1
|
Phoophiboon V, Pachinburavan M, Ruamsap N, Sanguanwong N, Jaimchariyatam N. Critical care management of pulmonary arterial hypertension in pregnancy: the pre-, peri- and post-partum stages. Acute Crit Care 2021; 36:286-293. [PMID: 34762794 PMCID: PMC8907465 DOI: 10.4266/acc.2021.00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/31/2021] [Indexed: 11/30/2022] Open
Abstract
The mortality rate of pulmonary hypertension in pregnancy is 25%–56%. Pulmonary arterial hypertension is the highest incidence among this group, especially in young women. Despite clear recommendation of pregnancy avoidance, certain groups of patients are initially diagnosed during the gestational age step into the third trimester. While the presence of right ventricular failure in early gestation is usually trivial, it can be more severe in the late trimester. Current evidence shows no consensus in the management and serious precautions for each stage of the pre-, peri- and post-partum periods of this specific group. Pulmonary hypertension-targeted drugs, mode of delivery, type of anesthesia, and some avoidances should be planned among a multidisciplinary team to enhance maternal and fetal survival opportunities. Sudden circulatory collapse from cardiac decompensation during the peri- and post-partum phases is detrimental, and mechanical support such as extracorporeal membrane oxygenation should be considered for mitigating hemodynamics and extending cardiac recovery time. Our review aims to explain the pathophysiology of pulmonary arterial hypertension and summarize the current evidence for critical management and precautions in each stage of pregnancy.
Collapse
Affiliation(s)
- Vorakamol Phoophiboon
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Critical Care Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Monvasi Pachinburavan
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Critical Care Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Nicha Ruamsap
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Natthawan Sanguanwong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Sleep Disorder, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Nattapong Jaimchariyatam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Sleep Disorder, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
2
|
Mazzuca MQ, Mata KM, Li W, Rangan SS, Khalil RA. Estrogen receptor subtypes mediate distinct microvascular dilation and reduction in [Ca2+]I in mesenteric microvessels of female rat. J Pharmacol Exp Ther 2014; 352:291-304. [PMID: 25472954 DOI: 10.1124/jpet.114.219865] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Estrogen interacts with estrogen receptors (ERs) to induce vasodilation, but the ER subtype and post-ER relaxation pathways are unclear. We tested if ER subtypes mediate distinct vasodilator and intracellular free Ca(2+) concentration ([Ca(2+)]i) responses via specific relaxation pathways in the endothelium and vascular smooth muscle (VSM). Pressurized mesenteric microvessels from female Sprague-Dawley rats were loaded with fura-2, and the changes in diameter and [Ca(2+)]i in response to 17β-estradiol (E2) (all ERs), PPT (4,4',4''-[4-propyl-(1H)-pyrazole-1,3,5-triyl]-tris-phenol) (ERα), diarylpropionitrile (DPN) (ERβ), and G1 [(±)-1-[(3aR*,4S*,9bS*)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro:3H-cyclopenta(c)quinolin-8-yl]-ethanon] (GPR30) were measured. In microvessels preconstricted with phenylephrine, ER agonists caused relaxation and decrease in [Ca(2+)]i that were with E2 = PPT > DPN > G1, suggesting that E2-induced vasodilation involves ERα > ERβ > GPR30. Acetylcholine caused vasodilation and decreased [Ca(2+)]i, which were abolished by endothelium removal or treatment with the nitric oxide synthase blocker Nω-nitro-l-arginine methyl ester (L-NAME) and the K(+) channel blockers tetraethylammonium (nonspecific) or apamin (small conductance Ca(2+)-activated K(+) channel) plus TRAM-34 (1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole) (intermediate conductance Ca(2+)-activated K(+) channel), suggesting endothelium-derived hyperpolarizing factor-dependent activation of KCa channels. E2-, PPT-, DPN-, and G1-induced vasodilation and decreased [Ca(2+)]i were not blocked by L-NAME, TEA, apamin plus TRAM-34, iberiotoxin (large conductance Ca(2+)- and voltage-activated K(+) channel), 4-aminopyridine (voltage-dependent K(+) channel), glibenclamide (ATP-sensitive K(+) channel), or endothelium removal, suggesting an endothelium- and K(+) channel-independent mechanism. In endothelium-denuded vessels preconstricted with phenylephrine, high KCl, or the Ca(2+) channel activator Bay K 8644 (1,4-dihydro-2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-3-pyridinecarboxylic acid methyl ester), ER agonist-induced relaxation and decreased [Ca(2+)]i were with E2 = PPT > DPN > G1 and not inhibited by the guanylate cyclase inhibitor ODQ [1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one], and showed a similar relationship between decreased [Ca(2+)]i and vasorelaxation, supporting direct effects on Ca(2+) entry in VSM. Immunohistochemistry revealed ERα, ERβ, and GPR30 mainly in the vessel media and VSM. Thus, in mesenteric microvessels, ER subtypes mediate distinct vasodilation and decreased [Ca(2+)]i (ERα > ERβ > GPR30) through endothelium- and K(+) channel-independent inhibition of Ca(2+) entry mechanisms of VSM contraction.
Collapse
Affiliation(s)
- Marc Q Mazzuca
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Karina M Mata
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Wei Li
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sridhar S Rangan
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Toshner M, Voswinckel R, Southwood M, Al-Lamki R, Howard LSG, Marchesan D, Yang J, Suntharalingam J, Soon E, Exley A, Stewart S, Hecker M, Zhu Z, Gehling U, Seeger W, Pepke-Zaba J, Morrell NW. Evidence of dysfunction of endothelial progenitors in pulmonary arterial hypertension. Am J Respir Crit Care Med 2009; 180:780-7. [PMID: 19628780 PMCID: PMC2778151 DOI: 10.1164/rccm.200810-1662oc] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 07/22/2009] [Indexed: 02/06/2023] Open
Abstract
RATIONALE Severe pulmonary arterial hypertension (PAH) is characterized by the formation of plexiform lesions and concentric intimal fibrosis in small pulmonary arteries. The origin of cells contributing to these vascular lesions is uncertain. Endogenous endothelial progenitor cells are potential contributors to this process. OBJECTIVES To determine whether progenitors are involved in the pathobiology of PAH. METHODS We performed immunohistochemistry to determine the expression of progenitor cell markers (CD133 and c-Kit) and the major homing signal pathway stromal cell-derived factor-1 and its chemokine receptor (CXCR4) in lung tissue from patients with idiopathic PAH, familial PAH, and PAH associated with congenital heart disease. Two separate flow cytometric methods were employed to determine peripheral blood circulating numbers of angiogenic progenitors. Late-outgrowth progenitor cells were expanded ex vivo from the peripheral blood of patients with mutations in the gene encoding bone morphogenetic protein receptor type II (BMPRII), and functional assays of migration, proliferation, and angiogenesis were undertaken. measurements and main results: There was a striking up-regulation of progenitor cell markers in remodeled arteries from all patients with PAH, specifically in plexiform lesions. These lesions also displayed increased stromal cell-derived factor-1 expression. Circulating angiogenic progenitor numbers in patients with PAH were increased compared with control subjects and functional studies of late-outgrowth progenitor cells from patients with PAH with BMPRII mutations revealed a hyperproliferative phenotype with impaired ability to form vascular networks. CONCLUSIONS These findings provide evidence of the involvement of progenitor cells in the vascular remodeling associated with PAH. Dysfunction of circulating progenitors in PAH may contribute to this process.
Collapse
Affiliation(s)
- Mark Toshner
- Papworth Hospital and University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom; Department of Internal Medicine, University of Giessen Lung Center, Giessen, Germany; Hammersmith Hospital, London and Royal United Hospital, Bath, United Kingdom; Department Antibody Technology, ImClone Systems, Inc., New York; and Department of Medicine, University Hospital Eppendorf, Hamburg, Germany
| | - Robert Voswinckel
- Papworth Hospital and University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom; Department of Internal Medicine, University of Giessen Lung Center, Giessen, Germany; Hammersmith Hospital, London and Royal United Hospital, Bath, United Kingdom; Department Antibody Technology, ImClone Systems, Inc., New York; and Department of Medicine, University Hospital Eppendorf, Hamburg, Germany
| | - Mark Southwood
- Papworth Hospital and University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom; Department of Internal Medicine, University of Giessen Lung Center, Giessen, Germany; Hammersmith Hospital, London and Royal United Hospital, Bath, United Kingdom; Department Antibody Technology, ImClone Systems, Inc., New York; and Department of Medicine, University Hospital Eppendorf, Hamburg, Germany
| | - Rafia Al-Lamki
- Papworth Hospital and University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom; Department of Internal Medicine, University of Giessen Lung Center, Giessen, Germany; Hammersmith Hospital, London and Royal United Hospital, Bath, United Kingdom; Department Antibody Technology, ImClone Systems, Inc., New York; and Department of Medicine, University Hospital Eppendorf, Hamburg, Germany
| | - Luke S. G. Howard
- Papworth Hospital and University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom; Department of Internal Medicine, University of Giessen Lung Center, Giessen, Germany; Hammersmith Hospital, London and Royal United Hospital, Bath, United Kingdom; Department Antibody Technology, ImClone Systems, Inc., New York; and Department of Medicine, University Hospital Eppendorf, Hamburg, Germany
| | - Denis Marchesan
- Papworth Hospital and University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom; Department of Internal Medicine, University of Giessen Lung Center, Giessen, Germany; Hammersmith Hospital, London and Royal United Hospital, Bath, United Kingdom; Department Antibody Technology, ImClone Systems, Inc., New York; and Department of Medicine, University Hospital Eppendorf, Hamburg, Germany
| | - Jun Yang
- Papworth Hospital and University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom; Department of Internal Medicine, University of Giessen Lung Center, Giessen, Germany; Hammersmith Hospital, London and Royal United Hospital, Bath, United Kingdom; Department Antibody Technology, ImClone Systems, Inc., New York; and Department of Medicine, University Hospital Eppendorf, Hamburg, Germany
| | - Jay Suntharalingam
- Papworth Hospital and University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom; Department of Internal Medicine, University of Giessen Lung Center, Giessen, Germany; Hammersmith Hospital, London and Royal United Hospital, Bath, United Kingdom; Department Antibody Technology, ImClone Systems, Inc., New York; and Department of Medicine, University Hospital Eppendorf, Hamburg, Germany
| | - Elaine Soon
- Papworth Hospital and University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom; Department of Internal Medicine, University of Giessen Lung Center, Giessen, Germany; Hammersmith Hospital, London and Royal United Hospital, Bath, United Kingdom; Department Antibody Technology, ImClone Systems, Inc., New York; and Department of Medicine, University Hospital Eppendorf, Hamburg, Germany
| | - Andrew Exley
- Papworth Hospital and University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom; Department of Internal Medicine, University of Giessen Lung Center, Giessen, Germany; Hammersmith Hospital, London and Royal United Hospital, Bath, United Kingdom; Department Antibody Technology, ImClone Systems, Inc., New York; and Department of Medicine, University Hospital Eppendorf, Hamburg, Germany
| | - Susan Stewart
- Papworth Hospital and University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom; Department of Internal Medicine, University of Giessen Lung Center, Giessen, Germany; Hammersmith Hospital, London and Royal United Hospital, Bath, United Kingdom; Department Antibody Technology, ImClone Systems, Inc., New York; and Department of Medicine, University Hospital Eppendorf, Hamburg, Germany
| | - Markus Hecker
- Papworth Hospital and University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom; Department of Internal Medicine, University of Giessen Lung Center, Giessen, Germany; Hammersmith Hospital, London and Royal United Hospital, Bath, United Kingdom; Department Antibody Technology, ImClone Systems, Inc., New York; and Department of Medicine, University Hospital Eppendorf, Hamburg, Germany
| | - Zhenping Zhu
- Papworth Hospital and University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom; Department of Internal Medicine, University of Giessen Lung Center, Giessen, Germany; Hammersmith Hospital, London and Royal United Hospital, Bath, United Kingdom; Department Antibody Technology, ImClone Systems, Inc., New York; and Department of Medicine, University Hospital Eppendorf, Hamburg, Germany
| | - Ursula Gehling
- Papworth Hospital and University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom; Department of Internal Medicine, University of Giessen Lung Center, Giessen, Germany; Hammersmith Hospital, London and Royal United Hospital, Bath, United Kingdom; Department Antibody Technology, ImClone Systems, Inc., New York; and Department of Medicine, University Hospital Eppendorf, Hamburg, Germany
| | - Werner Seeger
- Papworth Hospital and University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom; Department of Internal Medicine, University of Giessen Lung Center, Giessen, Germany; Hammersmith Hospital, London and Royal United Hospital, Bath, United Kingdom; Department Antibody Technology, ImClone Systems, Inc., New York; and Department of Medicine, University Hospital Eppendorf, Hamburg, Germany
| | - Joanna Pepke-Zaba
- Papworth Hospital and University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom; Department of Internal Medicine, University of Giessen Lung Center, Giessen, Germany; Hammersmith Hospital, London and Royal United Hospital, Bath, United Kingdom; Department Antibody Technology, ImClone Systems, Inc., New York; and Department of Medicine, University Hospital Eppendorf, Hamburg, Germany
| | - Nicholas W. Morrell
- Papworth Hospital and University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom; Department of Internal Medicine, University of Giessen Lung Center, Giessen, Germany; Hammersmith Hospital, London and Royal United Hospital, Bath, United Kingdom; Department Antibody Technology, ImClone Systems, Inc., New York; and Department of Medicine, University Hospital Eppendorf, Hamburg, Germany
| |
Collapse
|