1
|
Nakamura N, Tsunemine H, Ikunari R, Tanaka Y, Arima N. Red blood cell distribution width is a useful biomarker to predict bleeding and thrombosis risks in patients with immune thrombocytopenic purpura. EJHAEM 2024; 5:431-439. [PMID: 38895062 PMCID: PMC11182403 DOI: 10.1002/jha2.897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 06/21/2024]
Abstract
Bleeding and thrombosis are common complications during immune thrombocytopenic purpura (ITP) treatment. There is a strong need to predict bleeding and thrombosis risks before ITP treatment to optimize therapy and appropriately manage these complications. We performed a retrospective cohort study of 120 patients with primary ITP to identify a biomarker to predict bleeding and thrombosis. We compared blood test results at diagnosis between patients with and without bleeding or thrombosis episodes. The standard deviation of red blood cell distribution width (RDW-SD) differed significantly between those with and without bleeding and between those with and without thrombosis, leading us to identify it as a variable representative of risk. RDW-SD was significantly associated with patient age and with histories of several vascular diseases. Multivariate regression analyses showed that RDW integrated several variables associated with vascular risks. RDW-SD was significantly associated with difficulty with corticosteroid discontinuation (hazard ratio [HR], 2.22, p = 0.01), incidence of bleeding (HR, 2.75, p< 0.01), incidence of thrombosis (HR, 2.67, p< 0.01) and incidence of infection (HR, 1.78, p = 0.04). The RDW-SD value at the time of ITP diagnosis is a useful biomarker to predict the risks of bleeding, thrombosis, and other complications.
Collapse
Affiliation(s)
- Naokazu Nakamura
- Department of HematologyShinko HospitalKobeJapan
- Department of Hematology and OncologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | | | - Ryo Ikunari
- Department of HematologyShinko HospitalKobeJapan
| | | | | |
Collapse
|
2
|
Ferreira-Cravo M, Moreira DC, Hermes-Lima M. Glutathione Depletion Disrupts Redox Homeostasis in an Anoxia-Tolerant Invertebrate. Antioxidants (Basel) 2023; 12:1197. [PMID: 37371926 PMCID: PMC10294987 DOI: 10.3390/antiox12061197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The upregulation of endogenous antioxidants is a widespread phenomenon in animals that tolerate hypoxia/anoxia for extended periods. The identity of the mobilized antioxidant is often context-dependent and differs among species, tissues, and stresses. Thus, the contribution of individual antioxidants to the adaptation to oxygen deprivation remains elusive. This study investigated the role of glutathione (GSH) in the control of redox homeostasis under the stress of anoxia and reoxygenation in Helix aspersa, an animal model of anoxia tolerance. To do so, the total GSH (tGSH) pool was depleted with l-buthionine-(S, R)-sulfoximine (BSO) before exposing snails to anoxia for 6 h. Then, the concentration of GSH, glutathione disulfide (GSSG), and oxidative stress markers (TBARS and protein carbonyl) and the activity of antioxidant enzymes (catalase, glutathione peroxidase, glutathione transferase, glutathione reductase, and glucose 6-phosphate dehydrogenase) were measured in foot muscle and hepatopancreas. BSO alone induced tGSH depletion by 59-75%, but no other changes happened in other variables, except for foot GSSG. Anoxia elicited a 110-114% increase in glutathione peroxidase in the foot; no other changes occurred during anoxia. However, GSH depletion before anoxia increased the GSSG/tGSH ratio by 84-90% in both tissues, which returned to baseline levels during reoxygenation. Our findings indicate that glutathione is required to withstand the oxidative challenge induced by hypoxia and reoxygenation in land snails.
Collapse
Affiliation(s)
- Marlize Ferreira-Cravo
- Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
- Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Daniel C. Moreira
- Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
- Research Center in Morphology and Applied Immunology, Faculty of Medicine, University of Brasilia, Brasilia 70910-900, Brazil
| | - Marcelo Hermes-Lima
- Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| |
Collapse
|
3
|
Abstract
Advancing age promotes cardiovascular disease (CVD), the leading cause of death in the United States and many developed nations. Two major age-related arterial phenotypes, large elastic artery stiffening and endothelial dysfunction, are independent predictors of future CVD diagnosis and likely are responsible for the development of CVD in older adults. Not limited to traditional CVD, these age-related changes in the vasculature also contribute to other age-related diseases that influence mammalian health span and potential life span. This review explores mechanisms that influence age-related large elastic artery stiffening and endothelial dysfunction at the tissue level via inflammation and oxidative stress and at the cellular level via Klotho and energy-sensing pathways (AMPK [AMP-activated protein kinase], SIRT [sirtuins], and mTOR [mammalian target of rapamycin]). We also discuss how long-term calorie restriction-a health span- and life span-extending intervention-can prevent many of these age-related vascular phenotypes through the prevention of deleterious alterations in these mechanisms. Lastly, we discuss emerging novel mechanisms of vascular aging, including senescence and genomic instability within cells of the vasculature. As the population of older adults steadily expands, elucidating the cellular and molecular mechanisms of vascular dysfunction with age is critical to better direct appropriate and measured strategies that use pharmacological and lifestyle interventions to reduce risk of CVD within this population.
Collapse
Affiliation(s)
- Anthony J. Donato
- University of Utah, Department of Internal Medicine, Division of Geriatrics, Salt Lake City, Utah
- Veterans Affairs Medical Center-Salt Lake City, Geriatrics Research Education and Clinical Center, Salt Lake City, Utah
| | - Daniel R. Machin
- University of Utah, Department of Internal Medicine, Division of Geriatrics, Salt Lake City, Utah
- Veterans Affairs Medical Center-Salt Lake City, Geriatrics Research Education and Clinical Center, Salt Lake City, Utah
| | - Lisa A. Lesniewski
- University of Utah, Department of Internal Medicine, Division of Geriatrics, Salt Lake City, Utah
- Veterans Affairs Medical Center-Salt Lake City, Geriatrics Research Education and Clinical Center, Salt Lake City, Utah
| |
Collapse
|
4
|
Smith IC, Vigna C, Levy AS, Denniss SG, Rush JWE, Tupling AR. The effects of buthionine sulfoximine treatment on diaphragm contractility and SERCA pump function in adult and middle aged rats. Physiol Rep 2015; 3:3/9/e12547. [PMID: 26371231 PMCID: PMC4600388 DOI: 10.14814/phy2.12547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This study examined the effects of 10 days of buthionine sulfoximine (BSO) treatment on in vitro contractility and sarcoplasmic reticulum calcium pump (SERCA) expression and function in adult (AD; 6–8 months old) and middle aged (MA; 14–17 months old) rat diaphragm in both the basal state and following fatiguing stimulation. BSO treatment reduced the cellular concentrations of free glutathione (GSH) by >95% and oxidized glutathione (GSSG) by >80% in both age cohorts. GSH content in AD Control diaphragm was 32% higher (P < 0.01) than in MA Control, with no differences in GSSG. The ratio of GSH:GSSG, an indicator of cellular oxidative state, was 34.6 ± 7.4 in MA Control, 52.5 ± 10.1 in AD Control, 10.6 ± 1.7 in MA BSO, and 9.5 ± 1.1 in AD BSO (BSO vs. Control, P < 0.05). Several findings suggest that the effects of BSO treatment are age dependent. AD BSO diaphragm had 26% higher twitch and 28% higher tetanic force (both P < 0.05) than AD Controls, whereas no significant difference existed between the two MA groups. In contrast to our previous work on BSO-treated AD rats, BSO treatment did not influence maximal SERCA ATPase activity in MA rat diaphragm, nor did SERCA2a expression increase in BSO-treated MA diaphragm. Biotinylated iodoacetamide binding to SERCA1a, a specific marker of free cysteine residues, was reduced by 35% (P < 0.05) in AD Control diaphragm following fatiguing stimulation, but was not reduced in any other group. Collectively, these results suggest an important role for redox regulation in both contractility and SERCA function which is influenced by aging.
Collapse
Affiliation(s)
- Ian C Smith
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Chris Vigna
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Andrew S Levy
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Steven G Denniss
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - James W E Rush
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
5
|
Anandan R, Ganesan B, Obulesu T, Mathew S, Asha KK, Lakshmanan PT, Zynudheen AA. Antiaging effect of dietary chitosan supplementation on glutathione-dependent antioxidant system in young and aged rats. Cell Stress Chaperones 2013; 18:121-5. [PMID: 22828860 PMCID: PMC3508130 DOI: 10.1007/s12192-012-0354-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/04/2012] [Accepted: 07/09/2012] [Indexed: 11/25/2022] Open
Abstract
Aging has been defined as the changes that occur in living organisms with the passage of time that lead to functional impairment and ultimately to death. Free radical-induced oxidative damage has long been thought to be the most important consequence of the aging process. In the present study, an attempt has been made to study the salubrious effects of dietary supplementation of chitosan on glutathione-dependent antioxidant defense system in young and aged rats. The dietary supplementation of chitosan significantly reduced the age-associated dyslipidemic abnormalities noted in the levels of total cholesterol, HDL-cholesterol, and LDL-cholesterol in plasma and heart tissue. Its administration significantly (P < 0.05) attenuated the oxidative stress in the heart tissue of aged rats through the counteraction of free radical formation by maintaining the enzymatic [glutathione peroxidase (GPx) and glutathione reductase (GR)] and non-enzymatic [reduced glutathione (GSH)] status at levels comparable to that of normal young rats. Our results conclude that dietary intake of chitosan restores the depleted myocardial antioxidant status and suggest that it could be an effective therapeutic agent in treatment of age-associated disorders where hypercholesterolemia and oxidative stress are the major causative factors.
Collapse
Affiliation(s)
- R. Anandan
- Biochemistry and Nutrition Division, Central Institute of Fisheries Technology, Matsyapuri (PO), Cochin, 682029 Kerala India
| | - B. Ganesan
- Biochemistry and Nutrition Division, Central Institute of Fisheries Technology, Matsyapuri (PO), Cochin, 682029 Kerala India
| | - T. Obulesu
- Biochemistry and Nutrition Division, Central Institute of Fisheries Technology, Matsyapuri (PO), Cochin, 682029 Kerala India
| | - S. Mathew
- Biochemistry and Nutrition Division, Central Institute of Fisheries Technology, Matsyapuri (PO), Cochin, 682029 Kerala India
| | - K. K. Asha
- Biochemistry and Nutrition Division, Central Institute of Fisheries Technology, Matsyapuri (PO), Cochin, 682029 Kerala India
| | - P. T. Lakshmanan
- Biochemistry and Nutrition Division, Central Institute of Fisheries Technology, Matsyapuri (PO), Cochin, 682029 Kerala India
| | - A. A. Zynudheen
- Fish Processing Division, Central Institute of Fisheries Technology, Matsyapuri (PO), Cochin, 682029 Kerala India
| |
Collapse
|
6
|
Weldy CS, Luttrell IP, White CC, Morgan-Stevenson V, Bammler TK, Beyer RP, Afsharinejad Z, Kim F, Chitaley K, Kavanagh TJ. Glutathione (GSH) and the GSH synthesis gene Gclm modulate vascular reactivity in mice. Free Radic Biol Med 2012; 53:1264-78. [PMID: 22824862 PMCID: PMC3625031 DOI: 10.1016/j.freeradbiomed.2012.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 06/26/2012] [Accepted: 07/07/2012] [Indexed: 12/13/2022]
Abstract
Oxidative stress has been implicated in the development of vascular disease and in the promotion of endothelial dysfunction via the reduction in bioavailable nitric oxide (NO()). Glutathione (GSH) is a tripeptide thiol antioxidant that is utilized by glutathione peroxidase (GPx) to scavenge reactive oxygen species such as hydrogen peroxide and phospholipid hydroperoxides. Relatively frequent single-nucleotide polymorphisms (SNPs) within the 5' promoters of the GSH synthesis genes GCLC and GCLM are associated with impaired vasomotor function, as measured by decreased acetylcholine-stimulated coronary artery dilation, and with increased risk of myocardial infarction. Although the influence of genetic knockdown of GPx on vascular function has been investigated in mice, no work to date has been published on the role of genetic knockdown of GSH synthesis genes on vascular reactivity. We therefore investigated the effects of targeted disruption of Gclm in mice and the subsequent depletion of GSH on vascular reactivity, NO() production, aortic nitrotyrosine protein modification, and whole-genome transcriptional responses as measured by DNA microarray. Gclm(-/+) and Gclm(-/-) mice had 72 and 12%, respectively, of wild-type (WT) aortic GSH content. Gclm(-/+) mice had a significant impairment in acetylcholine (ACh)-induced relaxation in aortic rings as well as increased aortic nitrotyrosine protein modification. Surprisingly, Gclm(-/-) aortas showed enhanced relaxation compared to Gclm(-/+) aortas, as well as increased NO() production. Although aortic rings from Gclm(-/-) mice had enhanced ACh relaxation, they had a significantly increased sensitivity to phenylephrine (PE)-induced contraction. Alternatively, the PE response of Gclm(-/+) aortas was nearly identical to that of their WT littermates. To examine the role of NO() or other potential endothelium-derived factors in differentially regulating vasomotor activity, we incubated aortic rings with the NO() synthase inhibitor L-NAME or physically removed the endothelium before PE treatment. L-NAME treatment and endothelium removal enhanced PE-induced contraction in WT and Gclm(-/+) mice, but this effect was severely diminished in Gclm(-/-) mice, indicating a potentially unique role for GSH in mediating vessel contraction. Whole-genome assessment of aortic mRNA in Gclm(-/-) and WT mice revealed altered expression of genes within the canonical Ca(2+) signaling pathway, which may have a role in mediating these observed functional effects. These findings provide additional evidence that the de novo synthesis of GSH can influence vascular reactivity and provide insights regarding possible mechanisms by which SNPs within GCLM and GCLC influence the risk of developing vascular diseases in humans.
Collapse
Affiliation(s)
- Chad S. Weldy
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, 98195
| | - Ian P. Luttrell
- Department of Urology, School of Medicine, University of Washington, Seattle, WA, 98195
| | - Collin C. White
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, 98195
| | - Vicki Morgan-Stevenson
- Department of Medicine, Division of Cardiology, School of Medicine, University of Washington, Seattle, WA, 98195
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, 98195
| | - Richard P. Beyer
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, 98195
| | - Zahra Afsharinejad
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, 98195
| | - Francis Kim
- Department of Medicine, Division of Cardiology, School of Medicine, University of Washington, Seattle, WA, 98195
| | - Kanchan Chitaley
- Department of Urology, School of Medicine, University of Washington, Seattle, WA, 98195
| | - Terrance J. Kavanagh
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, 98195
- Correspondence should be addressed to: Terrance J. Kavanagh, Ph.D., Department of Environmental and Occupational Health Sciences, Box 354695, University of Washington, Seattle, WA 98195, Phone: (206), 685-8479, Fax: (206) 685-4696
| |
Collapse
|
7
|
Levy AS, Vigna C, Rush JWE. Glutathione enhances endothelium-mediated control of coronary vascular resistance via a ROS- and NO intermediate-dependent mechanism. J Appl Physiol (1985) 2012; 113:246-54. [DOI: 10.1152/japplphysiol.00589.2011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this investigation was to determine the effects of acute physiological GSH administration on endothelium-mediated reduction in coronary vascular resistance (CVR) using isolated perfused Sprague-Dawley rat hearts. A dose-response curve to GSH was conducted to determine a threshold concentration of GSH. We demonstrate that 30 μM GSH was sufficient to reduce CVR, and maximal dilation was achieved with 1 mM. In subsequent experiments, GSH was administered at concentrations of 0 [control (CON)], 1 μM, or 10 μM (GSH10), and dose-response curves to the endothelial agonist bradykinin (BK) were constructed. These GSH concentrations were chosen because of the physiological relevance and because the effects of GSH on BK action could be assessed independent of baseline differences in CVR. Sensitivity to BK (EC50) was enhanced in GSH10 vs. CON ( P < 0.05). This enhancement remained in the presence of nitric oxide (NO) synthase inhibition l-ωnitro-l-arginine (lNAME) and/or soluble guanylate cyclase (sGC) inhibition. Treatment with 4-hydroxy (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPOL) enhanced the sensitivity to BK in CON, similar to the effects of GSH10 and GSH10 + TEMPOL. However, the GSH10-dependent enhancement of EC50 observed in the presence of lNAME did not occur in the presence of lNAME + TEMPOL or in the presence of lNAME + sGC inhibition and NO scavenging. Collectively, these results suggest that GSH enhances BK-mediated dilation and reduction in CVR through an antioxidant-dependent mechanism that involves a NO intermediate but is unrelated to acute production of NO and GC-dependent effects of NO. These results suggest a mechanism whereby physiologically relevant levels of GSH modulate the endogenous reactive oxygen species and NO control of endothelium-dependent coronary vascular function.
Collapse
Affiliation(s)
- Andrew S. Levy
- Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Ontario, Canada
| | - Chris Vigna
- Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Ontario, Canada
| | - James W. E. Rush
- Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Ontario, Canada
| |
Collapse
|
8
|
Cau SBA, Carneiro FS, Tostes RC. Differential modulation of nitric oxide synthases in aging: therapeutic opportunities. Front Physiol 2012; 3:218. [PMID: 22737132 PMCID: PMC3382417 DOI: 10.3389/fphys.2012.00218] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 05/31/2012] [Indexed: 12/24/2022] Open
Abstract
Vascular aging is the term that describes the structural and functional disturbances of the vasculature with advancing aging. The molecular mechanisms of aging-associated endothelial dysfunction are complex, but reduced nitric oxide (NO) bioavailability and altered vascular expression and activity of NO synthase (NOS) enzymes have been implicated as major players. Impaired vascular relaxation in aging has been attributed to reduced endothelial NOS (eNOS)-derived NO, while increased inducible NOS (iNOS) expression seems to account for nitrosative stress and disrupted vascular homeostasis. Although eNOS is considered the main source of NO in the vascular endothelium, neuronal NOS (nNOS) also contributes to endothelial cells-derived NO, a mechanism that is reduced in aging. Pharmacological modulation of NO generation and expression/activity of NOS isoforms may represent a therapeutic alternative to prevent the progression of cardiovascular diseases. Accordingly, this review will focus on drugs that modulate NO bioavailability, such as nitrite anions and NO-releasing non-steroidal anti-inflammatory drugs, hormones (dehydroepiandrosterone and estrogen), statins, resveratrol, and folic acid, since they may be useful to treat/to prevent aging-associated vascular dysfunction. The impact of these therapies on life quality in elderly and longevity will be discussed.
Collapse
Affiliation(s)
- Stefany B A Cau
- Department of Pharmacology, Medical School of Ribeirao Preto Ribeirao Preto, Brazil
| | | | | |
Collapse
|