1
|
Yang GD, Ma DS, Ma CY, Bai Y. Research Progress on Cardiac Tissue Construction of Mesenchymal Stem Cells for Myocardial Infarction. Curr Stem Cell Res Ther 2024; 19:942-958. [PMID: 37612870 DOI: 10.2174/1574888x18666230823091017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
Heart failure is still the main complication affecting the prognosis of acute myocardial infarction (AMI), and mesenchymal stem cells (MSCs) are an effective treatment to replace necrotic myocardium and improve cardiac functioning. However, the transplant survival rate of MSCs still presents challenges. In this review, the biological characteristics of MSCs, the progress of mechanism research in the treatment of myocardial infarction, and the advances in improving the transplant survival rate of MSCs in the replacement of necrotic myocardial infarction are systematically described. From a basic to advanced clinical research, MSC transplants have evolved from a pure injection, an exosome injection, the genetic modification of MSCs prior to injection to the cardiac tissue engineering of MSC patch grafting. This study shows that MSCs have wide clinical applications in the treatment of AMI, suggesting improved myocardial tissue creation. A broader clinical application prospect will be explored and developed to improve the survival rate of MSC transplants and myocardial vascularization.
Collapse
Affiliation(s)
- Guo-Dong Yang
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Da-Shi Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Chun-Ye Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yang Bai
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
2
|
He S, Walimbe T, Chen H, Gao K, Kumar P, Wei Y, Hao D, Liu R, Farmer DL, Lam KS, Zhou J, Panitch A, Wang A. Bioactive extracellular matrix scaffolds engineered with proangiogenic proteoglycan mimetics and loaded with endothelial progenitor cells promote neovascularization and diabetic wound healing. Bioact Mater 2022; 10:460-473. [PMID: 34901560 PMCID: PMC8636679 DOI: 10.1016/j.bioactmat.2021.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetic ischemic wound treatment remains a critical clinical challenge. Neovascularization plays a significant role in wound healing during all stages of the tissue repair process. Strategies that enhance angiogenesis and neovascularization and improve ischemic pathology may promote the healing of poor wounds, particularly diabetic wounds in highly ischemic conditions. We previously identified a cyclic peptide LXW7 that specifically binds to integrin αvβ3 on endothelial progenitor cells (EPCs) and endothelial cells (ECs), activates vascular endothelial growth factor (VEGF) receptors, and promotes EC growth and maturation. In this study, we designed and synthesized a multi-functional pro-angiogenic molecule by grafting LXW7 and collagen-binding peptides (SILY) to a dermatan sulfate (DS) glycosaminoglycan backbone, named LXW7-DS-SILY, and further employed this multi-functional molecule to functionalize collagen-based extracellular matrix (ECM) scaffolds. We confirmed that LXW7-DS-SILY modification significantly promoted EPC attachment and growth on the ECM scaffolds in vitro and supported EPC survival in vivo in the ischemic environment. When applied in an established Zucker Diabetic Fatty (ZDF) rat ischemic skin flap model, LXW7-DS-SILY-functionalized ECM scaffolds loaded with EPCs significantly improved wound healing, enhanced neovascularization and modulated collagen fibrillogenesis in the ischemic environment. Altogether, this study provides a promising novel treatment to accelerate diabetic ischemic wound healing, thereby reducing limb amputation and mortality of diabetic patients.
Collapse
Affiliation(s)
- Siqi He
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, China
- Department of Surgery, UC Davis, United States
| | - Tanaya Walimbe
- Department of Biomedical Engineering, UC Davis, United States
| | | | - Kewa Gao
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, China
- Department of Surgery, UC Davis, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, United States
| | - Priyadarsini Kumar
- Department of Surgery, UC Davis, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, United States
| | - Yifan Wei
- Department of Surgery, UC Davis, United States
| | - Dake Hao
- Department of Surgery, UC Davis, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, UC Davis, United States
| | - Diana L Farmer
- Department of Surgery, UC Davis, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, United States
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, UC Davis, United States
| | - Jianda Zhou
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, China
| | - Alyssa Panitch
- Department of Surgery, UC Davis, United States
- Department of Biomedical Engineering, UC Davis, United States
| | - Aijun Wang
- Department of Surgery, UC Davis, United States
- Department of Biomedical Engineering, UC Davis, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, United States
| |
Collapse
|
3
|
Xue F, Bai Y, Jiang Y, Liu J, Jian K. Construction and a preliminary study of paracrine effect of bone marrow-derived endothelial progenitor cell sheet. Cell Tissue Bank 2021; 23:185-197. [PMID: 34052984 PMCID: PMC8854320 DOI: 10.1007/s10561-021-09932-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/21/2021] [Indexed: 12/14/2022]
Abstract
The release of paracrine factors from endothelial progenitor cell (EPC) sheet is a central mechanism of tissue repair. The purpose of this study was to constuct the rat bone marrow derived-endothelial progenitor cell (BM-EPCs) sheet and investigate invest the role of stromal cell-derived factor-1α (SDF-1α)/CXCR4 axis in the biological function of BM-EPCs sheet. BM-EPC cells were identified by the cell-surface markers-CD34/CD133/VE-cadherin/KDR using flow cytometry and dual affinity for acLDL and UEA-1. After 7 days of incubation, the BM-EPC single-cell suspensions were seeded on thermo-sensitive plate to harvest the BM-EPC cell sheets. The expression levels of SDF-1α/CXCR4 axis-associated genes and proteins were examined using RT-qPCR and western blot analysis, and enzyme-linked immunosorbent assay (ELISA) was applied to determine the concentration of vascular endothelial growth factor (VEGF), epidermal growth factor (EGF) and SDF-1α in the cell culture medium. The BM-EPC cell sheets were successfully harvested. Moreover, BM-EPC cell sheets have superior migration and tube formation activity when compared with single cell suspension. When capillary-like tube were formed from EPCs sheets, the releasing of paracrine factors such as VEGF, EGF and SDF-1α were increased. To reveal the mechanism of tube formation of BM-EPCs sheets, our research showed that the activation of PI3K/AKT/eNOS pathway was involved in the process, because the phosphorylation of CXCR, PI3K, AKT and eNOS were increased. BM-EPC cell sheets have superior paracrine and tube formation activity than the BM-EPC single-cell. The strong ability to secrete paracrine factors was be potentially related to the SDF-1α/CXCR4 axis through PI3K/AKT/eNOS pathway.
Collapse
Affiliation(s)
- Fenlong Xue
- Department of Cardiovascular Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Yunpeng Bai
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, 300051, China
| | - Yiyao Jiang
- Department of Cardiovascular Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, China
| | - Jianshi Liu
- Department of Cardiovascular Surgery, DeltaHealth Hospital Shanghai, Shanghai, 200336, China
| | - Kaitao Jian
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, 300051, China.
- Department of Cardiovascular Surgery, DeltaHealth Hospital Shanghai, Shanghai, 200336, China.
| |
Collapse
|
4
|
Xia LZ, Tao J, Chen YJ, Liang LL, Luo GF, Cai ZM, Wang Z. Factors Affecting the Re-Endothelialization of Endothelial Progenitor Cell. DNA Cell Biol 2021; 40:1009-1025. [PMID: 34061680 DOI: 10.1089/dna.2021.0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The vascular endothelium, which plays an essential role in maintaining the normal shape and function of blood vessels, is a natural barrier between the circulating blood and the vascular wall tissue. The endothelial damage can cause vascular lesions, such as atherosclerosis and restenosis. After the vascular intima injury, the body starts the endothelial repair (re-endothelialization) to inhibit the neointimal hyperplasia. Endothelial progenitor cell is the precursor of endothelial cells and plays an important role in the vascular re-endothelialization. However, re-endothelialization is inevitably affected in vivo and in vitro by factors, which can be divided into two types, namely, promotion and inhibition, and act on different links of the vascular re-endothelialization. This article reviews these factors and related mechanisms.
Collapse
Affiliation(s)
- Lin-Zhen Xia
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Jun Tao
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Yan-Jun Chen
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Ling-Li Liang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Gui-Fang Luo
- Department of Gynaecology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Ze-Min Cai
- Pediatrics Department, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zuo Wang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
5
|
Evans WS, Sapp RM, Kim KI, Heilman JM, Hagberg J, Prior SJ. Effects of Exercise Training on the Paracrine Function of Circulating Angiogenic Cells. Int J Sports Med 2020; 42:1047-1057. [PMID: 33124014 DOI: 10.1055/a-1273-8390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Exercise training has various benefits on cardiovascular health, and circulating angiogenic cells have been proposed as executing these changes. Work from the late 1990s supported an important role of these circulating post-natal cells in contributing to the maintenance and repair of the endothelium and vasculature. It was later found that circulating angiogenic cells were a heterogenous population of cells and primarily functioned in a paracrine manner by adhering to damaged endothelium and releasing growth factors. Many studies have discovered novel circulating angiogenic cell secreted proteins, microRNA and extracellular vesicles that mediate their angiogenic potential, and some studies have shown that both acute and chronic aerobic exercise training have distinct benefits. This review highlights work establishing an essential role of secreted factors from circulating angiogenic cells and summarizes studies regarding the effects of exercise training on these factors. Finally, we highlight the various gaps in the literature in hopes of guiding future work.
Collapse
Affiliation(s)
- William S Evans
- Department of Kinesiology, University of Maryland School of Public Health, College Park
| | - Ryan M Sapp
- Department of Kinesiology, University of Maryland School of Public Health, College Park
| | - Katherine I Kim
- Department of Kinesiology, University of Maryland School of Public Health, College Park
| | - James M Heilman
- Department of Kinesiology, University of Maryland School of Public Health, College Park
| | - James Hagberg
- Department of Kinesiology, University of Maryland School of Public Health, College Park
| | - Steven J Prior
- Department of Kinesiology, University of Maryland School of Public Health, College Park.,Baltimore Veterans Affairs Geriatric Research, Education and Clinical Center, Department of Veterans Affairs, Baltimore
| |
Collapse
|
6
|
Landers-Ramos RQ, Sapp RM, Shill DD, Hagberg JM, Prior SJ. Exercise and Cardiovascular Progenitor Cells. Compr Physiol 2019; 9:767-797. [PMID: 30892694 DOI: 10.1002/cphy.c180030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autologous stem/progenitor cell-based methods to restore blood flow and function to ischemic tissues are clinically appealing for the substantial proportion of the population with cardiovascular diseases. Early preclinical and case studies established the therapeutic potential of autologous cell therapies for neovascularization in ischemic tissues. However, trials over the past ∼15 years reveal the benefits of such therapies to be much smaller than originally estimated and a definitive clinical benefit is yet to be established. Recently, there has been an emphasis on improving the number and function of cells [herein generally referred to as circulating angiogenic cells (CACs)] used for autologous cell therapies. CACs include of several subsets of circulating cells, including endothelial progenitor cells, with proangiogenic potential that is largely exerted through paracrine functions. As exercise is known to improve CV outcomes such as angiogenesis and endothelial function, much attention is being given to exercise to improve the number and function of CACs. Accordingly, there is a growing body of evidence that acute, short-term, and chronic exercise have beneficial effects on the number and function of different subsets of CACs. In particular, recent studies show that aerobic exercise training can increase the number of CACs in circulation and enhance the function of isolated CACs as assessed in ex vivo assays. This review summarizes the roles of different subsets of CACs and the effects of acute and chronic exercise on CAC number and function, with a focus on the number and paracrine function of circulating CD34+ cells, CD31+ cells, and CD62E+ cells. © 2019 American Physiological Society. Compr Physiol 9:767-797, 2019.
Collapse
Affiliation(s)
- Rian Q Landers-Ramos
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA.,Education and Clinical Center, Baltimore Veterans Affairs Geriatric Research, Baltimore, Maryland, USA.,University of Maryland School of Medicine, Department of Medicine, Baltimore, Maryland, USA
| | - Ryan M Sapp
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA
| | - Daniel D Shill
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA
| | - James M Hagberg
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA
| | - Steven J Prior
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA.,Education and Clinical Center, Baltimore Veterans Affairs Geriatric Research, Baltimore, Maryland, USA.,University of Maryland School of Medicine, Department of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Haider KH. Bone marrow cell therapy and cardiac reparability: better cell characterization will enhance clinical success. Regen Med 2018; 13:457-475. [PMID: 29985118 DOI: 10.2217/rme-2017-0134] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Nearly two decades of experimental and clinical research with bone marrow cells have paved the way for Phase III pivotal trials in larger groups of heart patients. Despite immense advancements, a multitude of factors are hampering the acceptance of bone marrow cell-based therapy for routine clinical use. These include uncertainties regarding purification and characterization of the cell preparation, delivery protocols, mechanistic understanding and study end points and their methods of assessment. Clinical data show mediocre outcomes in terms of sustained cardiac pump function. This review reasons that the modest outcomes observed in trials thus far are based on quality of the cell preparation with a focus on the chronological aging of cells when autologous cells are used for transplantation in elderly patients.
Collapse
Affiliation(s)
- Khawaja H Haider
- Department of Basic Sciences, Sulaiman AlRajhi Medical School, Al Qassim, Al Bukayria, 51941, Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Dhindsa DS, Khambhati J, Sandesara PB, Eapen DJ, Quyyumi AA. Biomarkers to Predict Cardiovascular Death. Card Electrophysiol Clin 2017; 9:651-664. [PMID: 29173408 DOI: 10.1016/j.ccep.2017.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This article reviews biomarkers that have been shown to identify subjects at increased risk for cardiovascular death within the general population, in those with established coronary artery disease, and in those with heart failure. Use of biomarkers for risk stratification for sudden cardiac death continues to evolve. It seems that a multimarker strategy for risk stratification using simple measures of circulating proteins and usual clinical risk factors, particularly in patients with known coronary artery disease, can be used to identify patients at near-term risk of death. Whether similar strategies in the general population will prove to be cost-effective needs to be investigated.
Collapse
Affiliation(s)
- Devinder S Dhindsa
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 1462 Clifton Road Northeast, Suite 507, Atlanta, GA 30322, USA
| | - Jay Khambhati
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 1462 Clifton Road Northeast, Suite 507, Atlanta, GA 30322, USA
| | - Pratik B Sandesara
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 1462 Clifton Road Northeast, Suite 507, Atlanta, GA 30322, USA
| | - Danny J Eapen
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 1462 Clifton Road Northeast, Suite 507, Atlanta, GA 30322, USA
| | - Arshed A Quyyumi
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 1462 Clifton Road Northeast, Suite 507, Atlanta, GA 30322, USA.
| |
Collapse
|
9
|
Haider KH, Aziz S, Al-Reshidi MA. Endothelial progenitor cells for cellular angiogenesis and repair: lessons learned from experimental animal models. Regen Med 2017; 12:969-982. [PMID: 29215316 DOI: 10.2217/rme-2017-0074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stem/progenitor cell-based therapy has been extensively studied for angiomyogenic repair of the ischemic heart by regeneration of the damaged myocytes and neovascularization of the ischemic tissue through biological bypassing. Given their inherent ability to assume functionally competent endothelial phenotype and release of broad array of proangiogenic cytokines, endothelial progenitor cells (EPCs)-based therapy is deemed as most appropriate for vaculogenesis in the ischemic heart. Emulating the natural repair process that encompasses mobilization and homing-in of the bone marrow and peripheral blood EPCs, their reparability has been extensively studied in the animal models of myocardial ischemia with encouraging results. Our literature review is a compilation of the lessons learned from the use of EPCs in experimental animal models with emphasis on the in vitro manipulation and delivery strategies to enhance their retention, survival and functioning post-engraftment in the heart.
Collapse
Affiliation(s)
| | - Salim Aziz
- Department of CV Surgery, George Washington University, 2440 M Street NW, Suite 505, Washington DC 20037, USA
| | - Mateq Ali Al-Reshidi
- Department of Basic Sciences, Sulaiman Al Rajhi Colleges, Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Lee TW, Heo SC, Kwon YW, Park GT, Yoon JW, Kim SC, Jang IH, Kim JH. The anti-microbial peptide SR-0379 stimulates human endothelial progenitor cell-mediated repair of peripheral artery diseases. BMB Rep 2017; 50:504-509. [PMID: 28539159 PMCID: PMC5683819 DOI: 10.5483/bmbrep.2017.50.10.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Indexed: 11/20/2022] Open
Abstract
Ischemia is a serious disease, characterized by an inadequate blood supply to an organ or part of the body. In the present study, we evaluated the effects of the anti-microbial peptide SR-0379 on the stem cell-mediated therapy of ischemic diseases. The migratory and tube-forming abilities of human endothelial progenitor cells (EPCs) were enhanced by treatment with SR-0379 in vitro. Intramuscular administration of SR-0379 into a murine ischemic hindlimb significantly enhanced blood perfusion, decreased tissue necrosis, and increased the number of blood vessels in the ischemic muscle. Moreover, co-administration of SR-0379 with EPCs stimulated blood perfusion in an ischemic hindlimb more than intramuscular injection with either SR-0379 or EPCs alone. This enhanced blood perfusion was accompanied by a significant increase in the number of CD31- and α-SMApositive blood vessels in ischemic hindlimb. These results suggest that SR-0379 is a potential drug candidate for potentiating EPC-mediated therapy of ischemic diseases. [BMB Reports 2017; 50(10): 504-509].
Collapse
Affiliation(s)
- Tae Wook Lee
- Departments of Physiology, Pusan National University, Yangsan 50612, Korea
| | - Soon Chul Heo
- Departments of Physiology, Pusan National University, Yangsan 50612, Korea
| | - Yang Woo Kwon
- Departments of Physiology, Pusan National University, Yangsan 50612, Korea
| | - Gyu Tae Park
- Departments of Physiology, Pusan National University, Yangsan 50612, Korea
| | - Jung Won Yoon
- Departments of Physiology, Pusan National University, Yangsan 50612, Korea
| | - Seung-Chul Kim
- Obstetrics and Gynecology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Il Ho Jang
- Department of Oral Biochemistry and Molecular Biology, Pusan National University School of Dentistry, Yangsan 50612, Korea
| | - Jae Ho Kim
- Departments of Physiology, Pusan National University, Yangsan 50612, Korea; Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea
| |
Collapse
|
11
|
Li WD, Li NP, Song DD, Rong JJ, Qian AM, Li XQ. Metformin inhibits endothelial progenitor cell migration by decreasing matrix metalloproteinases, MMP-2 and MMP-9, via the AMPK/mTOR/autophagy pathway. Int J Mol Med 2017; 39:1262-1268. [PMID: 28339020 DOI: 10.3892/ijmm.2017.2929] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/15/2017] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to investigate the effect of metformin on endothelial progenitor cell (EPC) migration and to explore the possible mechanisms. EPCs were treated with metformin, and the migration of EPCs was evaluated by wound healing and Matrigel invasion assays. We also examined the expression levels of of MMP-2 and MMP-9 in EPCs with or without metformin treatment via RT-PCR and western blot analysis, and activities of MMP-2 and MMP-9 in EPCs under different conditions was examined by zymography. Moreover, we also assessed the AMPK/mTOR/autophagy pathway to explore the possible mechanisms. Metformin treatment significantly downregulated matrix metalloproteinase-2 (MMP-2) and MMP-9 expression, and subsequently decreased the migration of EPCs. Increased levels of phosphorylated (p)-AMPK and LC3II expression, as well as decreased levels of p-mTOR and p62 contributed to this phenomenon. The AMPK inhibitor compound C reversed the effect exerted by metformin. In conclusion, our results showed that metformin inhibited the migration of EPCs by decreasing MMP-2 and MMP-9. The AMPK/mTOR/autophagy pathway was demonstrated to be involved in the regulatory mechanisms.
Collapse
Affiliation(s)
- Wen-Dong Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Neng-Ping Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Dan-Dan Song
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Jian-Jie Rong
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Ai-Min Qian
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
12
|
Progenitor Cells for Arterial Repair: Incremental Advancements towards Therapeutic Reality. Stem Cells Int 2017; 2017:8270498. [PMID: 28232850 PMCID: PMC5292398 DOI: 10.1155/2017/8270498] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 12/18/2016] [Indexed: 02/08/2023] Open
Abstract
Coronary revascularization remains the standard treatment for obstructive coronary artery disease and can be accomplished by either percutaneous coronary intervention (PCI) or coronary artery bypass graft surgery. Considerable advances have rendered PCI the most common form of revascularization and improved clinical outcomes. However, numerous challenges to modern PCI remain, namely, in-stent restenosis and stent thrombosis, underscoring the importance of understanding the vessel wall response to injury to identify targets for intervention. Among recent promising discoveries, endothelial progenitor cells (EPCs) have garnered considerable interest given an increasing appreciation of their role in vascular homeostasis and their ability to promote vascular repair after stent placement. Circulating EPC numbers have been inversely correlated with cardiovascular risk, while administration of EPCs in humans has demonstrated improved clinical outcomes. Despite these encouraging results, however, advancing EPCs as a therapeutic modality has been hampered by a fundamental roadblock: what constitutes an EPC? We review current definitions and sources of EPCs as well as the proposed mechanisms of EPC-mediated vascular repair. Additionally, we discuss the current state of EPCs as therapeutic agents, focusing on endogenous augmentation and transplantation.
Collapse
|
13
|
Abstract
Cell therapies have been explored as a potential treatment avenue to treat heart diseases, such as myocardial infarction, doxorubicin-induced cardiomyopathy, and heart failure. Embryonic and adult stem cells (ASCs) have been examined in animal and clinical settings. Unlike embryonic and induced pluripotent stem cells, ASCs do not pose a threat to form teratomas, nor do they have immune system concerns, making them ideal for therapeutic use in humans. In this review, we will investigate different characteristics and sources of adult stem cells and progenitor cells, as well as determine their efficacy in cell transplantation in experimental and clinical trials. In addition, we will propose other research avenues that may promote further understanding and use of ASCs in therapeutic designs.
Collapse
Affiliation(s)
- Taylor A Johnson
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, University of Central Florida, 4110 Libra Dr., Orlando, FL, USA
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, University of Central Florida, 4110 Libra Dr., Orlando, FL, USA.
| |
Collapse
|
14
|
Abstract
Formyl peptide receptor-2 (FPR-2) is expressed in various cell types, such as phagocytes, fibroblasts, and endothelial cells. FPR-2 has been reported to play a significant role in inflammation and angiogenic response, and synthetic WKYMVm peptide has been identified as a novel peptide agonist for the FPR-2. In this study, we demonstrate that WKYMVm peptides stimulate the angiogenic potential of outgrowth endothelial cells (OECs). Upon WKYMVm peptide exposure, migration and proliferation of OECs were stimulated. WKYMVm effectively stimulated angiogenesis in tube formation assay and aortic ring assay. Furthermore, we fabricated injectable poly (lactide-co-glycolide) (PLGA) microspheres encapsulating WKYMVm peptides, which showed sustained release of cargo molecule. When WKYMVm peptide encapsulated microspheres were injected into the hind limb ischemia model, a single injection of microspheres was as effective as multiple injections of WKYMVm peptide in restoring blood flow from ischemic injury and promoting capillary growth. These results demonstrate that sustained release of WKYMVm peptide from microspheres in the application to ischemic hind limb extended angiogenic stimulation. STATEMENT OF SIGNIFICANCE Formyl peptide receptor (FPR) has been reported to play an important role in inflammation and angiogenic response. A synthetic WKYMVm peptide has been identified as a novel peptide activating the FPR-2 that is expressed in a various cell types, such as phagocytes, fibroblasts, and endothelial cells. In this manuscript we explored a unique property of high-affinity ligand for formyl peptide receptors-2 (FPR-2) (i.e., WKYMVm). WKYMVm-induced activation of FPR2 has been reported to be crucial in host defense and inflammation by activation of phagocytes, monocytes, and lymphocytes. In this study, highlight the efficacy of WKYMVm peptide's role in inducing neovascularization in vivo hind limb ischemia model when the peptide was released from injected PLGA microspheres in sustained manner. Our results demonstrate that sustained release of WKYMVm peptide from microspheres have extended angiogenic stimulation capacity.
Collapse
|
15
|
Li WD, Hu N, Lei FR, Wei S, Rong JJ, Zhuang H, Li XQ. Autophagy inhibits endothelial progenitor cells migration via the regulation of MMP2, MMP9 and uPA under normoxia condition. Biochem Biophys Res Commun 2015; 466:376-80. [PMID: 26363453 DOI: 10.1016/j.bbrc.2015.09.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/05/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The aim of this study was to explore the role of autophagy on the regulation of endothelial progenitor cells (EPCs) migration under normoxic condition. METHODS After EPCs were isolated and characterized in vitro, we employed Atg5 knocking down and rapamycin to monitor the autophagy, and performed wound healing and transwell assay to assess the cell migration. On the mechanism, the expression of matrix metalloproteinases (MMPs) and urokinase type plasminogen activator (uPA) was evaluated. RESULTS Atg5 knocking down and rapamycin could respectively inhibit and enhance autophagy, which could result in significantly increased and decreased cell migration in wound healing and transwell assay under normoxic condition. Moreover, Atg5 knocking down could significantly increase the expression of MMP2, MMP9 and uPA in EPCs while rapamycin could decrease the expression of uPA and MMP9. In addition, the mTOR-P70 S6K pathway was also involved in EPCs migration regulation. CONCLUSIONS These results demonstrated that autophagy could regulate the EPCs migration through mTOR-P70 S6K pathway, and MMP2, MMP9 and uPA may also involve in the regulation mechanism.
Collapse
Affiliation(s)
- Wen-Dong Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Nan Hu
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Feng-Rui Lei
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Sen Wei
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian-Jie Rong
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Zhuang
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
16
|
Michelucci A, Cesari F, Ricciardi G, Attanà P, Pieragnoli P, Ristalli F, Padeletti L, Gori AM, Gensini GF, Abbate R. Left ventricular mass and progenitor cells in chronic heart failure patients. Intern Emerg Med 2015; 10:329-35. [PMID: 25387824 DOI: 10.1007/s11739-014-1149-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/27/2014] [Indexed: 01/19/2023]
Abstract
The aim of the study was to evaluate the association between circulating (CPCs) and endothelial (EPCs) progenitor cells and left ventricular (LV) remodeling in chronic heart failure (HF). 85 HF patients, ranging 29-89 years, 83.5% males, 45.9% ischemic, NYHA functional class II-IV, with a LV ejection fraction ≤40% were studied. LV ejection fraction, LV end-diastolic and end-systolic (LVESV) volumes, LV mass and tricuspid annular plane systolic excursion (TAPSE) were evaluated, and, when indicated, indexed for body surface area (BSA). CPCs and EPCs number was assessed using flow cytometry. CPCs were defined as CD34+, CD133+ and CD34+/CD133+. EPCs, identified through their expression of KDR, were defined as CD34+/KDR+, CD133+/KDR+ and CD34+/CD133+/KDR+. All EPCs were negatively related to LVESV/BSA (r = -0.24, p = 0.02 for all EPC's populations), and to LVmass/BSA (CD34+KDR+; r = -0.30, p = 0.005; CD133+KDR+; r = -0.31, p = 0.004; CD34+CD133+KDR+; r = -0.29, p = 0.007). No differences in EPCs levels in relation to cardiovascular risk factors, medications, etiology, age or gender were observed. CPCs number was higher in women, and lower in ischemic patients. In logistic regression analyses, the low EPCs' number was associated with an increased likelihood of abnormal LVmass/BSA. CPCs proved to be higher and EPCs lower in patients with severely abnormal LVmass/BSA (gr/m(2), ≥122 in women and ≥149 in men). Our results suggest a correlation between LV remodeling and progenitor cells. This is noteworthy considering that it has been suggested that bone marrow-derived EPCs participate in cardiac regeneration and function recovery in the setting of progressive HF.
Collapse
Affiliation(s)
- Antonio Michelucci
- Section of Arrhythmology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nathan AA, Tej MAC, Chitiprolu M, Rangan S, Mohan V, Harish R, Anand SB, Dixit M. Impaired glucose tolerance alters functional ability of peripheral blood-derived mononuclear cells in Asian Indian men. Diab Vasc Dis Res 2015; 12:13-22. [PMID: 25303939 DOI: 10.1177/1479164114551745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
AIM To compare the adhesion, migration and endothelial differentiation potential of peripheral blood-derived mononuclear cells (PBMCs) obtained from drug-naive normal glucose tolerance (NGT) and impaired glucose tolerance (IGT) Asian Indian men. METHODS Based on the 75-g oral glucose tolerance test, 30 NGT and 31 IGT subjects were recruited into the study. PBMCs were isolated from fasting blood using histopaque density gradient centrifugation. Isolated PBMCs were analysed for their ability to adhere to extracellular matrices, incorporation into tubular structures formed by matured endothelial cells and differentiation into endothelial cells upon 7-day culture in endothelial-specific growth medium. RESULTS PBMCs obtained from IGT subjects exhibit poor adherence to fibronectin and reduced incorporation into tubular structures. Migration towards stromal cell-derived factor-1α (SDF-1α) in a trans-well filter assembly was also reduced for these cells. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis revealed decreased expression of CXCR4 and β2 integrin and increased expression of arginase II in IGT subjects. No differences were observed with regard to endothelial differentiation; however, cultured PBMCs of IGT subjects had decreased intracellular nitric oxide (NO) production. CONCLUSION In pre-diabetic, Asian Indian men, PBMCs exhibit defective migration and homing potential.
Collapse
Affiliation(s)
- Abel Arul Nathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences and Bioengineering, Indian Institute of Technology Madras, Chennai, India
| | - Mallu Abhiram Charan Tej
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences and Bioengineering, Indian Institute of Technology Madras, Chennai, India
| | - Maneka Chitiprolu
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences and Bioengineering, Indian Institute of Technology Madras, Chennai, India
| | - Shreyas Rangan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences and Bioengineering, Indian Institute of Technology Madras, Chennai, India
| | - Viswanathan Mohan
- Department of Diabetology, Madras Diabetes Research Foundation (MDRF) and Dr Mohan's Diabetes Specialties Centre, Gopalapuram, Chennai, India
| | - Ranjani Harish
- Department of Diabetology, Madras Diabetes Research Foundation (MDRF) and Dr Mohan's Diabetes Specialties Centre, Gopalapuram, Chennai, India
| | - Setty B Anand
- Department of Genetic Engineering, Madurai Kamaraj University, Madurai, India
| | - Madhulika Dixit
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences and Bioengineering, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
18
|
Kwon HM, Hur SM, Park KY, Kim CK, Kim YM, Kim HS, Shin HC, Won MH, Ha KS, Kwon YG, Lee DH, Kim YM. Multiple paracrine factors secreted by mesenchymal stem cells contribute to angiogenesis. Vascul Pharmacol 2014; 63:19-28. [DOI: 10.1016/j.vph.2014.06.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/02/2014] [Accepted: 06/20/2014] [Indexed: 01/08/2023]
|
19
|
Heo SC, Kwon YW, Jang IH, Jeong GO, Yoon JW, Kim CD, Kwon SM, Bae YS, Kim JH. WKYMVm-Induced Activation of Formyl Peptide Receptor 2 Stimulates Ischemic Neovasculogenesis by Promoting Homing of Endothelial Colony-Forming Cells. Stem Cells 2014; 32:779-90. [DOI: 10.1002/stem.1578] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 09/18/2013] [Accepted: 09/25/2013] [Indexed: 12/24/2022]
Affiliation(s)
- Soon Chul Heo
- Medical Research Center for Ischemic Tissue Regeneration; Yangsan Gyeongsangnam-do Republic of Korea
- Department of Physiology; School of Medicine; Pusan National University; Yangsan Gyeongsangnam-do Republic of Korea
| | - Yang Woo Kwon
- Medical Research Center for Ischemic Tissue Regeneration; Yangsan Gyeongsangnam-do Republic of Korea
- Department of Physiology; School of Medicine; Pusan National University; Yangsan Gyeongsangnam-do Republic of Korea
| | - Il Ho Jang
- Medical Research Center for Ischemic Tissue Regeneration; Yangsan Gyeongsangnam-do Republic of Korea
- Department of Physiology; School of Medicine; Pusan National University; Yangsan Gyeongsangnam-do Republic of Korea
| | - Geun Ok Jeong
- Medical Research Center for Ischemic Tissue Regeneration; Yangsan Gyeongsangnam-do Republic of Korea
- Department of Physiology; School of Medicine; Pusan National University; Yangsan Gyeongsangnam-do Republic of Korea
| | - Jung Won Yoon
- Medical Research Center for Ischemic Tissue Regeneration; Yangsan Gyeongsangnam-do Republic of Korea
- Department of Physiology; School of Medicine; Pusan National University; Yangsan Gyeongsangnam-do Republic of Korea
| | - Chi Dae Kim
- Medical Research Center for Ischemic Tissue Regeneration; Yangsan Gyeongsangnam-do Republic of Korea
- Department of Pharmacology; School of Medicine; Pusan National University; Yangsan Gyeongsangnam-do Republic of Korea
| | - Sang Mo Kwon
- Department of Physiology; School of Medicine; Pusan National University; Yangsan Gyeongsangnam-do Republic of Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences; Sungkyunkwan University; Suwon Republic of Korea
| | - Jae Ho Kim
- Medical Research Center for Ischemic Tissue Regeneration; Yangsan Gyeongsangnam-do Republic of Korea
- Department of Physiology; School of Medicine; Pusan National University; Yangsan Gyeongsangnam-do Republic of Korea
- Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital; Yangsan Gyeongsangnam-do Republic of Korea
| |
Collapse
|
20
|
Strategies affording prevascularized cell-based constructs for myocardial tissue engineering. Stem Cells Int 2014; 2014:434169. [PMID: 24511317 PMCID: PMC3913389 DOI: 10.1155/2014/434169] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 12/02/2013] [Indexed: 12/20/2022] Open
Abstract
The production of a functional cardiac tissue to be transplanted in the injured area of the infarcted myocardium represents a challenge for regenerative medicine. Most cell-based grafts are unviable because of inadequate perfusion; therefore, prevascularization might be a suitable approach for myocardial tissue engineering. To this aim, cells with a differentiation potential towards vascular and cardiac muscle phenotypes have been cocultured in 2D or 3D appropriate scaffolds. In addition to these basic approaches, more sophisticated strategies have been followed employing mixed-cell sheets, microvascular modules, and inosculation from vascular explants. Technologies exerting spatial control of vascular cells, such as topographical surface roughening and ordered patterning, represent other ways to drive scaffold vascularization. Finally, microfluidic devices and bioreactors exerting mechanical stress have also been employed for high-throughput scaling-up production in order to accelerate muscle differentiation and speeding the endothelialization process. Future research should address issues such as how to optimize cells, biomaterials, and biochemical components to improve the vascular integration of the construct within the cardiac wall, satisfying the metabolic and functional needs of the myocardial tissue.
Collapse
|
21
|
|
22
|
Zhao Y, Yu P, Wu R, Ge Y, Wu J, Zhu J, Jia R. Renal cell carcinoma-adjacent tissues enhance mobilization and recruitment of endothelial progenitor cells to promote the invasion of the neoplasm. Biomed Pharmacother 2013; 67:643-9. [DOI: 10.1016/j.biopha.2013.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 06/24/2013] [Indexed: 01/18/2023] Open
|
23
|
|
24
|
Qiang L, Hong L, Ningfu W, Huaihong C, Jing W. Expression of miR-126 and miR-508-5p in endothelial progenitor cells is associated with the prognosis of chronic heart failure patients. Int J Cardiol 2013; 168:2082-8. [PMID: 23465244 DOI: 10.1016/j.ijcard.2013.01.160] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 12/06/2012] [Accepted: 01/13/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND MicroRNA (miRNA) expression profiles in endothelial progenitor cells (EPCs) contribute to EPC dysfunction in patients suffering from coronary artery disease. However, it remains unclear whether miRNA expression in EPCs is associated with the prognosis of chronic heart failure (CHF) secondary to ischemic cardiomyopathy (ICM) or non-ischemic cardiomyopathy (NICM). METHODS AND RESULTS One hundred six patients with CHF (55 ICM and 51 NICM) and 30 healthy controls were followed until the end of 24 months or when the end point was obtained (cardiovascular death). The miRNA expression profile was analyzed by TaqMan Human MicroRNA Array Set v2.0 in 30 randomly assigned samples (ICM=10, NICM=10, and healthy controls=10). During the 24-month follow-up, 26 patients died from cardiovascular disease. Sixteen miRNAs (miR-126, miR-508-5p, miR-34a, miR-210, miR-490-3p, miR-513-5p, miR-517c, miR-518e, miR-589, miR-220c, miR-200a*, miR-186*, miR-7i*, miR-200b*, miR-595, and miR-662) were found to be differentially expressed between ICM and NICM patients. Survival analysis showed that miR-126 and miR-508-5p levels in EPCs were independent prognostic factors (P=0.003; HR (hazard ratio): 0.19; 95% CI (confidence intervals): 0.06-0.58, P=0.002; HR: 2.292; 95% CI: 1.37-3.84) for the outcome of ICM or NICM patients with CHF. Pathway enrichment analysis showed that the angiogenesis pathway was the most likely pathway regulated by miR-126 and miR-508-5p. CONCLUSIONS The miRNAs miR-126 and miR-508-5p are associated with the outcome of ICM and NICM patients with CHF. These two miRNAs could be useful in the diagnosis of CHF patients, and might provide novel targets for prevention and treatment of CHF.
Collapse
Affiliation(s)
- Liu Qiang
- Department of Gerontology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | | | | | | | | |
Collapse
|
25
|
Ischemic preconditioning increases endothelial progenitor cell number to attenuate partial nephrectomy-induced ischemia/reperfusion injury. PLoS One 2013; 8:e55389. [PMID: 23383174 PMCID: PMC3561290 DOI: 10.1371/journal.pone.0055389] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/21/2012] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES The objective of this study was to investigate the role of endothelial progenitor cells (EPCs) in the modulation of ischemia-reperfusion injury (IRI) in a partial nephrectomy (PN) rat model using early-phase ischemic preconditioning (IPC). MATERIALS AND METHODS Ninety male Sprague-Dawley rats were randomly divided into three groups following right-side nephrectomy: Sham-operated rats (surgery without vascular clamping); PN rats (renal blood vessels were clamped for 40 min and PN was performed); and IPC rats (pretreated with 15 min ischemia and 10 min reperfusion). At 1, 3, 6, 12, 24 h, and 3 days after reperfusion, the pool of circulating EPCs and kidneys were harvested. The extent of renal injury was assessed, along with EPC number, cell proliferation, angiogenesis, and vascular growth factor expression. RESULTS Pretreated rats exhibited significant improvements in renal function and morphology. EPC numbers in the kidneys were increased at 12 h following reperfusion in the IPC group as compared to the PN or Sham groups. Cell proliferation (including endothelial and tubular epithelial cells) and angiogenesis in peritubular capillaries were markedly increased in kidneys treated with IPC. In addition, vascular endothelial growth factor-A (VEGF-A) and stromal cell-derived factor-1α (SDF-1α) expression in the kidneys of pretreated rats was increased compared to rats subjected to PN. CONCLUSIONS OUR INVESTIGATION SUGGESTED THAT: (1) the early phase of IPC may attenuate renal IRI induced by PN; (2) EPCs play an important role in renal protection, involving promotion of cell proliferation and angiogenesis through release of several angiogenic factors.
Collapse
|