Department of Cardiology, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Francesco Fedele
- Department of Cardiovascular, Respiratory, Nephrology, Anaesthesiology and Geriatric Sciences, La Sapienza University of Rome, Rome, Italy
| | - Cândida Fonseca
- Heart Failure Clinic, São Francisco Xavier Hospital, CHLO, Lisbon, Portugal
| | - Sonja Fruhwald
- Department of Anaesthesiology and Intensive Care Medicine, Division of Anaesthesiology for Cardiovascular Surgery and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Massimo Girardis
- Struttura Complessa di Anestesia 1, Policlinico di Modena, Modena, Italy
| | - Fabio Guarracino
- Dipartimento di Anestesia e Terapie Intensive, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Veli-Pekka Harjola
- Emergency Medicine, Meilahti Central University Hospital, University of Helsinki, Helsinki, Finland
| | - Matthias Heringlake
- Department of Anaesthesiology and Intensive Care Medicine, University of Lübeck, Lübeck, Germany
| | - Antoine Herpain
- Department of Intensive Care, Hôpital Erasme, Brussels, Belgium
| | - Leo M. A. Heunks
- Department of Intensive Care Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Tryggve Husebye
- Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway
| | - Višnja Ivancan
- Department of Anaesthesiology, Reanimatology and Intensive Care, University Hospital Centre, Zagreb, Croatia
| | - Kristjan Karason
- Departments of Cardiology and Transplantation, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sundeep Kaul
- Intensive Care Unit, National Health Service, Leeds, United Kingdom
| | - Matti Kivikko
- Global Medical Affairs, R&D, Orion Pharma, Espoo, Finland
| | - Janek Kubica
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Torun, Poland
| | - Josep Masip
- Intensive Care Department, Consorci Sanitari Integral, University of Barcelona, Barcelona, Spain
| | | | - Alexandre Mebazaa
- Department of Anaesthesiology and Critical Care Medicine, AP-HP, Saint Louis and Lariboisière University Hospitals, Paris, France
| | | | - Fabrizio Oliva
- Department of Cardiology, Niguarda Ca'Granda Hospital, Milan, Italy
| | - Julius G. Papp
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary
| | - John Parissis
- Second Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexander Parkhomenko
- Emergency Cardiology Department, National Scientific Centre MD Strazhesko Institute of Cardiology, Kiev, Ukraine
| | - Pentti Põder
- Department of Cardiology, North Estonia Medical Centre, Tallinn, Estonia
| | - Gerhard Pölzl
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Reinecke
- Klinik für Innere Medizin III, Kardiologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Sven-Erik Ricksten
- Department of Anaesthesiology and Intensive Care, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hynek Riha
- Department of Anaesthesiology and Intensive Care Medicine, Cardiothoracic Anaesthesiology and Intensive Care, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alain Rudiger
- Department of Medicine, Spittal Limmattal, Schlieren, Switzerland
| | | | - Robert H. G. Schwinger
- Medizinische Klinik II, Klinikum Weiden, Teaching Hospital of University of Regensburg, Weiden, Germany
| | - Wolfgang Toller
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Luigi Tritapepe
- Anaesthesia and Intensive Care Division, San Camillo-Forlanini Hospital, Rome, Italy
| | - Carsten Tschöpe
- Department of Cardiology, Campus Virchow Klinikum, Charité—University Medicine Berlin, Berlin, Germany
| | - Gerhard Wikström
- Institute of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Dirk von Lewinski
- Department of Cardiology, Myokardiale Energetik und Metabolismus Research Unit, Medical University of Graz, Graz, Austria
| | - Bojan Vrtovec
- Department of Cardiology, Advanced Heart Failure and Transplantation Centre, University Clinical Centre, Ljubljana, Slovenia
| | - Piero Pollesello
- Critical Care Proprietary Products, Orion Pharma, Espoo, Finland.
| |
Collapse
|
14
|
Gameiro J, Fonseca JA, Outerelo C, Lopes JA. Acute Kidney Injury: From Diagnosis to Prevention and Treatment Strategies. J Clin Med 2020; 9:E1704. [PMID: 32498340 PMCID: PMC7357116 DOI: 10.3390/jcm9061704] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury (AKI) is characterized by an acute decrease in renal function that can be multifactorial in its origin and is associated with complex pathophysiological mechanisms. In the short term, AKI is associated with an increased length of hospital stay, health care costs, and in-hospital mortality, and its impact extends into the long term, with AKI being associated with increased risks of cardiovascular events, progression to chronic kidney disease (CKD), and long-term mortality. Given the impact of the prognosis of AKI, it is important to recognize at-risk patients and improve preventive, diagnostic, and therapy strategies. The authors provide a comprehensive review on available diagnostic, preventive, and treatment strategies for AKI.
Collapse
Affiliation(s)
- Joana Gameiro
- Department of Medicine, Division of Nephrology and Renal Transplantation, Centro Hospitalar Lisboa Norte, EPE, Av. Prof. Egas Moniz, 1649-035 Lisboa, Portugal
| | - José Agapito Fonseca
- Department of Medicine, Division of Nephrology and Renal Transplantation, Centro Hospitalar Lisboa Norte, EPE, Av. Prof. Egas Moniz, 1649-035 Lisboa, Portugal
| | - Cristina Outerelo
- Department of Medicine, Division of Nephrology and Renal Transplantation, Centro Hospitalar Lisboa Norte, EPE, Av. Prof. Egas Moniz, 1649-035 Lisboa, Portugal
| | - José António Lopes
- Department of Medicine, Division of Nephrology and Renal Transplantation, Centro Hospitalar Lisboa Norte, EPE, Av. Prof. Egas Moniz, 1649-035 Lisboa, Portugal
| |
Collapse
|
15
|
Abstract
The care of patients with acute kidney injury (AKI) has been limited due to the lack of effective therapeutics that can either prevent AKI during high-risk situations or treat AKI once established. A revolution in the scientific understanding of the pathogenesis of AKI has led to the identification of potential therapeutic targets. These targets include pathways involved in inflammation, cellular repair and fibrosis, cellular metabolism and mitochondrial function, oxidative stress, apoptosis, and hemodynamics and oxygen delivery. Many compounds are entering early-phase clinical trials. In addition, efforts to better describe sub-categories of AKI (through endo-phenotyping) hold promise to target therapies more effectively based upon pathways that are operative in the pathogenesis. These advances bring optimism that the care of patients with AKI will be transformed with the hope of better outcomes.
Collapse
Affiliation(s)
- Matthew Hulse
- Divison of Critical Care, Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Mitchell H Rosner
- Division of Nephrology, Department of Medicine, University of Virginia Health System, 135 Hospital Drive, Suite 1031, Charlottesville, VA, 22908, USA.
| |
Collapse
|
16
|
Rodríguez-González R, Pollesello P, Baluja A, Álvarez J. Effects of Levosimendan on Inflammation and Oxidative Stress Pathways in a Lipopolysaccharide-Stimulated Human Endothelial Cell Model. Biol Res Nurs 2019; 21:466-472. [PMID: 31272201 DOI: 10.1177/1099800419861694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Levosimendan is a myocardial Ca2+ sensitizer and opener of ATP-dependent potassium channels with inotropic, vasodilating, and cardioprotective properties. It was originally developed for the treatment of acute decompensated heart failure, but its complex mechanism of action means that it could also play a role in organ protection in response to infection. Using an in vitro approach, we explored whether levosimendan administration influenced cell responses to lipopolysaccharide (LPS). Primary human umbilical vein endothelial cells were stimulated with 1 µg/ml LPS from Escherichia coli (E. coli). Cells were treated with levosimendan at 0, 0.1, 1, or 10 µM 3 hr later. Samples were taken 24 hr after treatment to measure cell necrosis, apoptosis, pro-inflammatory mediators (interleukin 6 [IL-6] and toll-like receptor 4 [TLR4]), and oxidative stress (total reactive oxygen species/reactive nitrogen species [ROS/RNS]). Levosimendan at 1 and 10 µM protected against LPS-induced endothelial cell death and reduced TLR4 expression (p < .05). All doses reduced levels of IL-6 and ROS/RNS (p < .05). Findings suggest that levosimendan may exert protective effects against endothelial cell death in this model via attenuation of inflammation and oxidative stress pathways. Future studies might explore the potential beneficial role of levosimendan in modulating molecular mechanisms triggered by infections.
Collapse
Affiliation(s)
- Raquel Rodríguez-González
- 1 Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, School of Nursing, University of Santiago de Compostela, Santiago de Compostela, Spain.,2 Health Research Institute of Santiago de Compostela (IDIS), Galician Health System, Clinical University Hospital, Santiago de Compostela, Spain
| | | | - Aurora Baluja
- 2 Health Research Institute of Santiago de Compostela (IDIS), Galician Health System, Clinical University Hospital, Santiago de Compostela, Spain.,4 Department of Surgery, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Julián Álvarez
- 2 Health Research Institute of Santiago de Compostela (IDIS), Galician Health System, Clinical University Hospital, Santiago de Compostela, Spain.,4 Department of Surgery, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
17
|
Bouchez S, Fedele F, Giannakoulas G, Gustafsson F, Harjola VP, Karason K, Kivikko M, von Lewinski D, Oliva F, Papp Z, Parissis J, Pollesello P, Pölzl G, Tschöpe C. Levosimendan in Acute and Advanced Heart Failure: an Expert Perspective on Posology and Therapeutic Application. Cardiovasc Drugs Ther 2019; 32:617-624. [PMID: 30402660 PMCID: PMC6267661 DOI: 10.1007/s10557-018-6838-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Levosimendan, a calcium sensitizer and potassium channel-opener, is widely appreciated by many specialist heart failure practitioners for its effects on systemic and pulmonary hemodynamics and for the relief of symptoms of acute heart failure. The drug’s impact on mortality in large randomized controlled trials has been inconsistent or inconclusive but, in contrast to conventional inotropes, there have been no indications of worsened survival and some signals of improved heart failure-related quality of life. For this reason, levosimendan has been proposed as a safer inodilator option than traditional agents in settings, such as advanced heart failure. Positive effects of levosimendan on renal function have also been described. At the HEART FAILURE 2018 congress of the Heart Failure Association of the European Society of Cardiology, safe and effective use levosimendan in acute and advanced heart failure was examined in a series of expert tutorials. The proceedings of those tutorials are summarized in this review, with special reference to advanced heart failure and heart failure with concomitant renal dysfunction. Meta-analysis of clinical trials data is supportive of a renal-protective effect of levosimendan, while physiological observations suggest that this effect is exerted at least in part via organ-specific effects that may include selective vasodilation of glomerular afferent arterioles and increased renal blood flow, with no compromise of renal oxygenation. These lines of evidence require further investigation and their clinical significance needs to be evaluated in specifically designed prospective trials.
Collapse
Affiliation(s)
- S Bouchez
- Department of Anesthesiology, University Hospital, Ghent, Belgium
| | - F Fedele
- Policlinico "Umberto I," University "La Sapienza", Rome, Italy
| | - G Giannakoulas
- Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - V-P Harjola
- Cardiology Clinic, HUS Meilahti Hospital, Helsinki, Finland
| | - K Karason
- Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - M Kivikko
- Critical Care Proprietary Products Division, Orion Pharma, P.O. Box 65, FIN-02101, Espoo, Finland
- Department of Cardiology S7, Jorvi Hospital, Espoo, Finland
| | - D von Lewinski
- Myokardiale Energetik und Metabolismus Research Unit, Medical University, Graz, Austria
| | - F Oliva
- Niguarda Ca'Granda Hospital, Milan, Italy
| | - Z Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - J Parissis
- Second University Cardiology Clinic, Attiko Teaching Hospital, Athens, Greece
| | - Piero Pollesello
- Critical Care Proprietary Products Division, Orion Pharma, P.O. Box 65, FIN-02101, Espoo, Finland.
| | - G Pölzl
- Universitätsklinik für Innere Medizin III Innsbruck, Medizinsche Universität, Innsbruck, Austria
| | - C Tschöpe
- Berlin Center for Regenerative Therapies (BCRT), Campus Virchow Klinikum (CVK), Berlin, Germany
| |
Collapse
|
18
|
Faisal SA, Apatov DA, Ramakrishna H, Weiner MM. Levosimendan in Cardiac Surgery: Evaluating the Evidence. J Cardiothorac Vasc Anesth 2019; 33:1146-1158. [DOI: 10.1053/j.jvca.2018.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Indexed: 11/11/2022]
|
19
|
Prondzinsky R, Hirsch K, Wachsmuth L, Buerke M, Unverzagt S. Vasopressors for acute myocardial infarction complicated by cardiogenic shock. Med Klin Intensivmed Notfmed 2017; 114:21-29. [DOI: 10.1007/s00063-017-0378-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/03/2017] [Accepted: 07/31/2017] [Indexed: 11/30/2022]
|
20
|
Unverzagt S, Hirsch K, Prondzinsky R. Vasopressors and predominantly vasoconstrictive drugs for acute myocardial infarction complicated by cardiogenic shock. Hippokratia 2016. [DOI: 10.1002/14651858.cd011582.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Susanne Unverzagt
- Martin Luther University Halle-Wittenberg; Institute of Medical Epidemiology, Biostatistics and Informatics; Magdeburge Straße 8 Halle/Saale Germany 06097
| | - Katharina Hirsch
- Martin Luther University Halle-Wittenberg; Institute of Medical Epidemiology, Biostatistics and Informatics; Magdeburge Straße 8 Halle/Saale Germany 06097
| | - Roland Prondzinsky
- Carl von Basedow Klinikum Merseburg; Cardiology/Intensive Care Medicine; Weisse Mauer 42 Merseburg Germany 06217
| |
Collapse
|
21
|
Abstract
Acute heart failure (AHF) emerges as a major and growing epidemiological concern with high morbidity and mortality rates. Current therapies in patients with acute heart failure rely on different strategies. Patients with hypotension, hypoperfusion, or shock require inotropic support, whereas diuretics and vasodilators are recommended in patients with systemic or pulmonary congestion. Traditionally inotropic agents, referred to as Ca2+ mobilizers load the cardiomyocyte with Ca2+ and thereby increase oxygen consumption and risk for arrhythmias. These limitations of traditional inotropes may be avoided by sarcomere targeted agents. Direct activation of the cardiac sarcomere may be achieved by either sensitizing the cardiac myofilaments to Ca2+ or activating directly the cardiac myosin. In this review, we focus on sarcomere targeted inotropic agents, emphasizing their mechanisms of action and overview the most relevant clinical considerations.
Collapse
|
22
|
Unverzagt S, Hirsch K, Prondzinsky R. Vasopressors and predominantly vasoconstrictive drugs for acute myocardial infarction complicated by cardiogenic shock. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2015. [DOI: 10.1002/14651858.cd011582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Unverzagt S, Wachsmuth L, Hirsch K, Thiele H, Buerke M, Haerting J, Werdan K, Prondzinsky R. Inotropic agents and vasodilator strategies for acute myocardial infarction complicated by cardiogenic shock or low cardiac output syndrome. Cochrane Database Syst Rev 2014:CD009669. [PMID: 24385385 DOI: 10.1002/14651858.cd009669.pub2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND The recently published German-Austrian S3 Guideline for the treatment of infarct related cardiogenic shock (CS) revealed a lack of evidence for all recommended therapeutic measures. OBJECTIVES To determine the effects in terms of efficacy, efficiency and safety of cardiac care with inotropic agents and vasodilator strategies versus placebo or against each other for haemodynamic stabilisation following surgical treatment, interventional therapy (angioplasty, stent implantation) and conservative treatment (that is no revascularization) on mortality and morbidity in patients with acute myocardial infarction (AMI) complicated by CS or low cardiac output syndrome (LCOS). SEARCH METHODS We searched CENTRAL, MEDLINE (Ovid), EMBASE (Ovid) and ISI Web of Science, registers of ongoing trials and proceedings of conferences in January 2013. Reference lists were scanned and experts in the field were contacted to obtain further information. No language restrictions were applied. SELECTION CRITERIA Randomised controlled trials in patients with AMI complicated by CS or LCOS. DATA COLLECTION AND ANALYSIS Data collection and analysis were performed according to the published protocol. All trials were analysed individually. Hazard ratios (HRs) and odds ratios with 95% confidence intervals (CI) were extracted but not pooled because of high heterogeneity between the control group interventions. MAIN RESULTS Four eligible, very small studies were identified from a total of 4065 references. Three trials with high overall risk of bias compared levosimendan to standard treatment (enoximone or dobutamine) or placebo. Data from a total of 63 participants were included in our comparisons, 31 were treated with levosimendan and 32 served as controls. Levosimendan showed an imprecise survival benefit in comparison with enoximone based on a very small trial with 32 participants (HR 0.33; 95% CI 0.11 to 0.97). Results from the other similarly small trials were too imprecise to provide any meaningful information about the effect of levosimendan in comparison with dobutamine or placebo. Only small differences in haemodynamics, length of hospital stay and the frequency of major adverse cardiac events or adverse events overall were found between study groups.Only one small randomised controlled trial with three participants was found for vasodilator strategies (nitric oxide gas versus placebo) in AMI complicated by CS or LCOS. This study was too small to draw any conclusions on the effects on our key outcomes. AUTHORS' CONCLUSIONS At present there are no robust and convincing data to support a distinct inotropic or vasodilator drug based therapy as a superior solution to reduce mortality in haemodynamically unstable patients with CS or low cardiac output complicating AMI.
Collapse
Affiliation(s)
- Susanne Unverzagt
- Institute of Medical Epidemiology, Biostatistics and Informatics, Martin Luther University Halle-Wittenberg, Magdeburge Straße 8, Halle/Saale, Germany, 06097
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Yilmaz MB, Grossini E, Silva Cardoso JC, Édes I, Fedele F, Pollesello P, Kivikko M, Harjola VP, Hasslacher J, Mebazaa A, Morelli A, le Noble J, Oldner A, Oulego Erroz I, Parissis JT, Parkhomenko A, Poelzl G, Rehberg S, Ricksten SE, Rodríguez Fernández LM, Salmenperä M, Singer M, Treskatsch S, Vrtovec B, Wikström G. Renal effects of levosimendan: a consensus report. Cardiovasc Drugs Ther 2013; 27:581-90. [PMID: 23929366 PMCID: PMC3830192 DOI: 10.1007/s10557-013-6485-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Renal dysfunction is common in clinical settings in which cardiac function is compromised such as heart failure, cardiac surgery or sepsis, and is associated with high morbidity and mortality. Levosimendan is a calcium sensitizer and potassium channel opener used in the treatment of acute heart failure. This review describes the effects of the inodilator levosimendan on renal function. A panel of 25 scientists and clinicians from 15 European countries (Austria, Finland, France, Hungary, Germany, Greece, Italy, Portugal, the Netherlands, Slovenia, Spain, Sweden, Turkey, the United Kingdom, and Ukraine) convened and reached a consensus on the current interpretation of the renal effects of levosimendan described both in non-clinical research and in clinical study reports. Most reports on the effect of levosimendan indicate an improvement of renal function in heart failure, sepsis and cardiac surgery settings. However, caution should be applied as study designs differed from randomized, controlled studies to uncontrolled ones. Importantly, in the largest HF study (REVIVE I and II) no significant changes in the renal function were detected. As it regards the mechanism of action, the opening of mitochondrial KATP channels by levosimendan is involved through a preconditioning effect. There is a strong rationale for randomized controlled trials seeking beneficial renal effects of levosimendan. As an example, a study is shortly to commence to assess the role of levosimendan for the prevention of acute organ dysfunction in sepsis (LeoPARDS).
Collapse
Affiliation(s)
- Mehmet B. Yilmaz
- Department of Cardiology, Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Elena Grossini
- Laboratorio di Fisiologia, Dipartimento di Medicina Traslazionale, Università degli Studi del Piemonte Orientale A. Avogadro, Piemonte, Italy
| | - José C. Silva Cardoso
- Faculdade de Medicina, Alameda Prof. Hernâni Monteiro, Universidade do Porto, Porto, Portugal
| | - István Édes
- Institute of Cardiology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Francesco Fedele
- Department of Cardiovascular, Respiratory, Nephrological, and Geriatric Sciences, La Sapienza University of Rome, Rome, Italy
| | | | - Matti Kivikko
- Cardiology and Critical Care, Orion Pharma, Espoo, Finland
| | - Veli-Pekka Harjola
- Departments of Cardiology, Helsinki University Hospital, Helsinki, Finland
| | - Julia Hasslacher
- Internistische Intensiv- und Notfallmedizin, Universitätsklinik für Innere Medizin, Innsbruck, Austria
| | - Alexandre Mebazaa
- Department of Anaesthesia and Intensive Care, INSERM UMR 942, Lariboisière Hospital, University of Paris, Paris, France
| | - Andrea Morelli
- Department of Cardiovascular, Respiratory, Nephrological, and Geriatric Sciences, La Sapienza University of Rome, Rome, Italy
| | - Jos le Noble
- Department of Intensive Care, VieCuri Medical Center, Venlo, The Netherlands
| | - Anders Oldner
- Department of Physiology & Pharmacology, Section of Anaesthesiology & Intensive CareMedicine, Karolinska Institute, Stockholm, Sweden
| | - Ignacio Oulego Erroz
- Department of Pediatrics, Complejo Asistencial Universitario de León, León, Spain
| | | | | | - Gerhard Poelzl
- Department of Cardiology, Medical University Innsbruck, Innsbruck, Austria
| | - Sebastian Rehberg
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Muenster, Muenster, Germany
| | - Sven-Erik Ricksten
- Department of Cardiothoracic Anesthesia and Intensive Care, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Markku Salmenperä
- Department of Anesthesiology and Intensive Care Medicine, Helsinki University Hospital, Helsinki, Finland
| | - Mervyn Singer
- Intensive Care Medicine, University College London, London, UK
| | - Sascha Treskatsch
- Department of Anesthesiology and Intensive Care Medicine, Charité - University Medicine Berlin, Campus Charité Mitte and Campus Virchow-Klinikum, Berlin, Germany
| | - Bojan Vrtovec
- Advanced Heart Failure and Transplantation Center, Department of Cardiology, Ljubljana University Medical Center, Ljubljana, Slovenia
| | | |
Collapse
|
25
|
Papp Z, Édes I, Fruhwald S, De Hert SG, Salmenperä M, Leppikangas H, Mebazaa A, Landoni G, Grossini E, Caimmi P, Morelli A, Guarracino F, Schwinger RH, Meyer S, Algotsson L, Wikström BG, Jörgensen K, Filippatos G, Parissis JT, González MJG, Parkhomenko A, Yilmaz MB, Kivikko M, Pollesello P, Follath F. Levosimendan: Molecular mechanisms and clinical implications. Int J Cardiol 2012; 159:82-7. [DOI: 10.1016/j.ijcard.2011.07.022] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 07/01/2011] [Accepted: 07/03/2011] [Indexed: 11/28/2022]
|
26
|
Toller W, Algotsson L, Guarracino F, Hörmann C, Knotzer J, Lehmann A, Rajek A, Salmenperä M, Schirmer U, Tritapepe L, Weis F, Landoni G. Perioperative use of levosimendan: best practice in operative settings. J Cardiothorac Vasc Anesth 2012; 27:361-6. [PMID: 22658687 DOI: 10.1053/j.jvca.2012.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Wolfgang Toller
- Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fedele F, DʼAmbrosi A, Bruno N, Caira C, Brasolin B, Mancone M. Cost-effectiveness of Levosimendan in Patients With Acute Heart Failure. J Cardiovasc Pharmacol 2011; 58:363-6. [DOI: 10.1097/fjc.0b013e318224e0a2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore. J Med Chem 2010; 53:7902-17. [PMID: 20804202 PMCID: PMC2988972 DOI: 10.1021/jm100762r] [Citation(s) in RCA: 1179] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fraser F Fleming
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282-1530, USA.
| | | | | | | | | |
Collapse
|
29
|
Louhelainen M, Merasto S, Finckenberg P, Vahtola E, Kaheinen P, Levijoki J, Mervaala E. Effects of the calcium sensitizer OR-1896, a metabolite of levosimendan, on post-infarct heart failure and cardiac remodelling in diabetic Goto-Kakizaki rats. Br J Pharmacol 2010; 160:142-52. [PMID: 20412071 DOI: 10.1111/j.1476-5381.2010.00680.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Levosimendan is a novel, short half-life calcium sensitizer used as pharmacological inotropic support in acute decompensated heart failure. After oral administration, levosimendan is metabolized to OR-1855, which, in rats, is further metabolized into OR-1896. OR-1896 is a long-lasting metabolite of levosimendan sharing the pharmacological properties of the parent compound. EXPERIMENTAL APPROACH Effects of oral OR-1896 treatment on post-infarct heart failure and cardiac remodelling were assessed in diabetic Goto-Kakizaki (GK) rats, an animal model of type II diabetes. Myocardial infarction (MI) was produced to GK rats by coronary ligation. Twenty-four hours after MI or sham operation, the rats were randomized into four groups: (i) MI; (ii) MI + OR-1896 treatment; (iii) sham; and (iv) sham + OR-1896. Cardiac function and markers of cardiac remodelling were assessed 1, 4 and 12 weeks after MI. KEY RESULTS OR-1896 increased ejection fraction and fractional shortening in GK rats with MI. OR-1896 ameliorated post-infarct cardiac hypertrophy, and prevented the MI-induced increase in cardiac mRNA for atrial natriuretic peptide, monocyte chemoattractant protein-1 and connective tissue growth factor, markers of pressure/volume overload, inflammation and fibrosis respectively. OR-1896 also suppressed mRNA for senescence-associated p16(INK4A) and p19(ARF). The beneficial effects of OR-1896 were more prominent at week 12 than at week 4. OR-1896 did not influence systolic blood pressure, blood glucose level, myocardial infarct size or cardiovascular mortality. CONCLUSIONS AND IMPLICATIONS Oral treatment with calcium sensitizer OR-1896 protects against post-infarct heart failure and cardiac remodelling in experimental model of type II diabetes.
Collapse
Affiliation(s)
- Marjut Louhelainen
- Institute of Biomedicine, Pharmacology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
30
|
Deschodt-Arsac V, Calmettes G, Raffard G, Massot P, Franconi JM, Pollesello P, Diolez P. Absence of mitochondrial activation during levosimendan inotropic action in perfused paced guinea pig hearts as demonstrated by modular control analysis. Am J Physiol Regul Integr Comp Physiol 2010; 299:R786-92. [PMID: 20592177 DOI: 10.1152/ajpregu.00184.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Levosimendan is a calcium sensitizer developed for the treatment of heart failure. It increases contractile force by enhancing the sensitivity of myofilaments to calcium. Besides this sensitizing effect, the drug has also been reported to show some inhibitory action on phosphodiesterase 3 (PDE3). The inotropic effects of levosimendan have been studied on guinea pig paced perfused hearts by using modular control analysis (MoCA) (Diolez P, Deschodt-Arsac V, Raffard G, Simon C, Santos PD, Thiaudiere E, Arsac L, Franconi JM. Am J Physiol Regul Integr Comp Physiol 293: R13-R19, 2007.), an integrative approach of heart energetics using noninvasive (31)P NMR. The aim was to evaluate quantitatively the respective effects of this drug on energy supply and demand modules. Under our experimental conditions, 0.7 muM levosimendan induced a 45% increase in paced heart output associated with a 7% decrease in phosphocreatine and a negligible increase in oxygen consumption. Because MoCA allows in situ study of the internal regulations in intact beating heart energetics, it was applied to describe quantitatively by which routes levosimendan exerts its inotropic action. MoCA demonstrated the absence of any significant effect of the drug on the supply module, which is responsible for the lower increase in oxygen consumption, compared with epinephrine, which increases the ratio between myocardial oxygen consumption and cardiac contraction. This result evidences that, under our conditions, a possible effect of levosimendan on PDE3 activity and/or intracellular calcium remains very low on mitochondrial activity and insignificant on integrated cardiac energetics. Thus, levosimendan inotropic effect on guinea pig heart depends almost entirely on the calcium-sensitizing properties leading to myofilament activation and the concomitant activation of energy supply by the decrease in PCr, therefore improving energetic efficiency of contraction.
Collapse
Affiliation(s)
- Véronique Deschodt-Arsac
- Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Université Victor Segalen Bordeaux 2, 146 rue Léo-Saignat, 33076 Bordeaux cedex, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Ouanes-Besbes L, Ouanes I, Dachraoui F, Dimassi S, Mebazaa A, Abroug F. Weaning difficult-to-wean chronic obstructive pulmonary disease patients: a pilot study comparing initial hemodynamic effects of levosimendan and dobutamine. J Crit Care 2010; 26:15-21. [PMID: 20381295 DOI: 10.1016/j.jcrc.2010.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 01/03/2010] [Accepted: 01/11/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE To compare the short-term hemodynamic effects of levosimendan and dobutamine in chronic obstructive pulmonary disease (COPD) patients experiencing weaning difficulties in relation with increased left ventricular filling pressure. MATERIALS AND METHODS This prospective, sequential, pilot study included 10 COPD patients experiencing weaning difficulties in relation with increased left ventricular filling pressure ascertained by an increase >10 mm Hg of pulmonary artery occlusion pressure (PAOP) at the shift from mechanical to spontaneous breathing (SB). Patients received 1 h infusion of 7 μg/kg per minute of dobutamine, followed by 24-hour infusion of 0.2 μg/kg per minute levosimendan. Hemodynamic variables were measured under MV and 15 to 30 minutes after SB at baseline, at the end of dobutamine infusion, at a washout period, and after levosimendan infusion. RESULTS At baseline, the shift from mechanical ventilation to spontaneous ventilation was associated with a significant increase in PAOP from a median of 15 (interquartile range [IQR], 6) to 29 (9) mm Hg. Both drugs reduced significantly the level of PAOP increase at SB, but levosimendan had a greater effect than dobutamine [median PAOP increase (IQR): 5 (2) vs 9 (4) mm Hg, respectively; P < .01]. CONCLUSIONS Both drugs reduced the magnitude of PAOP increase at SB in difficult-to-wean COPD patients. PAOP increase was reduced to a greater extent by levosimendan.
Collapse
|
32
|
Oleszczuk M, Robertson IM, Li MX, Sykes BD. Solution structure of the regulatory domain of human cardiac troponin C in complex with the switch region of cardiac troponin I and W7: the basis of W7 as an inhibitor of cardiac muscle contraction. J Mol Cell Cardiol 2010; 48:925-33. [PMID: 20116385 DOI: 10.1016/j.yjmcc.2010.01.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 01/19/2010] [Accepted: 01/20/2010] [Indexed: 10/19/2022]
Abstract
The solution structure of Ca(2+)-bound regulatory domain of cardiac troponin C (cNTnC) in complex with the switch region of troponin I (cTnI(147-163)) and the calmodulin antagonist, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfinamide (W7), has been determined by NMR spectroscopy. The structure reveals that the W7 naphthalene ring interacts with the terminal methyl groups of M47, M60, and M81 as well as aliphatic and aromatic side chains of several other residues in the hydrophobic pocket of cNTnC. The H3 ring proton of W7 also contacts the methyl groups of I148 and M153 of cTnI(147-163). The N-(6-aminohexyl) tail interacts primarily with the methyl groups of V64 and M81, which are located on the C- and D-helices of cNTnC. Compared to the structure of the cNTnC*Ca(2+)*W7 complex (Hoffman, R. M. B. and Sykes, B. D. (2009) Biochemistry 48, 5541-5552), the tail of W7 reorients slightly toward the surface of cNTnC while the ring remains in the hydrophobic pocket. The positively charged -NH(3)(+) group from the tail of W7 repels the positively charged R147 of cTnI(147-163). As a result, the N-terminus of the peptide moves away from cNTnC and the helical content of cTnI(147-163) is diminished, when compared to the structure of cNTnC*Ca(2+)*cTnI(147-163) (Li, M. X., Spyracopoulos, L., and Sykes B. D. (1999) Biochemistry 38, 8289-8298). Thus the ternary structure cNTnC*Ca(2+)*W7*cTnI(147-163) reported in this study offers an explanation for the approximately 13-fold affinity reduction of cTnI(147-163) for cNTnC*Ca(2+) in the presence of W7 and provides a structural basis for the inhibitory effect of W7 in cardiac muscle contraction. This generates molecular insight into structural features that are useful for the design of cTnC-specific Ca(2+)-desensitizing drugs.
Collapse
Affiliation(s)
- Marta Oleszczuk
- Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | |
Collapse
|