1
|
Htet M, Lei S, Bajpayi S, Gangrade H, Arvanitis M, Zoitou A, Murphy S, Chen EZ, Koleini N, Lin BL, Kwon C, Tampakakis E. A transcriptional enhancer regulates cardiac maturation. NATURE CARDIOVASCULAR RESEARCH 2024; 3:666-684. [PMID: 39196225 DOI: 10.1038/s44161-024-00484-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/02/2024] [Indexed: 08/29/2024]
Abstract
Cardiomyocyte maturation is crucial for generating adult cardiomyocytes and the application of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). However, regulation at the cis-regulatory element level and its role in heart disease remain unclear. Alpha-actinin 2 (ACTN2) levels increase during CM maturation. In this study, we investigated a clinically relevant, conserved ACTN2 enhancer's effects on CM maturation using hPSC and mouse models. Heterozygous ACTN2 enhancer deletion led to abnormal CM morphology, reduced function and mitochondrial respiration. Transcriptomic analyses in vitro and in vivo showed disrupted CM maturation and upregulated anabolic mammalian target for rapamycin (mTOR) signaling, promoting senescence and hindering maturation. As confirmation, ACTN2 enhancer deletion induced heat shock protein 90A expression, a chaperone mediating mTOR activation. Conversely, targeting the ACTN2 enhancer via enhancer CRISPR activation (enCRISPRa) promoted hPSC-CM maturation. Our studies reveal the transcriptional enhancer's role in cardiac maturation and disease, offering insights into potentially fine-tuning gene expression to modulate cardiomyocyte physiology.
Collapse
Grants
- K99 HL155840 NHLBI NIH HHS
- 2023- MSCRFL-5984 Maryland Stem Cell Research Fund (MSCRF)
- 5K08HL166690 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- CDA34660077 American Heart Association (American Heart Association, Inc.)
- TPA1058685 American Heart Association (American Heart Association, Inc.)
- T32HL007227 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL-145135 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL156947 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K08 HL145135 NHLBI NIH HHS
- MSCRFD-6139 Maryland Stem Cell Research Fund (MSCRF)
Collapse
Affiliation(s)
- Myo Htet
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Shunyao Lei
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sheetal Bajpayi
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Harshi Gangrade
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Marios Arvanitis
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Asimina Zoitou
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sean Murphy
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Elaine Zhelan Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Navid Koleini
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Brian Leei Lin
- Department of Cell Biology, Neurobiology, and Anatomy and Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Chulan Kwon
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute of Cell Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Emmanouil Tampakakis
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Han JY, Seo YE, Kwon JH, Kim JH, Kim MG. Cardioprotective Effects of PARP Inhibitors: A Re-Analysis of a Meta-Analysis and a Real-Word Data Analysis Using the FAERS Database. J Clin Med 2024; 13:1218. [PMID: 38592677 PMCID: PMC10932277 DOI: 10.3390/jcm13051218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/06/2024] [Accepted: 02/17/2024] [Indexed: 04/10/2024] Open
Abstract
Objective: This study aimed to assess the potential of PARP inhibitors to prevent cardiotoxicity. Methods: First, a re-analysis and update of a previously published study was conducted. Additional searches were conducted of the PubMed and Cochrane Central Register of Controlled Trials databases on 2 June 2023. After the selection process, the pooled odds ratio (OR) for cardiac adverse events (AEs) was calculated. Second, the FAERS database was examined for 10 frequently co-administered anticancer agents. The reporting odds ratio (ROR) was calculated based on the occurrence of cardiac AEs depending on the co-administration of PARP inhibitors. Results: Seven studies were selected for the meta-analysis. Although not statistically significant, co-administration of PARP inhibitors with chemotherapy/bevacizumab decreased the risk of cardiac AEs (Peto OR = 0.61; p = 0.36), while co-administration with antiandrogens increased the risk of cardiac AEs (Peto OR = 1.83; p = 0.18). A total of 19 cases of cardiac AEs were reported with co-administration of PARP inhibitors in the FAERS database. Co-administration of PARP inhibitors with chemotherapy/bevacizumab significantly decreased the risk of cardiac AEs (ROR = 0.352; 95% confidence interval (CI), 0.194-0.637). On the other hand, for antiandrogens co-administered with PARP inhibitors, the ROR was 3.496 (95% CI, 1.539-7.942). The ROR for immune checkpoint inhibitors co-administered with PARP inhibitors was 0.606 (95% CI, 0.151-2.432), indicating a non-significant effect on cardiac AEs. Conclusion: This study reports that PARP inhibitors show cardioprotective effects when used with conventional anticancer agents.
Collapse
Affiliation(s)
- Ja-Young Han
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Young-Eun Seo
- Graduate School of Clinical Biohealth, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Jae-Hee Kwon
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jae Hyun Kim
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Myeong Gyu Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
3
|
Ordog K, Horvath O, Eros K, Bruszt K, Toth S, Kovacs D, Kalman N, Radnai B, Deres L, Gallyas F, Toth K, Halmosi R. Mitochondrial protective effects of PARP-inhibition in hypertension-induced myocardial remodeling and in stressed cardiomyocytes. Life Sci 2021; 268:118936. [PMID: 33421523 DOI: 10.1016/j.lfs.2020.118936] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/27/2020] [Accepted: 12/12/2020] [Indexed: 12/13/2022]
Abstract
AIMS During oxidative stress mitochondria become the main source of endogenous reactive oxygen species (ROS) production. In the present study, we aimed to clarify the effects of pharmacological PARP-1 inhibition on mitochondrial function and quality control processes. MAIN METHODS L-2286, a quinazoline-derivative PARP inhibitor, protects against cardiovascular remodeling and heart failure by favorable modulation of signaling routes. We examined the effects of PARP-1 inhibition on mitochondrial quality control processes and function in vivo and in vitro. Spontaneously hypertensive rats (SHRs) were treated with L-2286 or placebo. In the in vitro model, 150 μM H2O2 stress was applied on neonatal rat cardiomyocytes (NRCM). KEY FINDINGS PARP-inhibition prevented the development of left ventricular hypertrophy in SHRs. The interfibrillar mitochondrial network were less fragmented, the average mitochondrial size was bigger and showed higher cristae density compared to untreated SHRs. Dynamin related protein 1 (Drp1) translocation and therefore the fission of mitochondria was inhibited by L-2286 treatment. Moreover, L-2286 treatment increased the amount of fusion proteins (Opa1, Mfn2), thus preserving structural stability. PARP-inhibition also preserved the mitochondrial genome integrity. In addition, the mitochondrial biogenesis was also enhanced due to L-2286 treatment, leading to an overall increase in the ATP production and improvement in survival of stressed cells. SIGNIFICANCE Our results suggest that the modulation of mitochondrial dynamics and biogenesis can be a promising therapeutical target in hypertension-induced myocardial remodeling and heart failure.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Citrate (si)-Synthase/metabolism
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- Electrocardiography
- Glutathione/metabolism
- Hypertension/physiopathology
- Hypertrophy, Left Ventricular/drug therapy
- Hypertrophy, Left Ventricular/etiology
- Male
- Membrane Potential, Mitochondrial/drug effects
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondria, Heart/ultrastructure
- Mitochondrial Proteins/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Natriuretic Peptide, Brain/blood
- Piperidines/pharmacology
- Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
- Quinazolines/pharmacology
- Rats, Inbred SHR
- Rats, Wistar
- Rats
Collapse
Affiliation(s)
- K Ordog
- 1st Department of Medicine, University of Pecs Medical School, Pecs, Hungary; Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - O Horvath
- 1st Department of Medicine, University of Pecs Medical School, Pecs, Hungary; Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - K Eros
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary; Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary; HAS-UP Nuclear-Mitochondrial Interactions Research Group, Budapest, Hungary
| | - K Bruszt
- 1st Department of Medicine, University of Pecs Medical School, Pecs, Hungary; Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Sz Toth
- 1st Department of Medicine, University of Pecs Medical School, Pecs, Hungary
| | - D Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary
| | - N Kalman
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary
| | - B Radnai
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary
| | - L Deres
- 1st Department of Medicine, University of Pecs Medical School, Pecs, Hungary; Szentagothai Research Centre, University of Pecs, Pecs, Hungary; HAS-UP Nuclear-Mitochondrial Interactions Research Group, Budapest, Hungary
| | - F Gallyas
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary; Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary; HAS-UP Nuclear-Mitochondrial Interactions Research Group, Budapest, Hungary
| | - K Toth
- 1st Department of Medicine, University of Pecs Medical School, Pecs, Hungary; Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - R Halmosi
- 1st Department of Medicine, University of Pecs Medical School, Pecs, Hungary; Szentagothai Research Centre, University of Pecs, Pecs, Hungary.
| |
Collapse
|
4
|
Kaur N, Raja R, Ruiz-Velasco A, Liu W. Cellular Protein Quality Control in Diabetic Cardiomyopathy: From Bench to Bedside. Front Cardiovasc Med 2020; 7:585309. [PMID: 33195472 PMCID: PMC7593653 DOI: 10.3389/fcvm.2020.585309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Heart failure is a serious comorbidity and the most common cause of mortality in diabetes patients. Diabetic cardiomyopathy (DCM) features impaired cellular structure and function, culminating in heart failure; however, there is a dearth of specific clinical therapy for treating DCM. Protein homeostasis is pivotal for the maintenance of cellular viability under physiological and pathological conditions, particularly in the irreplaceable cardiomyocytes; therefore, it is tightly regulated by a protein quality control (PQC) system. Three evolutionarily conserved molecular processes, the unfolded protein response (UPR), the ubiquitin-proteasome system (UPS), and autophagy, enhance protein turnover and preserve protein homeostasis by suppressing protein translation, degrading misfolded or unfolded proteins in cytosol or organelles, disposing of damaged and toxic proteins, recycling essential amino acids, and eliminating insoluble protein aggregates. In response to increased cellular protein demand under pathological insults, including the diabetic condition, a coordinated PQC system retains cardiac protein homeostasis and heart performance, on the contrary, inappropriate PQC function exaggerates cardiac proteotoxicity with subsequent heart dysfunction. Further investigation of the PQC mechanisms in diabetes propels a more comprehensive understanding of the molecular pathogenesis of DCM and opens new prospective treatment strategies for heart disease and heart failure in diabetes patients. In this review, the function and regulation of cardiac PQC machinery in diabetes mellitus, and the therapeutic potential for the diabetic heart are discussed.
Collapse
Affiliation(s)
- Namrita Kaur
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Rida Raja
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrea Ruiz-Velasco
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Wei Liu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
Role of Akt Activation in PARP Inhibitor Resistance in Cancer. Cancers (Basel) 2020; 12:cancers12030532. [PMID: 32106627 PMCID: PMC7139751 DOI: 10.3390/cancers12030532] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors have recently been introduced in the therapy of several types of cancers not responding to conventional treatments. However, de novo and acquired PARP inhibitor resistance is a significant limiting factor in the clinical therapy, and the underlying mechanisms are not fully understood. Activity of the cytoprotective phosphatidylinositol-3 kinase (PI3K)-Akt pathway is often increased in human cancer that could result from mutation, expressional change, or amplification of upstream growth-related factor signaling elements or elements of the Akt pathway itself. However, PARP-inhibitor-induced activation of the cytoprotective PI3K-Akt pathway is overlooked, although it likely contributes to the development of PARP inhibitor resistance. Here, we briefly summarize the biological role of the PI3K-Akt pathway. Next, we overview the significance of the PARP-Akt interplay in shock, inflammation, cardiac and cerebral reperfusion, and cancer. We also discuss a recently discovered molecular mechanism that explains how PARP inhibition induces Akt activation and may account for apoptosis resistance and mitochondrial protection in oxidative stress and in cancer.
Collapse
|
6
|
Lu J, Li J, Hu Y, Guo Z, Sun D, Wang P, Guo K, Duan DD, Gao S, Jiang J, Wang J, Liu P. Chrysophanol protects against doxorubicin-induced cardiotoxicity by suppressing cellular PARylation. Acta Pharm Sin B 2019; 9:782-793. [PMID: 31384538 PMCID: PMC6663922 DOI: 10.1016/j.apsb.2018.10.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/26/2018] [Accepted: 10/09/2018] [Indexed: 01/13/2023] Open
Abstract
The clinical application of doxorubicin (DOX) in cancer chemotherapy is limited by its life-threatening cardiotoxic effects. Chrysophanol (CHR), an anthraquinone compound isolated from the rhizome of Rheum palmatum L., is considered to play a broad role in a variety of biological processes. However, the effects of CHR׳s cardioprotection in DOX-induced cardiomyopathy is poorly understood. In this study, we found that the cardiac apoptosis, mitochondrial injury and cellular PARylation levels were significantly increased in H9C2 cells treated by Dox, while these effects were suppressed by CHR. Similar results were observed when PARP1 activity was suppressed by its inhibitors 3-aminobenzamide (3AB) and ABT888. Ectopic expression of PARP1 effectively blocked this CHR׳s cardioprotection against DOX-induced cardiomyocyte injury in H9C2 cells. Furthermore, pre-administration with both CHR and 3AB relieved DOX-induced cardiac apoptosis, mitochondrial impairment and heart dysfunction in Sprague-Dawley rat model. These results revealed that CHR protects against DOX-induced cardiotoxicity by suppressing cellular PARylation and provided critical evidence that PARylation may be a novel target for DOX-induced cardiomyopathy.
Collapse
Key Words
- 3AB, 3-aminobenzamide
- ADR, adriamycin
- ANOVA, one-way analysis of variance
- Apoptosis
- CHR, chrysophanol
- CMC-Na, sodium carboxymethyl
- CO, cardiac output
- Cardiotoxicity
- Chrysophanol
- Cyt c, Cytochrome c
- DOX, doxorubicin
- Doxorubicin
- EF, ejection fraction
- FBS, fetal bovine serum
- FS, fractional shortening
- HE, hematoxylin-eosin
- HR, heart rate
- IVSd, end-diastolic interventricular septum
- IVSs, end-systolic interventricular septum
- LV, end-systolic volume
- LVEDV, LV end-diastolic volume
- LVIDd, LV end-diastolic internal diameter
- LVIDs, LV end-systolic internal diameter
- LVPWd, LV end-diastolic posterior wall thickness
- LVPWs, LV end-systolic posterior wall thickness
- Mitochondria
- NS, normal saline
- PAR, polymers of ADP-ribose
- PARP1, poly(ADP-ribose) polymerase 1
- PARylated, poly(ADP-ribosyl)ated
- PARylation
- PARylation, poly(ADP-ribosyl)ation
- PBS, phosphate-buffered saline
- RCR, respiratory control ratio
- ROS, reactive oxygen species
- Rh123, rhodamine 123
- SD, Sprague–Dawley
- TUNEL, TdT-mediated dUTP nick end labeling
- VDAC1, voltage dependent anion channel 1
Collapse
|
7
|
Poly(ADP-ribose) Polymerase (PARP) and PARP Inhibitors: Mechanisms of Action and Role in Cardiovascular Disorders. Cardiovasc Toxicol 2019; 18:493-506. [PMID: 29968072 DOI: 10.1007/s12012-018-9462-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Poly(ADP-ribosyl)ation is an immediate cellular repair response to DNA damage and is catalyzed primarily by poly(ADP-ribose)polymerase-1 (PARP1), which is the most abundant of the 18 different PARP isoforms and accounts for more than 90% of the catalytic activity of PARP in the cell nucleus. Upon detection of a DNA strand break, PARP1 binds to the DNA, cleaves nicotinamide adenine dinucleotide between nicotinamide and ribose and then modifies the DNA nuclear acceptor proteins by formation of a bond between the protein and the ADP-ribose residue. This generates ribosyl-ribosyl linkages that act as a signal for other DNA-repairing enzymes and DNA base repair. Extensive DNA breakage in cells results in excessive activation of PARP with resultant depletion of the cellular stores of nicotinamide adenine dinucleotide (NAD+) which slows the rate of glycolysis, mitochondrial electron transport, and ultimately ATP formation in these cells. This paper focuses on PARP in DNA repair in atherosclerosis, acute myocardial infarction/reperfusion injury, and congestive heart failure and the role of PARP inhibitors in combating the effects of excessive PARP activation in these diseases. Free oxygen radicals and nitrogen radicals in arteries contribute to disruption of the vascular endothelial glycocalyx, which increase the permeability of the endothelium to inflammatory cells and also low-density lipoproteins and the accumulation of lipid in the vascular intima. Mild inflammation and DNA damage within vascular cells promote PARP1 activation and DNA repair. Moderate DNA damage induces caspase-dependent PARP cleavage and vascular cell apoptosis. Severe DNA damage due to vascular inflammation causes excessive activation of PARP1. This causes endothelial cell depletion of NAD+ and ATP, downregulation of atheroprotective SIRT1, necrotic cell death, and ultimately atherosclerotic plaque disruption. Inhibition of PARP decreases vascular endothelial cell adhesion P-selectin and ICAM-1 molecules, inflammatory cells, pro-death caspase-3, and c-Jun N-terminal kinase (JNK) activation and upregulates prosurvival extracellular signal-regulated kinases and AKT, which decrease vascular cell apoptosis and necrosis and limit atherosclerosis and plaque disruption. In myocardial infarction with coronary occlusion then reperfusion, which occurs with coronary angioplasty or thrombolytic therapy, reperfusion injury occurs in as many as 31% of patients and is caused by inflammatory cells, free oxygen and nitrogen radicals, the rapid transcriptional activation of inflammatory cytokines, and the activation of PARP1. Inhibition of PARP attenuates neutrophil infiltration and inflammatory cytokine expression in the reperfused myocardium and preserves myocardial NAD+ and ATP. In addition, PARP inhibition increases the activation of myocyte survival enzymes protein kinase B (Akt) and protein kinase C epsilon (PKCε), and decreases the activity of myocardial ventricular remodeling enzymes PKCα/β, PKCζ/λ, and PKCδ. As a consequence, cardiomyocyte and vascular endothelial cell necrosis is decreased and myocardial contractility is preserved. In heart failure and circulatory shock in animal models, PARP inhibition significantly attenuates decreases in left ventricular systolic pressure, ventricular contractility and relaxation, stroke volume, and increases survival by limiting or preventing upregulation of adhesion molecules, proinflammatory cytokines, myocardial mononuclear cell infiltration, and PKCα/β and PKC λ/ζ. In this manner, PARP inhibition partially restores the myocardial concentrations of NAD+, limits ventricular remodeling and fibrosis, and prevents significant decreases in myocardial contractility. Based primarily on investigations in preclinical models of atherosclerosis, myocardial infarction, and heart failure, PARP inhibition appears to be beneficial in limiting or inhibiting cardiovascular dysfunction. These studies indicate that investigations of acute and chronic PARP inhibition are warranted in patients with atherosclerotic coronary artery disease.
Collapse
|
8
|
Hu Y, Guo Z, Lu J, Wang P, Sun S, Zhang Y, Li J, Zheng Q, Guo K, Wang J, Jiang J, Liu P. sFRP1 has a biphasic effect on doxorubicin-induced cardiotoxicity in a cellular location-dependent manner in NRCMs and Rats. Arch Toxicol 2018; 93:533-546. [PMID: 30377735 DOI: 10.1007/s00204-018-2342-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022]
Abstract
Doxorubicin (Dox) is an effective anticancer drug, however, its clinical application is restricted by the life-threatening cardiotoxic effects. Secreted Frizzled-related protein 1 (sFRP1) has been reported to participate in both the cancer and cardiovascular diseases and was one of the differential expression genes in normal hearts compared with Dox-treated hearts. Thus, it is important to reveal the potential role of sFRP1 in Dox-induced cardiotoxicity. Here, we show that sFRP1 has a biphasic effect on Dox-induced cardiotoxicity in a location-dependent manner. The secretion of sFRP1 was significantly increased in Dox-treated neonatal rat cardiomyocytes (NRCMs) (1 µM) and SD rats (5 mg/kg/injection at day 1, 5, and 9, i.p.). Adding the anti-sFRP1 antibody (0.5 µg/ml) and inhibiting sFRP1 secretion by caffeine (5 mM) both relieved Dox-induced cardiotoxicity through activating Wnt/β-catenin signaling, whereas increasing the secretion of sFRP1 by heparin (100 µg/ml) had the opposite effect. The intracellular level of sFRP1 was significantly decreased after Dox treatment both in vitro and in vivo. Knockdown of sFRP1 by sgRNA aggravated Dox-induced cardiotoxicity, while moderate overexpression of sFRP1 by Ad-sFRP1 exhibited protective effect. Besides, poly(ADP-ribosyl) polymerase-1 (PARP1) was screened as an interacting partner of sFRP1 in NRCMs by mass spectrometry. Our results suggested that the intracellular sFRP1 protected NRCMs from Dox-induced cardiotoxicity by interacting with PARP1. Thus, our results provide a novel evidence that sFRP1 has a biphasic effect on Dox-induced cardiotoxicity. In addition, the oversecretion of sFRP1 might be used as a biomarker to indicate the occurrence of cardiotoxicity induced by Dox treatment.
Collapse
Affiliation(s)
- Yuehuai Hu
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou, 510006, People's Republic of China
| | - Zhen Guo
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou, 510006, People's Republic of China
| | - Jing Lu
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou, 510006, People's Republic of China.
| | - Panxia Wang
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou, 510006, People's Republic of China
| | - Shuya Sun
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Yiqiang Zhang
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Jingyan Li
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou, 510006, People's Republic of China
| | - Qiyao Zheng
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou, 510006, People's Republic of China
| | - Kaiteng Guo
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou, 510006, People's Republic of China
| | - Junjian Wang
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou, 510006, People's Republic of China
| | - Jianmin Jiang
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou, 510006, People's Republic of China.
| | - Peiqing Liu
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
9
|
Ranek MJ, Stachowski MJ, Kirk JA, Willis MS. The role of heat shock proteins and co-chaperones in heart failure. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0530. [PMID: 29203715 DOI: 10.1098/rstb.2016.0530] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 12/18/2022] Open
Abstract
The ongoing contractile and metabolic demands of the heart require a tight control over protein quality control, including the maintenance of protein folding, turnover and synthesis. In heart disease, increases in mechanical and oxidative stresses, post-translational modifications (e.g., phosphorylation), for example, decrease protein stability to favour misfolding in myocardial infarction, heart failure or ageing. These misfolded proteins are toxic to cardiomyocytes, directly contributing to the common accumulation found in human heart failure. One of the critical class of proteins involved in protecting the heart against these threats are molecular chaperones, including the heat shock protein70 (HSP70), HSP90 and co-chaperones CHIP (carboxy terminus of Hsp70-interacting protein, encoded by the Stub1 gene) and BAG-3 (BCL2-associated athanogene 3). Here, we review their emerging roles in the maintenance of cardiomyocytes in human and experimental models of heart failure, including their roles in facilitating the removal of misfolded and degraded proteins, inhibiting apoptosis and maintaining the structural integrity of the sarcomere and regulation of nuclear receptors. Furthermore, we discuss emerging evidence of increased expression of extracellular HSP70, HSP90 and BAG-3 in heart failure, with complementary independent roles from intracellular functions with important therapeutic and diagnostic considerations. While our understanding of these major HSPs in heart failure is incomplete, there is a clear potential role for therapeutic modulation of HSPs in heart failure with important contextual considerations to counteract the imbalance of protein damage and endogenous protein quality control systems.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
- Mark J Ranek
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Marisa J Stachowski
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University, Chicago, IL 60302, USA
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University, Chicago, IL 60302, USA
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, CB#7525, Chapel Hill, NC 27599-7525, USA
| |
Collapse
|
10
|
Eros K, Magyar K, Deres L, Skazel A, Riba A, Vamos Z, Kalai T, Gallyas F, Sumegi B, Toth K, Halmosi R. Chronic PARP-1 inhibition reduces carotid vessel remodeling and oxidative damage of the dorsal hippocampus in spontaneously hypertensive rats. PLoS One 2017; 12:e0174401. [PMID: 28339485 PMCID: PMC5365133 DOI: 10.1371/journal.pone.0174401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/08/2017] [Indexed: 02/07/2023] Open
Abstract
Vascular remodeling during chronic hypertension may impair the supply of tissues with oxygen, glucose and other compounds, potentially unleashing deleterious effects. In this study, we used Spontaneously Hypertensive Rats and normotensive Wistar-Kyoto rats with or without pharmacological inhibition of poly(ADP-ribose)polymerase-1 by an experimental compound L-2286, to evaluate carotid artery remodeling and consequent damage of neuronal tissue during hypertension. We observed elevated oxidative stress and profound thickening of the vascular wall with fibrotic tissue accumulation induced by elevated blood pressure. 32 weeks of L-2286 treatment attenuated these processes by modulating mitogen activated protein kinase phosphatase-1 cellular levels in carotid arteries. In hypertensive animals, vascular inflammation and endothelial dysfunction was observed by NF-κB nuclear accumulation and impaired vasodilation to acetylcholine, respectively. Pharmacological poly(ADP-ribose)polymerase-1 inhibition interfered in these processes and mitigated Apoptosis Inducing Factor dependent cell death events, thus improved structural and functional alterations of carotid arteries, without affecting blood pressure. Chronic poly(ADP-ribose)polymerase-1 inhibition protected neuronal tissue against oxidative damage, assessed by nitrotyrosine, 4-hydroxinonenal and 8-oxoguanosine immunohistochemistry in the area of Cornu ammonis 1 of the dorsal hippocampus in hypertensive rats. In this area, extensive pyramidal cell loss was also attenuated by treatment with lowered poly(ADP-ribose)polymer formation. It also preserved the structure of fissural arteries and attenuated perivascular white matter lesions and reactive astrogliosis in hypertensive rats. These data support the premise in which chronic poly(ADP-ribose)polymerase-1 inhibition has beneficial effects on hypertension related tissue damage both in vascular tissue and in the hippocampus by altering signaling events, reducing oxidative/nitrosative stress and inflammatory status, without lowering blood pressure.
Collapse
Affiliation(s)
- Krisztian Eros
- 1st Department of Medicine, Clinical Centre, University of Pecs, Pecs, Baranya, Hungary.,Szentagothai Research Centre, University of Pecs, Pecs, Baranya, Hungary.,Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Pecs, Baranya, Hungary
| | - Klara Magyar
- 1st Department of Medicine, Clinical Centre, University of Pecs, Pecs, Baranya, Hungary
| | - Laszlo Deres
- 1st Department of Medicine, Clinical Centre, University of Pecs, Pecs, Baranya, Hungary.,Szentagothai Research Centre, University of Pecs, Pecs, Baranya, Hungary
| | - Arpad Skazel
- 1st Department of Medicine, Clinical Centre, University of Pecs, Pecs, Baranya, Hungary
| | - Adam Riba
- 1st Department of Medicine, Clinical Centre, University of Pecs, Pecs, Baranya, Hungary.,Szentagothai Research Centre, University of Pecs, Pecs, Baranya, Hungary
| | - Zoltan Vamos
- Szentagothai Research Centre, University of Pecs, Pecs, Baranya, Hungary.,Department of Pathophysiology and Gerontology, Medical School, University of Pecs, Pecs, Baranya, Hungary
| | - Tamas Kalai
- Department of Organic and Pharmacological Chemistry, Medical School, University of Pecs, Pecs, Baranya, Hungary
| | - Ferenc Gallyas
- Szentagothai Research Centre, University of Pecs, Pecs, Baranya, Hungary.,Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Pecs, Baranya, Hungary
| | - Balazs Sumegi
- Szentagothai Research Centre, University of Pecs, Pecs, Baranya, Hungary.,Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Pecs, Baranya, Hungary.,MTA-PTE Nuclear and Mitochondrial Interactions Research Group, University of Pecs, Pecs, Baranya, Hungary
| | - Kalman Toth
- 1st Department of Medicine, Clinical Centre, University of Pecs, Pecs, Baranya, Hungary.,Szentagothai Research Centre, University of Pecs, Pecs, Baranya, Hungary.,MTA-PTE Nuclear and Mitochondrial Interactions Research Group, University of Pecs, Pecs, Baranya, Hungary
| | - Robert Halmosi
- 1st Department of Medicine, Clinical Centre, University of Pecs, Pecs, Baranya, Hungary.,Szentagothai Research Centre, University of Pecs, Pecs, Baranya, Hungary
| |
Collapse
|
11
|
Halmosi R, Deres L, Gal R, Eros K, Sumegi B, Toth K. PARP inhibition and postinfarction myocardial remodeling. Int J Cardiol 2016; 217 Suppl:S52-9. [PMID: 27392900 DOI: 10.1016/j.ijcard.2016.06.223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/25/2016] [Indexed: 11/19/2022]
Abstract
Coronary artery disease accounts for the greatest proportion of cardiovascular diseases therefore it is the major cause of death worldwide. Its therapeutic importance is indicated by still high mortality of myocardial infarction, which is one of the most severe forms of CVDs. Moreover, the risk of developing heart failure is very high among survivors. Heart failure is accompanied by high morbidity and mortality rate, therefore this topic is in the focus of researchers' interest. After a myocardial infarct, at first ventricular hypertrophy develops as a compensatory mechanism to decrease wall stress but finally leads to left ventricular dilation. This phenomenon is termed as myocardial remodeling. The main characteristics of underlying mechanisms involve cardiomyocyte growth, vessel changes and increased collagen production, in all of which several mechanical stress induced neurohumoral agents, oxidative stress and signal transduction pathways are involved. The long term activation of these processes ultimately leads to left ventricular dilation and heart failure with decreased systolic function. Oxidative stress causes DNA breaks producing the activation of nuclear poly(ADP-ribose) polymerase-1 (PARP-1) enzyme that leads to energy depletion and unfavorable modulation of different kinase cascades (Akt-1/GSK-3β, MAPKs, various PKC isoforms) and thus it promotes the development of heart failure. Therefore inhibition of PARP enzyme could offer a promising new therapeutical approach to prevent the onset of heart failure among postinfarction patients. The purpose of this review is to give a comprehensive summary about the most significant experimental results and mechanisms in postinfarction remodeling.
Collapse
Affiliation(s)
- Robert Halmosi
- 1st Department of Medicine, Division of Cardiology, University of Pecs, Pecs, Hungary; Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Laszlo Deres
- 1st Department of Medicine, Division of Cardiology, University of Pecs, Pecs, Hungary; Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Roland Gal
- 1st Department of Medicine, Division of Cardiology, University of Pecs, Pecs, Hungary
| | - Krisztian Eros
- 1st Department of Medicine, Division of Cardiology, University of Pecs, Pecs, Hungary; Department of Biochemistry and Medical Chemistry, University of Pecs, Pecs, Hungary; Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Balazs Sumegi
- Department of Biochemistry and Medical Chemistry, University of Pecs, Pecs, Hungary; Szentagothai Research Center, University of Pecs, Pecs, Hungary; MTA-PTE, Nuclear and Mitochondrial Interactions Research Group, Pecs, Hungary
| | - Kalman Toth
- 1st Department of Medicine, Division of Cardiology, University of Pecs, Pecs, Hungary; Szentagothai Research Center, University of Pecs, Pecs, Hungary; MTA-PTE, Nuclear and Mitochondrial Interactions Research Group, Pecs, Hungary.
| |
Collapse
|
12
|
Tempol, a Membrane-Permeable Radical Scavenger, Exhibits Anti-Inflammatory and Cardioprotective Effects in the Cerulein-Induced Pancreatitis Rat Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:4139851. [PMID: 26770650 PMCID: PMC4685139 DOI: 10.1155/2016/4139851] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/30/2015] [Accepted: 08/31/2015] [Indexed: 12/22/2022]
Abstract
To date, it remains unclear whether mild form of acute pancreatitis (AP) may cause myocardial damage which may be asymptomatic for a long time. Pathogenesis of AP-related cardiac injury may be attributed in part to ROS/RNS overproduction. The aim of the present study was to evaluate the oxidative stress changes in both the pancreas and the heart and to estimate the protective effects of 1-oxyl-2,2,6,6-tetramethyl-4-hydroxypiperidine (tempol) at the early phase of AP. Cerulein-induced AP led to the development of acute edematous pancreatitis with a significant decrease in the level of sulfhydryl (–SH) groups (oxidation marker) both in heart and in pancreatic tissues as well as a substantial increase in plasma creatine kinase isoenzyme (CK-MB) activity (marker of the heart muscle lesion) which confirmed the role of oxidative stress in the pathogenesis of cardiac damage. The tempol treatment significantly reduced the intensity of inflammation and oxidative damage and decreased the morphological evidence of pancreas injury at early AP stages. Moreover, it markedly attenuated AP-induced cardiac damage revealed by normalization of the –SH group levels and CK-MB activity. On the basis of these studies, it is possible to conclude that tempol has a profound protective effect against cardiac and pancreatic damage induced by AP.
Collapse
|
13
|
Xue H, Ren W, Denkinger M, Schlotzer E, Wischmeyer PE. Nutrition Modulation of Cardiotoxicity and Anticancer Efficacy Related to Doxorubicin Chemotherapy by Glutamine and ω-3 Polyunsaturated Fatty Acids. JPEN J Parenter Enteral Nutr 2015; 40:52-66. [PMID: 25888676 DOI: 10.1177/0148607115581838] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/16/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Doxorubicin (DOX) has been one of the most effective antitumor agents against a broad spectrum of malignancies. However, DOX-induced cardiotoxicity forms the major cumulative dose-limiting factor. Glutamine and ω-3 polyunsaturated fatty acids (PUFAs) are putatively cardioprotective during various stresses and/or have potential chemosensitizing effects during cancer chemotherapy. METHODS Antitumor activity and cardiotoxicity of DOX treatment were evaluated simultaneously in a MatBIII mammary adenocarcinoma tumor-bearing rat model treated with DOX (cumulative dose 12 mg/kg). Single or combined treatment of parenteral glutamine (0.35 g/kg) and ω-3 PUFAs (0.19 g/kg eicosapentaenoic acid and 0.18 g/kg docosahexaenoic acid) was administered every other day, starting 6 days before chemotherapy initiation until the end of study (day 50). RESULTS Glutamine alone significantly prevented DOX-related deterioration of cardiac function, reduced serum cardiac troponin I levels, and diminished cardiac lipid peroxidation while not affecting tumor inhibition kinetics. Single ω-3 PUFA treatment significantly enhanced antitumor activity of DOX associated with intensified tumoral oxidative stress and enhanced tumoral DOX concentration while not potentiating cardiac dysfunction or increasing cardiac oxidative stress. Intriguingly, providing glutamine and ω-3 PUFAs together did not consistently confer a greater benefit; conversely, individual benefits on cardiotoxicity and chemosensitization were mostly attenuated or completely lost when combined. CONCLUSIONS Our data demonstrate an interesting differentiality or even dichotomy in the response of tumor and host to single parenteral glutamine and ω-3 PUFA treatments. The intriguing glutamine × ω-3 PUFA interaction observed draws into question the common assumption that there are additive benefits of combinations of nutrients that are beneficial on an individual basis.
Collapse
Affiliation(s)
- Hongyu Xue
- Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado
| | - Wenhua Ren
- Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado
| | | | | | - Paul E Wischmeyer
- Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
14
|
Chen S, Wu S, Li W, Chen X, Dong X, Tan G, Zhang H, Hong Z, Zhu Z, Chai Y. Investigation of the therapeutic effectiveness of active components in Sini decoction by a comprehensive GC/LC-MS based metabolomics and network pharmacology approaches. MOLECULAR BIOSYSTEMS 2014; 10:3310-21. [PMID: 25315049 DOI: 10.1039/c4mb00048j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As a classical formula, Sini decoction (SND) has been fully proved to be clinically effective in treating doxorubicin (DOX)-induced cardiomyopathy. Current chemomics and pharmacology proved that the total alkaloids (TA), total gingerols (TG), total flavones and total saponins (TFS) are the major active ingredients of Aconitum carmichaelii, Zingiber officinale and Glycyrrhiza uralensis in SND respectively. Our animal experiments in this study demonstrated that the above active ingredients (TAGFS) were more effective than formulas formed by any one or two of the three individual components and nearly the same as SND. However, very little is known about the action mechanisms of TAGFS. Thus, this study aimed to use for the first time the combination of GC/LC-MS based metabolomics and network pharmacology for solving this problem. By metabolomics, it was found that TAGFS worked by regulating six primary pathways. Then, network pharmacology was applied to search for specific targets. 17 potential cardiovascular related targets were found through molecular docking, 11 of which were identified by references, which demonstrated the therapeutic effectiveness of TAGFS using network pharmacology. Among these targets, four targets, including phosphoinositide 3-kinase gamma, insulin receptor, ornithine aminotransferase and glucokinase, were involved in the TAGFS regulated pathways. Moreover, phosphoinositide 3-kinase gamma, insulin receptor and glucokinase were proved to be targets of active components in SND. In addition, our data indicated TA as the principal ingredient in the SND formula, whereas TG and TFS served as adjuvant ingredients. We therefore suggest that dissecting the mode of action of clinically effective formulae with the combination use of metabolomics and network pharmacology may be a good strategy.
Collapse
Affiliation(s)
- Si Chen
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chen X, Cao Y, Zhang H, Zhu Z, Liu M, Liu H, Ding X, Hong Z, Li W, Lv D, Wang L, Zhuo X, Zhang J, Xie XQ, Chai Y. Comparative normal/failing rat myocardium cell membrane chromatographic analysis system for screening specific components that counteract doxorubicin-induced heart failure from Acontium carmichaeli. Anal Chem 2014; 86:4748-57. [PMID: 24731167 PMCID: PMC4033634 DOI: 10.1021/ac500287e] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
Cell membrane chromatography (CMC)
derived from pathological tissues
is ideal for screening specific components acting on specific diseases
from complex medicines owing to the maximum simulation of in vivo drug-receptor interactions. However, there are no
pathological tissue-derived CMC models that have ever been developed,
as well as no visualized affinity comparison of potential active components
between normal and pathological CMC columns. In this study, a novel
comparative normal/failing rat myocardium CMC analysis system based
on online column selection and comprehensive two-dimensional (2D)
chromatography/monolithic column/time-of-flight mass spectrometry
was developed for parallel comparison of the chromatographic behaviors
on both normal and pathological CMC columns, as well as rapid screening
of the specific therapeutic agents that counteract doxorubicin (DOX)-induced
heart failure from Acontium carmichaeli (Fuzi). In
total, 16 potential active alkaloid components with similar structures
in Fuzi were retained on both normal and failing myocardium CMC models.
Most of them had obvious decreases of affinities on failing myocardium
CMC compared with normal CMC model except for four components, talatizamine
(TALA), 14-acetyl-TALA, hetisine, and 14-benzoylneoline. One compound
TALA with the highest affinity was isolated for further in
vitro pharmacodynamic validation and target identification
to validate the screen results. Voltage-dependent K+ channel
was confirmed as a binding target of TALA and 14-acetyl-TALA with
high affinities. The online high throughput comparative CMC analysis
method is suitable for screening specific active components from herbal
medicines by increasing the specificity of screened results and can
also be applied to other biological chromatography models.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University , No. 325 Guohe Road, Shanghai 200433, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Liu Y, Shim E, Nguyen P, Gibbons AT, Mitchell JB, Poirier MC. Tempol protects cardiomyocytes from nucleoside reverse transcriptase inhibitor-induced mitochondrial toxicity. Toxicol Sci 2014; 139:133-41. [PMID: 24591154 DOI: 10.1093/toxsci/kfu034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nucleoside reverse transcriptase inhibitors (NRTIs), essential components of combinational therapies used for treatment of human immunodeficiency virus-1, damage heart mitochondria. Here, we have shown mitochondrial compromise in H9c2 rat cardiomyocytes exposed for 16 passages (P) to the NRTIs zidovudine (AZT, 50μM) and didanosine (ddI, 50μM), and we have demonstrated protection from mitochondrial compromise in cells treated with 200μM 1-oxyl-2,2,6,6-tetramethyl-4-hydroxypiperidine (Tempol) or 200μM 1-hydroxy-4-[2-triphenylphosphonio)-acetamido]-2,2,6,6-tetramethylpiperidine (Tempol-H), along with AZT/ddI, for 16P. Exposure to AZT/ddI caused a moderate growth inhibition at P3, P5, P7, and P13, which was not altered by addition of Tempol or Tempol-H. Mitochondrial oxidative phosphorylation capacity was determined as uncoupled oxygen consumption rate (OCR) by Seahorse XF24 Analyzer. At P5, P7, and P13, AZT/ddI-exposed cells showed an OCR reduction of 8.8-57.2% in AZT/ddI-exposed cells, compared with unexposed cells. Addition of Tempol or Tempol-H, along with AZT/ddI, resulted in OCR levels increased by about 300% above the values seen with AZT/ddI alone. The Seahorse data were further supported by electron microscopy (EM) studies in which P16 cells exposed to AZT/ddI/Tempol had less mitochondrial pathology than P16 cells exposed to AZT/ddI. Western blots of P5 cells showed that Tempol and Tempol-H upregulated expression of mitochondrial uncoupling protein-2 (UCP-2). However, Complex I activity that was reduced by AZT/ddI, was not restored in the presence of AZT/ddI/Tempol. Superoxide levels were increased in the presence of AZT/ddI and significantly decreased in cells exposed to AZT/3TC/Tempol at P3, P7, and P10. In conclusion, Tempol protects against NRTI-induced mitochondrial compromise, and UCP-2 plays a role through mild uncoupling.
Collapse
Affiliation(s)
- Yongmin Liu
- Carcinogen-DNA Interactions Section, Laboratory of Cancer Biology and Genetics, CCR, National Cancer Institute, NIH, Bethesda, Maryland 20892-4255
| | | | | | | | | | | |
Collapse
|
17
|
Curtin N, Szabo C. Therapeutic applications of PARP inhibitors: anticancer therapy and beyond. Mol Aspects Med 2013; 34:1217-56. [PMID: 23370117 PMCID: PMC3657315 DOI: 10.1016/j.mam.2013.01.006] [Citation(s) in RCA: 287] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/12/2013] [Accepted: 01/18/2013] [Indexed: 12/21/2022]
Abstract
The aim of this article is to describe the current and potential clinical translation of pharmacological inhibitors of poly(ADP-ribose) polymerase (PARP) for the therapy of various diseases. The first section of the present review summarizes the available preclinical and clinical data with PARP inhibitors in various forms of cancer. In this context, the role of PARP in single-strand DNA break repair is relevant, leading to replication-associated lesions that cannot be repaired if homologous recombination repair (HRR) is defective, and the synthetic lethality of PARP inhibitors in HRR-defective cancer. HRR defects are classically associated with BRCA1 and 2 mutations associated with familial breast and ovarian cancer, but there may be many other causes of HRR defects. Thus, PARP inhibitors may be the drugs of choice for BRCA mutant breast and ovarian cancers, and extend beyond these tumors if appropriate biomarkers can be developed to identify HRR defects. Multiple lines of preclinical data demonstrate that PARP inhibition increases cytotoxicity and tumor growth delay in combination with temozolomide, topoisomerase inhibitors and ionizing radiation. Both single agent and combination clinical trials are underway. The final part of the first section of the present review summarizes the current status of the various PARP inhibitors that are in various stages of clinical development. The second section of the present review summarizes the role of PARP in selected non-oncologic indications. In a number of severe, acute diseases (such as stroke, neurotrauma, circulatory shock and acute myocardial infarction) the clinical translatability of PARP inhibition is supported by multiple lines of preclinical data, as well as observational data demonstrating PARP activation in human tissue samples. In these disease indications, PARP overactivation due to oxidative and nitrative stress drives cell necrosis and pro-inflammatory gene expression, which contributes to disease pathology. Accordingly, multiple lines of preclinical data indicate the efficacy of PARP inhibitors to preserve viable tissue and to down-regulate inflammatory responses. As the clinical trials with PARP inhibitors in various forms of cancer progress, it is hoped that a second line of clinical investigations, aimed at testing of PARP inhibitors for various non-oncologic indications, will be initiated, as well.
Collapse
Affiliation(s)
- Nicola Curtin
- Department of Experimental Cancer Therapy, Northern Institute for Cancer Research, Newcastle University, University of Newcastle Upon Tyne, UK
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
18
|
The NO/ONOO-cycle as the central cause of heart failure. Int J Mol Sci 2013; 14:22274-330. [PMID: 24232452 PMCID: PMC3856065 DOI: 10.3390/ijms141122274] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 01/08/2023] Open
Abstract
The NO/ONOO-cycle is a primarily local, biochemical vicious cycle mechanism, centered on elevated peroxynitrite and oxidative stress, but also involving 10 additional elements: NF-κB, inflammatory cytokines, iNOS, nitric oxide (NO), superoxide, mitochondrial dysfunction (lowered energy charge, ATP), NMDA activity, intracellular Ca(2+), TRP receptors and tetrahydrobiopterin depletion. All 12 of these elements have causal roles in heart failure (HF) and each is linked through a total of 87 studies to specific correlates of HF. Two apparent causal factors of HF, RhoA and endothelin-1, each act as tissue-limited cycle elements. Nineteen stressors that initiate cases of HF, each act to raise multiple cycle elements, potentially initiating the cycle in this way. Different types of HF, left vs. right ventricular HF, with or without arrhythmia, etc., may differ from one another in the regions of the myocardium most impacted by the cycle. None of the elements of the cycle or the mechanisms linking them are original, but they collectively produce the robust nature of the NO/ONOO-cycle which creates a major challenge for treatment of HF or other proposed NO/ONOO-cycle diseases. Elevated peroxynitrite/NO ratio and consequent oxidative stress are essential to both HF and the NO/ONOO-cycle.
Collapse
|
19
|
Park ES, Kang JC, Kang DH, Jang YC, Yi KY, Chung HJ, Park JS, Kim B, Feng ZP, Shin HS. 5-AIQ inhibits H2O2-induced apoptosis through reactive oxygen species scavenging and Akt/GSK-3β signaling pathway in H9c2 cardiomyocytes. Toxicol Appl Pharmacol 2013; 268:90-8. [PMID: 23352507 DOI: 10.1016/j.taap.2013.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
Abstract
Poly(adenosine 5'-diphosphate ribose) polymerase (PARP) is a nuclear enzyme activated by DNA strand breaks and plays an important role in the tissue injury associated with ischemia and reperfusion. The aim of the present study was to investigate the protective effect of 5-aminoisoquinolinone (5-AIQ), a PARP inhibitor, against oxidative stress-induced apoptosis in H9c2 cardiomyocytes. 5-AIQ pretreatment significantly protected against H2O2-induced cell death, as determined by the XTT assay, cell counting, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, and Western blot analysis of apoptosis-related proteins such as caspase-3, Bax, and Bcl-2. Upregulation of antioxidant enzymes such as manganese superoxide dismutase and catalase accompanied the protective effect of 5-AIQ on H2O2-induced cell death. Our data also showed that 5-AIQ pretreatment protected H9c2 cells from H2O2-induced apoptosis by triggering activation of Akt and glycogen synthase kinase-3β (GSK-3β), and that the protective effect of 5-AIQ was diminished by the PI3K inhibitor LY294002 at a concentration that effectively abolished 5-AIQ-induced Akt and GSK-3β activation. In addition, inhibiting the Akt/GSK-3β pathway by LY294002 significantly attenuated the 5-AIQ-mediated decrease in cleaved caspase-3 and Bax activation and H9c2 cell apoptosis induction. Taken together, these results demonstrate that 5-AIQ prevents H2O2-induced apoptosis in H9c2 cells by reducing intracellular reactive oxygen species production, regulating apoptosis-related proteins, and activating the Akt/GSK-3β pathway.
Collapse
Affiliation(s)
- Eun-Seok Park
- Department of Applied Biochemistry, Konkuk University, Chungju, Chungbuk, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mitochondria death/survival signaling pathways in cardiotoxicity induced by anthracyclines and anticancer-targeted therapies. Biochem Res Int 2012; 2012:951539. [PMID: 22482055 PMCID: PMC3318211 DOI: 10.1155/2012/951539] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/04/2012] [Accepted: 01/09/2012] [Indexed: 01/27/2023] Open
Abstract
Anthracyclines remain the cornerstone of treatment in many malignancies but these agents have a cumulative dose relationship with cardiotoxicity. Development of cardiomyopathy and congestive heart failure induced by anthracyclines are typically dose-dependent, irreversible, and cumulative. Although past studies of cardiotoxicity have focused on anthracyclines, more recently interest has turned to anticancer drugs that target many proteins kinases, such as tyrosine kinases. An attractive model to explain the mechanism of this cardiotoxicity could be myocyte loss through cell death pathways. Inhibition of mitochondrial transition permeability is a valuable tool to prevent doxorubicin-induced cardiotoxicity. In response to anthracycline treatment, activation of several protein kinases, neuregulin/ErbB2 signaling, and transcriptional factors modify mitochondrial functions that determine cell death or survival through the modulation of mitochondrial membrane permeability. Cellular response to anthracyclines is also modulated by a myriad of transcriptional factors that influence cell fate. Several novel targeted chemotherapeutic agents have been associated with a small but worrying risk of left ventricular dysfunction. Agents such as trastuzumab and tyrosine kinase inhibitors can lead to cardiotoxicity that is fundamentally different from that caused by anthracyclines, whereas biological effects converge to the mitochondria as a critical target.
Collapse
|
21
|
Qi D, Liu H, Niu J, Fan X, Wen X, Du Y, Mou J, Pei D, Liu Z, Zong Z, Wei X, Song Y. Heat shock protein 72 inhibits c-Jun N-terminal kinase 3 signaling pathway via Akt1 during cerebral ischemia. J Neurol Sci 2012; 317:123-9. [PMID: 22386689 DOI: 10.1016/j.jns.2012.02.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 01/20/2012] [Accepted: 02/10/2012] [Indexed: 12/19/2022]
Abstract
Although recent researches show that Heat Shock Protein 72 (HSP72) plays an important role in neuronal survival, little knowledge is known about the precise mechanisms during cerebral ischemia/reperfusion (I/R). Our present study investigated the neuroprotective mechanisms of HSP72 against ischemic brain injury induced by cerebral I/R. Mild heat shock pretreatment was employed to induce the overexpression of HSP72 by immersing rats into the water bath at 42°C for 20 min before cerebral I/R. HSP72 antisense oligodeoxynucleotides (ODNs) were used to inhibit HSP72 expression by intracerebroventricular infusion once per day for 3 days before cerebral I/R animal model was induced by four-vessel occlusion for 15 min transient ischemia and then reperfused for various time in Sprague-Dawley rats. Immunoprecipitation and immunoblotting were used to detect the expression of the related proteins. HE-staining and TUNEL-staining were carried out to examine the neuronal death of hippocampal CA1 region. Results showed that mild heat shock could increase the phosphorylation of protein kinase B (Akt), inhibit the assembly of MLK3-MKK7-JNK3 signaling module, diminish the phosphorylation of JNK3 and c-Jun, and decrease the activation of caspase-3. Furthermore, mild heat shock could significantly protect neurons against cerebral I/R. Whereas, all of the aforementioned effects of mild heat shock were reversed by HSP72 antisense ODNs. In summary, our results imply that Akt1 activation is involved in the neuroprotection of HSP72 against ischemic brain injury via suppressing JNK3 signaling pathway and provide a new experimental foundation for stroke therapy.
Collapse
Affiliation(s)
- Dashi Qi
- Department of Neurobiology, Xuzhou Medical College, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mukhopadhyay P, Horváth B, Kechrid M, Tanchian G, Rajesh M, Naura AS, Boulares AH, Pacher P. Poly(ADP-ribose) polymerase-1 is a key mediator of cisplatin-induced kidney inflammation and injury. Free Radic Biol Med 2011; 51:1774-88. [PMID: 21884784 PMCID: PMC3207278 DOI: 10.1016/j.freeradbiomed.2011.08.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/03/2011] [Accepted: 08/11/2011] [Indexed: 12/21/2022]
Abstract
Cisplatin is a commonly used chemotherapeutic drug, the clinical use of which is limited by the development of dose-dependent nephrotoxicity. Enhanced inflammatory response, oxidative stress, and cell death have been implicated in the development of cisplatin-induced nephropathy; however, the precise mechanisms are elusive. Overactivation of the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) by oxidative DNA damage under various pathological conditions promotes cell death and up-regulation of key proinflammatory pathways. In this study, using a well-established model of nephropathy, we have explored the role of PARP-1 in cisplatin-induced kidney injury. Genetic deletion or pharmacological inhibition of PARP-1 markedly attenuated the cisplatin-induced histopathological damage, impaired renal function (elevated serum BUN and creatinine levels), and enhanced inflammatory response (leukocyte infiltration; TNF-α, IL-1β, F4/80, adhesion molecules ICAM-1/VCAM-1 expression) and consequent oxidative/nitrative stress (4-HNE, 8-OHdG, and nitrotyrosine content; NOX2/NOX4 expression). PARP inhibition also facilitated the cisplatin-induced death of cancer cells. Thus, PARP activation plays an important role in cisplatin-induced kidney injury, and its pharmacological inhibition may represent a promising approach to preventing the cisplatin-induced nephropathy. This is particularly exciting because several PARP inhibitors alone or in combination with DNA-damaging anticancer agents show considerable promise in clinical trials for treatment of various malignancies (e.g., triple-negative breast cancer).
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Béla Horváth
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Malek Kechrid
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Galin Tanchian
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mohanraj Rajesh
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amarjit S Naura
- The Stanley Scott Cancer Center Department and Department of Pharmacology; Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - A. Hamid Boulares
- The Stanley Scott Cancer Center Department and Department of Pharmacology; Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Pál Pacher
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|