1
|
Chazot A, Zimberger C, Feracci M, Moussa A, Good S, Sommadossi JP, Alvarez K, Ferron F, Canard B. The activation cascade of the broad-spectrum antiviral bemnifosbuvir characterized at atomic resolution. PLoS Biol 2024; 22:e3002743. [PMID: 39190717 DOI: 10.1371/journal.pbio.3002743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/09/2024] [Indexed: 08/29/2024] Open
Abstract
Bemnifosbuvir (AT-527) and AT-752 are guanosine analogues currently in clinical trials against several RNA viruses. Here, we show that these drugs require a minimal set of 5 cellular enzymes for activation to their common 5'-triphosphate AT-9010, with an obligate order of reactions. AT-9010 selectively inhibits essential viral enzymes, accounting for antiviral potency. Functional and structural data at atomic resolution decipher N6-purine deamination compatible with its metabolic activation. Crystal structures of human histidine triad nucleotide binding protein 1, adenosine deaminase-like protein 1, guanylate kinase 1, and nucleoside diphosphate kinase at 2.09, 2.44, 1.76, and 1.9 Å resolution, respectively, with cognate precursors of AT-9010 illuminate the activation pathway from the orally available bemnifosbuvir to AT-9010, pointing to key drug-protein contacts along the activation pathway. Our work provides a framework to integrate the design of antiviral nucleotide analogues, confronting requirements and constraints associated with activation enzymes along the 5'-triphosphate assembly line.
Collapse
Affiliation(s)
- Aurélie Chazot
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
| | - Claire Zimberger
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
| | - Mikael Feracci
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
| | - Adel Moussa
- ATEA Pharmaceuticals, Inc., Boston, Massachusetts, United States of America
| | - Steven Good
- ATEA Pharmaceuticals, Inc., Boston, Massachusetts, United States of America
| | | | - Karine Alvarez
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
| | - François Ferron
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
- European Virus Bioinformatics Center, Jena, Germany
| | - Bruno Canard
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
- European Virus Bioinformatics Center, Jena, Germany
| |
Collapse
|
2
|
Baldwin ET, Götte M, Tchesnokov EP, Arnold E, Hagel M, Nichols C, Dossang P, Lamers M, Wan P, Steinbacher S, Romero DL. Human endogenous retrovirus-K (HERV-K) reverse transcriptase (RT) structure and biochemistry reveals remarkable similarities to HIV-1 RT and opportunities for HERV-K-specific inhibition. Proc Natl Acad Sci U S A 2022; 119:e2200260119. [PMID: 35771941 PMCID: PMC9271190 DOI: 10.1073/pnas.2200260119] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022] Open
Abstract
Human endogenous retroviruses (HERVs) comprise nearly 8% of the human genome and are derived from ancient integrations of retroviruses into the germline. The biology of HERVs is poorly defined, but there is accumulating evidence supporting pathological roles in diverse diseases, such as cancer, autoimmune, and neurodegenerative diseases. Functional proteins are produced by HERV-encoded genes, including reverse transcriptases (RTs), which could be a contributor to the pathology attributed to aberrant HERV-K expression. To facilitate the discovery and development of HERV-K RT potent and selective inhibitors, we expressed active HERV-K RT and determined the crystal structure of a ternary complex of this enzyme with a double-stranded DNA substrate. We demonstrate a range of RT inhibition with antiretroviral nucleotide analogs, while classic nonnucleoside analogs do not inhibit HERV-K RT. Detailed comparisons of HERV-K RT with other known RTs demonstrate similarities to diverse RT families and a striking similarity to the HIV-1 RT asymmetric heterodimer. Our analysis further reveals opportunities for selective HERV-K RT inhibition.
Collapse
Affiliation(s)
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Egor P. Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, 08854
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854
| | | | - Charles Nichols
- Charles River Laboratory, Chesterford Research Park, Saffron Walden CB10 1XL, United Kingdom
| | - Pam Dossang
- Charles River Laboratory, Chesterford Research Park, Saffron Walden CB10 1XL, United Kingdom
| | - Marieke Lamers
- Charles River Laboratory, Chesterford Research Park, Saffron Walden CB10 1XL, United Kingdom
- DomainEx, Chesterford Research Park, Saffron Walden CB10 1XL United Kingdom
| | - Paul Wan
- Charles River Laboratory, Chesterford Research Park, Saffron Walden CB10 1XL, United Kingdom
| | | | | |
Collapse
|
3
|
Collado-Díaz V, Martinez-Cuesta MÁ, Blanch-Ruiz MA, Sánchez-López A, García-Martínez P, Peris JE, Usach I, Ivorra MD, Lacetera A, Martín-Santamaría S, Esplugues JV, Alvarez A. Abacavir Increases Purinergic P2X7 Receptor Activation by ATP: Does a Pro-inflammatory Synergism Underlie Its Cardiovascular Toxicity? Front Pharmacol 2021; 12:613449. [PMID: 33867979 PMCID: PMC8045785 DOI: 10.3389/fphar.2021.613449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/15/2021] [Indexed: 11/15/2022] Open
Abstract
The cardiovascular toxicity of Abacavir is related to its purinergic structure. Purinergic P2X7-receptors (P2X7R), characterized by activation by high concentrations of ATP and with high plasticity, seem implicated. We appraise the nature of the interplay between Abacavir and P2X7R in generating vascular inflammation. The effects of Abacavir on leukocyte-endothelium interactions were compared with those of its metabolite carbovir triphosphate (CBV-TP) or ATP in the presence of apyrase (ATP-ase) or A804598 (P2X7R-antagonist). CBV-TP and ATP levels were evaluated by HPLC, while binding of Abacavir, CBV-TP and ATP to P2X7R was assessed by radioligand and docking studies. Hypersensitivity studies explored a potential allosteric action of Abacavir. Clinical concentrations of Abacavir (20 µmol/L) induced leukocyte-endothelial cell interactions by specifically activating P2X7R, but the drug did not show affinity for the P2X7R ATP-binding site (site 1). CBV-TP levels were undetectable in Abacavir-treated cells, while those of ATP were unaltered. The effects of Abacavir were Apyrase-dependent, implying dependence on endogenous ATP. Exogenous ATP induced a profile of proinflammatory actions similar to Abacavir, but was not entirely P2X7R-dependent. Docking calculations suggested ATP-binding to sites 1 and 2, and Abacavir-binding only to allosteric site 2. A combination of concentrations of Abacavir (1 µmol/L) and ATP (0.1 µmol/L) that had no effect when administered separately induced leukocyte-endothelium interactions mediated by P2X7R and involving Connexin43 channels. Therefore, Abacavir acts as a positive allosteric modulator of P2X7R, turning low concentrations of endogenous ATP themselves incapable of stimulating P2X7R into a functional proinflammatory agonist of the receptor.
Collapse
Affiliation(s)
- Víctor Collado-Díaz
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Maria Ángeles Martinez-Cuesta
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.,CIBERehd, Valencia, Spain
| | | | - Ainhoa Sánchez-López
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | | | - José E Peris
- Departamento de Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
| | - Iris Usach
- Departamento de Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
| | - Maria Dolores Ivorra
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Alessandra Lacetera
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Sonsoles Martín-Santamaría
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Juan V Esplugues
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.,CIBERehd, Valencia, Spain.,FISABIO- Fundación Hospital Universitario Dr. Peset, Valencia, Spain
| | - Angeles Alvarez
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.,CIBERehd, Valencia, Spain
| |
Collapse
|
4
|
Yu ZJ, Mosher EP, Bumpus NN. Pharmacogenomics of Antiretroviral Drug Metabolism and Transport. Annu Rev Pharmacol Toxicol 2020; 61:565-585. [PMID: 32960701 DOI: 10.1146/annurev-pharmtox-021320-111248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Antiretroviral therapy has markedly reduced morbidity and mortality for persons living with human immunodeficiency virus (HIV). Individual tailoring of antiretroviral regimens has the potential to further improve the long-term management of HIV through the mitigation of treatment failure and drug-induced toxicities. While the mechanisms underlying anti-HIV drug adverse outcomes are multifactorial, the application of drug-specific pharmacogenomic knowledge is required in order to move toward the personalization of HIV therapy. Thus, detailed understanding of the metabolism and transport of antiretrovirals and the influence of genetics on these pathways is important. To this end, this review provides an up-to-date overview of the metabolism of anti-HIV therapeutics and the impact of genetic variation in drug metabolism and transport on the treatment of HIV. Future perspectives on and current challenges in pursuing personalized HIV treatment are also discussed.
Collapse
Affiliation(s)
- Zaikuan J Yu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| | - Eric P Mosher
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| | - Namandjé N Bumpus
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
5
|
Barbarino JM, Whirl‐Carrillo M, Altman RB, Klein TE. PharmGKB: A worldwide resource for pharmacogenomic information. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1417. [PMID: 29474005 PMCID: PMC6002921 DOI: 10.1002/wsbm.1417] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 01/04/2023]
Abstract
As precision medicine becomes increasingly relevant in healthcare, the field of pharmacogenomics (PGx) also continues to gain prominence in the clinical setting. Leading institutions have begun to implement PGx testing and the amount of published PGx literature increases yearly. The Pharmacogenomics Knowledgebase (PharmGKB; www.pharmgkb.org) is one of the foremost worldwide resources for PGx knowledge, and the organization has been adapting and refocusing its mission along with the current revolution in genomic medicine. The PharmGKB website provides a diverse array of PGx information, from annotations of the primary literature to guidelines for adjusting drug treatment based on genetic information. It is freely available and accessible to everyone from researchers to clinicians to everyday citizens. PharmGKB was found over 17 years ago, but continues to be a vital resource for the entire PGx community and the general public. This article is categorized under: Translational, Genomic, and Systems Medicine > Translational Medicine.
Collapse
Affiliation(s)
- Julia M. Barbarino
- Department of Biomedical Data SciencesStanford UniversityStanfordCalifornia
| | | | - Russ B. Altman
- Department of Biomedical EngineeringStanford UniversityStanfordCalifornia
- Department of GeneticsStanford UniversityStanfordCalifornia
| | - Teri E. Klein
- Department of Biomedical Data SciencesStanford UniversityStanfordCalifornia
- Department of MedicineStanford UniversityStanfordCalifornia
| |
Collapse
|
6
|
Pearce CL, Stram D, Wiensch A, Frasco MA, Kono N, Den Berg DV, Anastos K, Cohen MH, DeHovitz J, Golub ET, Tamraz B, Liu C, Mack WJ. Pharmacogenetic Associations with ADME Variants and Virologic Response to an Initial HAART Regimen in HIV-Infected Women. INTERNATIONAL JOURNAL OF HIV/AIDS AND RESEARCH 2017; 4:154-160. [PMID: 29577081 PMCID: PMC5863915 DOI: 10.19070/2379-1586-1700031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
BACKGROUND Clinical response to highly active antiretroviral therapy (HAART) varies among different populations. A portion of this variability may be due to variation in genes involved in the absorption, distribution, metabolism, and excretion (ADME) of HAART. DESIGN To identify genetic factors involved in virologic responses to HAART, 13 genes in ADME pathways were analyzed in a cohort of HIV-infected women on HAART. A total of 569 HIV-positive participants from the Women's Interagency HIV Study who initiated HAART from 1994-2012 and had genotype data were included in these analyses. METHODS Admixture maximum likelihood burden testing was used to evaluate gene-level associations between common genetic variation and virologic response (achieving <80 viral copies/mL) to HAART overall and with specific drug classes. Results: Six statistically significant (P<0.05) gene-level burden tests were observed with response to specific regimen types. CYP2B6, CYP2C19 and CYP2C9 were significantly associated with response to protease inhibitor (PI)-based regimens. CYP2C9, ADH1A and UGT1A1 were significantly associated with response to triple nucleoside reverse transcriptase inhibitor (NRTI) treatment. CONCLUSIONS Although no genome-wide associations with virologic response to HAART overall were detected in this cohort of HIV-infected women, more statistically significant gene-level burden tests were observed than would be expected by chance (two and a half expected, six observed). It is likely that variation in one of the significant genes is associated with virologic response to certain HAART regimens. Further characterization of the genes associated with response to PI-based treatment is warranted.
Collapse
Affiliation(s)
- CL Pearce
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - D Stram
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - A Wiensch
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - MA Frasco
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - N Kono
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - DV Den Berg
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - K Anastos
- Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - MH Cohen
- Departments of Medicine, Stroger Hospital and Rush University, Chicago, IL, USA
| | - J DeHovitz
- Department of Medicine and Community Health, SUNY Health Sciences Center, Brooklyn, NY, USA
| | - ET Golub
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - B Tamraz
- Department of Clinical Pharmacy, University of California, School of Pharmacy, San Francisco, CA, USA
| | - C Liu
- Department of Medicine, Georgetown University School of Medicine, USA
| | - WJ Mack
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
7
|
PharmGKB summary: very important pharmacogene information for human leukocyte antigen B. Pharmacogenet Genomics 2015; 25:205-21. [PMID: 25647431 DOI: 10.1097/fpc.0000000000000118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|