1
|
Henkel L, Jehn U, Thölking G, Reuter S. Tacrolimus-why pharmacokinetics matter in the clinic. FRONTIERS IN TRANSPLANTATION 2023; 2:1160752. [PMID: 38993881 PMCID: PMC11235362 DOI: 10.3389/frtra.2023.1160752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/07/2023] [Indexed: 07/13/2024]
Abstract
The calcineurin inhibitor (CNI) Tacrolimus (Tac) is the most prescribed immunosuppressant drug after solid organ transplantation. After renal transplantation (RTx) approximately 95% of recipients are discharged with a Tac-based immunosuppressive regime. Despite the high immunosuppressive efficacy, its adverse effects, narrow therapeutic window and high intra- and interpatient variability (IPV) in pharmacokinetics require therapeutic drug monitoring (TDM), which makes treatment with Tac a major challenge for physicians. The C/D ratio (full blood trough level normalized by daily dose) is able to classify patients receiving Tac into two major metabolism groups, which were significantly associated with the clinical outcomes of patients after renal or liver transplantation. Therefore, the C/D ratio is a simple but effective tool to identify patients at risk of an unfavorable outcome. This review highlights the challenges of Tac-based immunosuppressive therapy faced by transplant physicians in their daily routine, the underlying causes and pharmacokinetics (including genetics, interactions, and differences between available Tac formulations), and the latest data on potential solutions to optimize treatment of high-risk patients.
Collapse
Affiliation(s)
- Lino Henkel
- Department of Medicine D, University of Münster, Münster, Germany
| | - Ulrich Jehn
- Department of Medicine D, University of Münster, Münster, Germany
| | - Gerold Thölking
- Department of Medicine D, University of Münster, Münster, Germany
- Department of Internal Medicine and Nephrology, University Hospital of Münster Marienhospital Steinfurt, Steinfurt, Germany
| | - Stefan Reuter
- Department of Medicine D, University of Münster, Münster, Germany
| |
Collapse
|
2
|
Population Pharmacokinetic Analysis for Model-Based Therapeutic Drug Monitoring of Tacrolimus in Chinese Han Heart Transplant Patients. Eur J Drug Metab Pharmacokinet 2023; 48:89-100. [PMID: 36482138 DOI: 10.1007/s13318-022-00807-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVE Tacrolimus has become the first-line immunosuppressant for preventing rejection after heart transplantation. The present study aimed to investigate genetic variants and clinical factors affecting the variability of tacrolimus in Chinese Han heart transplant patients using a population pharmacokinetic approach. METHODS The retrospective study included 53 hospitalized patients with 547 tacrolimus concentrations for analysis. Nonlinear mixed-effects modeling was used to develop the population pharmacokinetics model for tacrolimus in patients with heart transplants, followed by Monte Carlo simulations to design initial dosing regimens. RESULTS In our study, the mutation rate of CYP3A4*18B (C>T) was 27.36%. An oral one-compartment model with first-order absorption and elimination was used to describe the pharmacokinetics of tacrolimus in heart transplant patients. In the final model, the estimated apparent clearance (CL/F) and volume of distribution (V/F) were 532.5 L/h [12.20% interindividual variability, IIV] and 16.87 L (23.16% IIV), respectively. Albumin, postoperative time, and rs2242480 (CYP3A4*18B) gene polymorphisms were the significant covariates affecting CL/F, and creatinine clearance had significant effects on the V/F. CONCLUSION The population pharmacokinetic model of tacrolimus in heart transplant patients can better estimate the population and individual pharmacokinetic parameters of patients and can provide a reference for the design of individualized dosing regimens.
Collapse
|
3
|
Everton JBF, Patrício FJB, Faria MS, Ferreira TCA, Filho NS, Silva GEB, Romão EA, Magalhães M. Impact of POR*28 Variant on Tacrolimus Pharmacokinetics in Kidney Transplant Patients with Different CYP3A5 Genotypes. Curr Drug Metab 2022; 23:233-241. [PMID: 35578867 DOI: 10.2174/1389200223666220516094226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/28/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The introduction of tacrolimus (TAC) in clinical practice was essential to the establishment of transplantation as therapy for patients with chronic renal disease. However, the higher interindividual variation of TAC metabolism has been an important limiting factor for its clinical use. Although the relationship between CYP3A5 polymorphisms and TAC pharmacokinetics (PK) is well established, the effects of other genetic variants on TAC metabolism, such as POR*28, still remain uncertain. OBJECTIVE To evaluate the impact of POR variants on TAC PK in renal transplant patients with different CYP3A5 genotypes (expressers and non-expressers). METHODS A total of 115 patients were included in this study. Genomic DNA was isolated from peripheral blood, and the real-time PCR technique was used to analyze the polymorphism POR rs1057868; C>T. RESULTS During the initial post-transplant period, variant allele carriers (*1/*28 and *28/*28) showed a lower TAC dose requirement than POR wild homozygotes (*1/*1). Regarding the influence of the different polymorphisms of POR within the CYP3A5 expresser and non-expresser groups, no differences were observed in any of the PK parameters analyzed during 12 months after transplantation. CONCLUSION In the studied population, the variant allelic POR*28 was significantly associated with lower TAC dose requirements and higher Co/D ratio in the first-month post-transplant. However, the effects of this polymorphism on the CYP3A5 enzyme activity were not observed.
Collapse
Affiliation(s)
- Janaina B F Everton
- Laboratory of Genomic and Histocompatibility Studies, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil.,Postgraduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís, Brazil
| | - Fernando J B Patrício
- Laboratory of Genomic and Histocompatibility Studies, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil
| | - Manuel S Faria
- linical Research Center of the University Hospital of the Federal University of Maranhão (CEPEC/HUUFMA/EBSERH), São Luís, Brazil
| | - Teresa C A Ferreira
- Kidney Transplant Unit, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil
| | - Natalino Salgado Filho
- Nephrology Unit, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil
| | - Gyl E B Silva
- Pathology Unit, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil
| | - Elen A Romão
- Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Marcelo Magalhães
- Research and Extension Nucleus (NUPE), UNDB University Center, São Luís, Brazil
| |
Collapse
|
4
|
Thölking G, Filensky B, Jehn U, Schütte-Nütgen K, Koch R, Kurschat C, Pavenstädt H, Suwelack B, Reuter S, Kuypers D. Increased renal function decline in fast metabolizers using extended-release tacrolimus after kidney transplantation. Sci Rep 2021; 11:15606. [PMID: 34341448 PMCID: PMC8329201 DOI: 10.1038/s41598-021-95201-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/20/2021] [Indexed: 11/09/2022] Open
Abstract
Fast metabolism of immediate-release tacrolimus (IR-Tac) is associated with decreased kidney function after renal transplantation (RTx) compared to slow metabolizers. We hypothesized, by analogy, that fast metabolism of extended-release tacrolimus (ER-Tac) is associated with worse renal function. We analyzed data from patients who underwent RTx at three different transplant centers between 2007 and 2016 and received an initial immunosuppressive regimen with ER-Tac, mycophenolate, and a corticosteroid. Three months after RTx, a Tac concentration to dose ratio (C/D ratio) < 1.0 ng/ml · 1/mL defined fast ER-Tac metabolism and ≥ 1.0 ng/ml · 1/mL slow metabolism. Renal function (estimated glomerular filtration rate, eGFR), first acute rejection (AR), conversion from ER-Tac, graft and patient survival were observed up to 60-months. 610 RTx patients were divided into 192 fast and 418 slow ER-Tac metabolizers. Fast metabolizers showed a decreased eGFR at all time points compared to slow metabolizers. The fast metabolizer group included more patients who were switched from ER-Tac (p < 0.001). First AR occurred more frequently (p = 0.008) in fast metabolizers, while graft and patient survival rates did not differ between groups (p = 0.529 and p = 0.366, respectively). Calculation of the ER-Tac C/D ratio early after RTx may facilitate individualization of immunosuppression and help identify patients at risk for an unfavorable outcome.
Collapse
Affiliation(s)
- Gerold Thölking
- Department of Internal Medicine and Nephrology, University Hospital of Münster Marienhospital Steinfurt, 48565, Steinfurt, Germany.
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Münster, Münster, Germany.
| | - Brigitte Filensky
- Department of Internal Medicine and Nephrology, University Hospital of Münster Marienhospital Steinfurt, 48565, Steinfurt, Germany
| | - Ulrich Jehn
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Münster, Münster, Germany
| | - Katharina Schütte-Nütgen
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Münster, Münster, Germany
| | - Raphael Koch
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Christine Kurschat
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Hermann Pavenstädt
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Münster, Münster, Germany
| | - Barbara Suwelack
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Münster, Münster, Germany
| | - Stefan Reuter
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Münster, Münster, Germany
| | - Dirk Kuypers
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Everton JBF, Patrício FJB, Faria MS, Ferreira TCA, Romao EA, Silva GEB, Magalhães M. CYP3A5 and PPARA genetic variants are associated with low trough concentration to dose ratio of tacrolimus in kidney transplant recipients. Eur J Clin Pharmacol 2021; 77:879-886. [PMID: 33398393 DOI: 10.1007/s00228-020-03076-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/22/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE Genetic polymorphisms have been associated with variation in the metabolism of tacrolimus (TAC) in kidney transplant patients. This study is aimed at assessing the impact of allelic variants of CYP3A5 and PPARA genes on the pharmacokinetics (PK) of TAC in Brazilian kidney transplant recipients in the first-year post-transplant. METHODS A total of 127 patients were included for genetic evaluation. Genomic DNA was isolated from peripheral blood and real-time PCR was used to analyze the main polymorphisms described for the genes CYP3A5 (rs776746; C > G) and PPARA (rs4823613; A > G and rs4253728; G > A). RESULTS CYP3A5 expressors showed a lower Co/dose ratio than non-expressors, with the median values of this parameter <1.01 ng/mL/mg in the first group at all evaluated times. Additionally, PPARA variant homozygotes had a lower Co/D ratio than wild allele carriers in the 12-month post-transplant period, with a median value of 0.65 ng/mL/mg. In the CYP3A5 expressers, the presence of the variant homozygous genotype PPARA was associated with a lower value of Co/D compared with the other genotypic groups at month 12. CONCLUSION In the population under study, polymorphisms on CYP3A5 and PPARA were identified as determining and independent factors associated with the reduction of Co/D of TAC. Thus, the genotyping of these genetic variants may be a useful tool for the individualized prescription of TAC in kidney transplant patients.
Collapse
Affiliation(s)
- Janaína B F Everton
- Laboratory of Genomic and Histocompatibility Studies, University Hospital of the Federal University of Maranhão, São Luís, Brazil.,Postgraduate Program in Adult Health (PPGSAD), Federal University of Maranhão, São Luís, Brazil
| | - Fernando J B Patrício
- Laboratory of Genomic and Histocompatibility Studies, University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | - Manuel S Faria
- Postgraduate Program in Adult Health (PPGSAD), Federal University of Maranhão, São Luís, Brazil.,Clinical Research Center, University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | - Teresa C A Ferreira
- Kidney Transplant Unit, University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | - Elen A Romao
- Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Gyl E B Silva
- Postgraduate Program in Adult Health (PPGSAD), Federal University of Maranhão, São Luís, Brazil.,Pathology Unit, University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | - Marcelo Magalhães
- Laboratory of Genomic and Histocompatibility Studies, University Hospital of the Federal University of Maranhão, São Luís, Brazil. .,Postgraduate Program in Adult Health (PPGSAD), Federal University of Maranhão, São Luís, Brazil. .,Clinical Research Center, University Hospital of the Federal University of Maranhão, São Luís, Brazil.
| |
Collapse
|
6
|
Freitas RCC, Bortolin RH, Genvigir FDV, Bonezi V, Hirata TDC, Felipe CR, Tedesco-Silva H, Medina-Pestana JO, Cerda A, Doi SQ, Hirata MH, Hirata RDC. Differentially expressed urinary exo-miRs and clinical outcomes in kidney recipients on short-term tacrolimus therapy: a pilot study. Epigenomics 2020; 12:2019-2034. [PMID: 33275448 DOI: 10.2217/epi-2020-0160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aim: To analyze the expression of urinary exosome-derived miRNAs (exo-miRs) in kidney recipients on tacrolimus-based therapy. Patients & methods: Clinical and drug monitoring data were recorded from 23 kidney recipients. Expression of 93 exo-miRs was measured by quantitative PCR array and mRNA targets were explored. Results: 16 exo-miRs were differentially expressed, including marked upregulation of miR-155-5p, and downregulation of miR-223-3p and miR-1228-3p. Expression of miR-155-5p and miR-223-3p correlated with tacrolimus dose (p < 0.05), miR-223-3p with serum creatinine (p < 0.05), and miR-223-3p and miR-1228-3p with blood leukocytes (p < 0.05). 12 miRNAs have predicted targets involved in cell proliferation, apoptosis, stress response, PIK3/AKT/mTOR and TGF-β signaling pathways. Conclusion: Differentially expressed urinary exo-miRs may be useful markers to monitor tacrolimus therapy and graft function in kidney transplantation.
Collapse
Affiliation(s)
- Renata Caroline Costa Freitas
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Raul Hernandes Bortolin
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Fabiana Dalla Vecchia Genvigir
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Vivian Bonezi
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Thiago Dominguez Crespo Hirata
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Claudia Rosso Felipe
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo 04038-002, Brazil
| | - Helio Tedesco-Silva
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo 04038-002, Brazil
| | | | - Alvaro Cerda
- Department of Basic Sciences, Center of Excellence in Translational Medicine, BIOREN, Universidad de La Frontera, Temuco 4810296, Chile
| | - Sonia Quateli Doi
- School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | - Mario Hiroyuki Hirata
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| |
Collapse
|
7
|
Wang P, Zhang Q, Tian X, Yang J, Zhang X. Tacrolimus Starting Dose Prediction Based on Genetic Polymorphisms and Clinical Factors in Chinese Renal Transplant Recipients. Genet Test Mol Biomarkers 2020; 24:665-673. [PMID: 32985896 DOI: 10.1089/gtmb.2020.0077] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aims: Tacrolimus has extensive pharmacokinetic variability among patients and a narrow therapeutic window. The U.S. Clinical Pharmacogenetics Implementation Consortium recommends a starting dose for tacrolimus of 0.15-0.3 mg/kg/day, which is much higher compared with 0.05-0.15 mg/kg/day used in China. The purpose of this study was to investigate the influence of clinical factors and single nucleotide polymorphisms (SNPs) on tacrolimus concentrations in Chinese renal transplant recipients. Methods: This study enrolled 406 tacrolimus-treated patients. After renal transplantation, the first tacrolimus trough concentration and corresponding clinical information were collected from all patients. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to genotype 15 SNPs. The relationship between the genetic and clinical factors and dose-adjusted tacrolimus trough concentration was examined. The tacrolimus starting dose was predicted using a classification and regression tree analysis. Results: Examination of the 15 SNPs and several clinical factors identified the CYP3A5 genotype (p = 5.6 × 10-11) and hemoglobin (p = 8.4 × 10-10) as the most significant determinants of tacrolimus C0/D. Accordingly, a concise tacrolimus recommendation dosage model, a classification scheme, and a regression tree were developed. Conclusion: A new classification and regression tree model was developed for establishing the starting dose of tacrolimus based on the CYP3A5 genotype and hemoglobin values. This result may help clinicians prescribe an appropriate initial tacrolimus dose. ClinicalTrials.gov ID: 2020-KY-147.
Collapse
Affiliation(s)
- Peile Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Qiwen Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Xueke Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Genvigir FDV, Campos-Salazar AB, Felipe CR, Tedesco-Silva H, Medina-Pestana JO, Doi SDQ, Cerda A, Hirata MH, Herrero MJ, Aliño SF, Hirata RDC. CYP3A5*3 and CYP2C8*3 variants influence exposure and clinical outcomes of tacrolimus-based therapy. Pharmacogenomics 2020; 21:7-21. [PMID: 31849280 DOI: 10.2217/pgs-2019-0120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: The influence of variants in pharmacokinetics-related genes on long-term exposure to tacrolimus (TAC)-based therapy and clinical outcomes was investigated. Patients & methods: Brazilian kidney recipients were treated with TAC combined with everolimus (n = 178) or mycophenolate sodium (n = 97). The variants in CYP2C8, CYP2J2, CYP3A4, CYP3A5, POR, ABCB1, ABCC2, ABCG2, SLCO1B1 and SLCO2B1 were analyzed. Main results: CYP3A5*3/*3 genotype influenced increase in TAC concentration from week 1 to month 6 post-transplantation (p < 0.05). The living donor and CYP2C8*3 variant were associated with reduced risk for delayed graft function (OR = 0.07; 95% CI = 0.03-0.18 and OR = 0.45; 95% CI = 0.20-0.99, respectively, p < 0.05). Conclusion: The CYP3A5*3 variant is associated with increased early exposure to TAC. Living donor and CYP2C8*3 variant seem to be protective factors for delayed graft function in kidney recipients.
Collapse
Affiliation(s)
- Fabiana Dalla Vecchia Genvigir
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Antony Brayan Campos-Salazar
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil.,Bioinformatics & Pharmacogenetics Laboratory, METOSMOD Research Group, School of Pharmacy & Biochemistry, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Claudia Rosso Felipe
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Helio Tedesco-Silva
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | - Sonia de Quateli Doi
- Nephrology Research Laboratory, School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Alvaro Cerda
- Department of Basic Sciences, Center of Excellence in Translational Medicine, BIOREN, Universidad de La Frontera, Temuco, Chile
| | - Mario Hiroyuki Hirata
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - María José Herrero
- Department of Pharmacology, University of Valencia. Pharmacogenetics, Instituto Investigación Sanitaria y Hospital La Fe, Valencia, Spain
| | - Salvador Francisco Aliño
- Department of Pharmacology, University of Valencia. Pharmacogenetics, Instituto Investigación Sanitaria y Hospital La Fe, Valencia, Spain
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
9
|
Kim JM, Ryu JH, Lee KW, Hong SK, Yang K, Choi GS, Kim YA, Lee JY, Yi NJ, Kwon CHD, Chu CW, Suh KS, Joh JW. Effect of CYP3A5 on the Once-Daily Tacrolimus Conversion in Stable Liver Transplant Patients. J Clin Med 2020; 9:jcm9092897. [PMID: 32911703 PMCID: PMC7563461 DOI: 10.3390/jcm9092897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 12/23/2022] Open
Abstract
Cytochrome P450 (CYP) 3A5 polymorphism influences tacrolimus metabolism, but its effect on the drug pharmacokinetics in liver transplant recipients switched to once-daily extended-release formulation remains unknown. The aim of this study is to analyze the effect of CYP3A5 polymorphism on liver function after once-daily tacrolimus conversion in liver transplant patients. A prospective open-label study included 60 stable liver transplant recipients who underwent 1:1 conversion from twice-daily tacrolimus to once-daily tacrolimus. All participants were genotyped for CYP3A5 polymorphism. The study was registered at ClinicalTrials.gov (NCT 02882113). Twenty-eight patients were enrolled in the CYP3A5 expressor group and 32 in the non-expressor group. Although there was no statistical difference, incidence of liver dysfunction was higher in the expressor group than in the non-expressor group when converted to once-daily extended-release tacrolimus (p = 0.088). No biopsy-proven acute rejection, graft failure, and mortality were observed in either group. The decrease in dose-adjusted trough level (−42.9% vs. −26.1%) and dose/kg-adjusted trough level of tacrolimus (−40.0% vs. −23.7%) was significantly greater in the expressor group than in the non-expressors after the conversion. A pharmacokinetic analysis was performed in 10 patients and tacrolimus absorption in the non-expressor group was slower than in the expressor group. In line with this observation, the area under the curve for once-daily tacrolimus correlated with trough level (Cmin) in the non-expressors and peak concentration (Cmax) in the expressors. CYP3A5 genotyping in liver transplant recipients leads to prediction of pharmacokinetics after switching from a twice-daily regimen to a once-daily dosage form, which makes it possible to establish an appropriate dose of tacrolimus.
Collapse
Affiliation(s)
- Jong Man Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 13557, Korea; (J.M.K.); (G.-S.C.); (J.-W.J.)
| | - Je Ho Ryu
- Department of Surgery, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Busan 46241, Korea; (J.H.R.); (K.Y.)
| | - Kwang-Woong Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul 08826, Korea; (S.K.H.); (N.-J.Y.); (K.-S.S.)
- Correspondence: ; Tel.: +82-2-2072-2511
| | - Suk Kyun Hong
- Department of Surgery, Seoul National University College of Medicine, Seoul 08826, Korea; (S.K.H.); (N.-J.Y.); (K.-S.S.)
| | - Kwangho Yang
- Department of Surgery, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Busan 46241, Korea; (J.H.R.); (K.Y.)
| | - Gyu-Seong Choi
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 13557, Korea; (J.M.K.); (G.-S.C.); (J.-W.J.)
| | - Young-Ae Kim
- Department of Pharmacy, Seoul National University Hospital, Seoul 03080, Korea;
| | - Ju-Yeun Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 04213, Korea;
| | - Nam-Joon Yi
- Department of Surgery, Seoul National University College of Medicine, Seoul 08826, Korea; (S.K.H.); (N.-J.Y.); (K.-S.S.)
| | - Choon Hyuck David Kwon
- Department of Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH 9500, USA;
| | - Chong Woo Chu
- Department of Hepatobiliary Surgery and Liver Transplantation, Good Gang-An Hospital, Busan 613-815, Korea;
| | - Kyung-Suk Suh
- Department of Surgery, Seoul National University College of Medicine, Seoul 08826, Korea; (S.K.H.); (N.-J.Y.); (K.-S.S.)
| | - Jae-Won Joh
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 13557, Korea; (J.M.K.); (G.-S.C.); (J.-W.J.)
| |
Collapse
|
10
|
Bonezi V, Genvigir FDV, Salgado PDC, Felipe CR, Tedesco-Silva H, Medina-Pestana JO, Cerda A, Doi SQ, Hirata MH, Hirata RDC. Differential expression of genes related to calcineurin and mTOR signaling and regulatory miRNAs in peripheral blood from kidney recipients under tacrolimus-based therapy. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1051. [PMID: 33145270 PMCID: PMC7575939 DOI: 10.21037/atm-20-1757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Genetic and epigenetics factors have been implicated in drug response, graft function and rejection in solid organ transplantation. Differential expression of genes involved in calcineurin and mTOR signaling pathway and regulatory miRNAs was analyzed in the peripheral blood of kidney recipient cohort (n=36) under tacrolimus-based therapy. Methods PPP3CA, PPP3CB, MTOR, FKBP1A, FKBP1B and FKBP5 mRNA expression and polymorphisms in PPP3CA and MTOR were analyzed by qPCR. Expression of miRNAs targeting PPP3CA (miR-30a, miR-145), PPP3CB (miR-10b), MTOR (miR-99a, miR-100), and FKBP1A (miR-103a) was measured by qPCR array. Results PPP3CA and MTOR mRNA levels were reduced in the first three months of treatment compared to pre-transplant (P<0.05). PPP3CB, FKBP1A, FKBP1B, and FKBP5 expression was not changed. In the 3rd month of treatment, the expression of miR-99a, which targets MTOR, increased compared to pre-transplant (P<0.05). PPP3CA c.249G>A (GG genotype) and MTOR c.2997C>T (TT genotype) were associated with reduced expression of PPP3CA mRNA and MTOR, respectively. FKBP1B mRNA levels were higher in patients with acute rejection (P=0.026). Conclusions The expression of PPP3CA, MTOR and miR-99a in the peripheral blood of renal recipients is influenced by tacrolimus-based therapy and by PPP3CA and MTOR variants. These molecules can be potential biomarkers for pharmacotherapy monitoring.
Collapse
Affiliation(s)
- Vivian Bonezi
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Fabiana Dalla Vecchia Genvigir
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Patrícia de Cássia Salgado
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Claudia Rosso Felipe
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Helio Tedesco-Silva
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | - Alvaro Cerda
- Department of Basic Sciences, Center of Excellence in Translational Medicine, BIOREN, Universidad de La Frontera, Temuco, Chile
| | - Sonia Quateli Doi
- School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
11
|
Wang Z, Zheng M, Yang H, Han Z, Tao J, Chen H, Sun L, Guo M, Wang L, Tan R, Wei JF, Gu M. Association of Genetic Variants in CYP3A4, CYP3A5, CYP2C8, and CYP2C19 with Tacrolimus Pharmacokinetics in Renal Transplant Recipients. Curr Drug Metab 2020; 20:609-618. [PMID: 31244435 DOI: 10.2174/1389200220666190627101927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/05/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Our study aimed to investigate the pharmacogenetics of cytochrome P3A4 (CYP3A4), CYP3A5, CYP2C8, and CYP2C19 and their influence on TAC Pharmacokinetics (PKs) in short-term renal transplant recipients. METHODS A total of 105 renal transplant recipients were enrolled. Target Sequencing (TS) based on next-generation sequencing technology was used to detect all exons, exon/intron boundaries, and flanking regions of CYP3A4, CYP3A5, CYP2C8, and CYP2C19. After adjustment of Minor Allele Frequencies (MAF) and Hardy-Weinberg Equilibrium (HWE) analysis, tagger Single-nucleotide Polymorphisms (SNPs) and haplotypes were identified. Influence of tagger SNPs on TAC concentrations was analyzed. RESULTS A total of 94 SNPs were identified in TS analysis. Nine tagger SNPs were selected, and two SNPs (rs15524 and rs4646453) were noted to be significantly associated with TAC PKs in short-term post-transplant follow-up. Measurement time points of TAC, body mass index (BMI), usage of sirolimus, and incidence of Delayed Graft Function (DGF) were observed to be significantly associated with TAC PKs. Three haplotypes were identified, and rs15524-rs4646453 was found to remarkably contribute to TAC PKs. Recipients carrying H2/H2 (GG-AA) haplotype also showed significantly high weight- and dose-adjusted TAC concentrations in posttransplant periods of 7, 14, and 30 days and 3 and 6 months. CONCLUSIONS Two tagger SNPs, namely, rs15524 and rs4646453, are significantly related to the variability of TAC disposition, and TAC measurement time points, BMI, usage of sirolimus, and incidence of DGF contribute to this influence. Recipients carrying H2/H2 (GG-AA) haplotype in rs15524-rs4646453 may require a low dosage of TAC during 1-year follow-up posttransplant.
Collapse
Affiliation(s)
- Zijie Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ming Zheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haiwei Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhijian Han
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jun Tao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Chen
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Li Sun
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Miao Guo
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Libin Wang
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Min Gu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
12
|
Szumlinski KK, Coelho MA, Tran T, Stailey N, Lieberman D, Gabriella I, Swauncy I, Brewin LW, Ferdousian S. Who is HOT and who is LOT? Detailed characterization of prescription opioid-induced changes in behavior between 129P3/J and 129S1/SvlmJ mouse substrains. GENES BRAIN AND BEHAVIOR 2019; 19:e12609. [PMID: 31489753 DOI: 10.1111/gbb.12609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 01/20/2023]
Abstract
Genetic factors are theorized to contribute to the substantial inter-individual variability in opioid abuse/addiction. To advance the behavioral genetics of prescription opioid abuse, our prior work identified the 129S1/SvlmJ (S1) and related 129P3/J (P3) mouse substrains, respectively, as low and high opioid-taking. Herein, we related our prior results to measures of sucrose reward/reinforcement, basal anxiety, opioid-induced place-conditioning, locomotor activity and Straub tail reaction, as well as behavioral and physiological signs of withdrawal. Substrains were also re-examined for higher-dose oxycodone and fentanyl intake under limited-access drinking procedures. S1 mice failed to acquire sucrose self-administration under various operant-conditioning procedures and exhibited lower sucrose intake in the home-cage. However, sucrose intake under limited-access procedures escalated in both substrains with repeated sucrose experience. S1 mice exhibited less spontaneous locomotor activity, as well as less opioid-induced locomotor activity and Straub tail reaction, than P3 mice and failed to exhibit an oxycodone-induced place-preference. The lack of conditioned behavior by S1 mice was unrelated to behavioral signs of withdrawal-induced negative affect or dependence severity, but might reflect high levels of basal anxiety-like behavior. Intriguingly, S1 and P3 mice initially exhibited equivalent oxycodone and fentanyl consumption in the home-cage; however opioid intake escalated only in P3 mice with repeated opioid experience. No sex differences were observed for any of our measures. These data provide additional evidence for robust differences in opioid addiction-related behaviors between P3 and S1 substrains and suggest that anxiety, learning, and/or motivational impairments might confound interpretation of operant- and place-conditioning studies employing the S1 substrain.
Collapse
Affiliation(s)
- Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California.,Department of Molecular, Developmental and Cell Biology, University of California Santa Barbara, Santa Barbara, California.,The Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California
| | - Michal A Coelho
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California
| | - Tori Tran
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California
| | - Nicholas Stailey
- Department of Molecular, Developmental and Cell Biology, University of California Santa Barbara, Santa Barbara, California
| | - Dylan Lieberman
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California
| | - Ivette Gabriella
- Department of Psychology, California State University Dominguez Hills, Carson, California
| | - Isaiah Swauncy
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California
| | - Lindsey W Brewin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California
| | - Sami Ferdousian
- Department of Molecular, Developmental and Cell Biology, University of California Santa Barbara, Santa Barbara, California
| |
Collapse
|
13
|
Thölking G, Schütte-Nütgen K, Schmitz J, Rovas A, Dahmen M, Bautz J, Jehn U, Pavenstädt H, Heitplatz B, Van Marck V, Suwelack B, Reuter S. A Low Tacrolimus Concentration/Dose Ratio Increases the Risk for the Development of Acute Calcineurin Inhibitor-Induced Nephrotoxicity. J Clin Med 2019; 8:jcm8101586. [PMID: 31581670 PMCID: PMC6832469 DOI: 10.3390/jcm8101586] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/18/2019] [Accepted: 09/27/2019] [Indexed: 11/16/2022] Open
Abstract
Fast tacrolimus metabolism is linked to inferior outcomes such as rejection and lower renal function after kidney transplantation. Renal calcineurin-inhibitor toxicity is a common adverse effect of tacrolimus therapy. The present contribution hypothesized that tacrolimus-induced nephrotoxicity is related to a low concentration/dose (C/D) ratio. We analyzed renal tubular epithelial cell cultures and 55 consecutive kidney transplant biopsy samples with tacrolimus-induced toxicity, the C/D ratio, C0, C2, and C4 Tac levels, pulse wave velocity analyses, and sublingual endothelial glycocalyx dimensions in the selected kidney transplant patients. A low C/D ratio (C/D ratio < 1.05 ng/mL×1/mg) was linked with higher C2 tacrolimus blood concentrations (19.2 ± 8.7 µg/L vs. 12.2 ± 5.2 µg/L respectively; p = 0.001) and higher degrees of nephrotoxicity despite comparable trough levels (6.3 ± 2.4 µg/L vs. 6.6 ± 2.2 µg/L respectively; p = 0.669). However, the tacrolimus metabolism rate did not affect the pulse wave velocity or glycocalyx in patients. In renal tubular epithelial cells exposed to tacrolimus according to a fast metabolism pharmacokinetic profile it led to reduced viability and increased Fn14 expression. We conclude from our data that the C/D ratio may be an appropriate tool for identifying patients at risk of developing calcineurin-inhibitor toxicity.
Collapse
Affiliation(s)
- Gerold Thölking
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
- Department of Internal Medicine and Nephrology, University Hospital of Münster, Marienhospital Steinfurt, 48565 Steinfurt, Germany.
| | - Katharina Schütte-Nütgen
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| | - Julia Schmitz
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| | - Alexandros Rovas
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| | - Maximilian Dahmen
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| | - Joachim Bautz
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| | - Ulrich Jehn
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| | - Hermann Pavenstädt
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| | - Barbara Heitplatz
- Gerhard-Domagk-Institute of Pathology, University Hospital of Münster, 48149 Münster, Germany.
| | - Veerle Van Marck
- Gerhard-Domagk-Institute of Pathology, University Hospital of Münster, 48149 Münster, Germany.
| | - Barbara Suwelack
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| | - Stefan Reuter
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| |
Collapse
|
14
|
Vencatto RW, Ramalho S, Marson FAL, Rezende LM, Pereira SVN, Bonadia LC, Lima CSP, Bertuzzo CS. ABCB1 variants (C1236T, rs1128503 and G2677T/A, rs2032582) do not show an association with recurrence and survival in patients with breast cancer undergoing anthracycline-based chemotherapy. Meta Gene 2019. [DOI: 10.1016/j.mgene.2019.100596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
15
|
Schütte-Nütgen K, Thölking G, Steinke J, Pavenstädt H, Schmidt R, Suwelack B, Reuter S. Fast Tac Metabolizers at Risk ⁻ It is Time for a C/D Ratio Calculation. J Clin Med 2019; 8:jcm8050587. [PMID: 31035422 PMCID: PMC6572069 DOI: 10.3390/jcm8050587] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/19/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
Tacrolimus (Tac) is a part of the standard immunosuppressive regimen after renal transplantation (RTx). However, its metabolism rate is highly variable. A fast Tac metabolism rate, defined by the Tac blood trough concentration (C) divided by the daily dose (D), is associated with inferior renal function after RTx. Therefore, we hypothesize that the Tac metabolism rate impacts patient and graft survival after RTx. We analyzed all patients who received a RTx between January 2007 and December 2012 and were initially treated with an immunosuppressive regimen containing Tac (Prograf®), mycophenolate mofetil, prednisolone and induction therapy. Patients with a Tac C/D ratio <1.05 ng/mL × 1/mg at three months after RTx were characterized as fast metabolizers and those with a C/D ratio ≥1.05 ng/mL × 1/mg as slow metabolizers. Five-year patient and overall graft survival were noticeably reduced in fast metabolizers. Further, fast metabolizers showed a faster decline of eGFR (estimated glomerular filtration rate) within five years after RTx and a higher rejection rate compared to slow metabolizers. Calculation of the Tac C/D ratio three months after RTx may assist physicians in their daily clinical routine to identify Tac-treated patients at risk for the development of inferior graft function, acute rejections, or even higher mortality.
Collapse
Affiliation(s)
- Katharina Schütte-Nütgen
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| | - Gerold Thölking
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| | - Julia Steinke
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| | - Hermann Pavenstädt
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| | - René Schmidt
- Institute of Biostatistics and Clinical Research, University Hospital of Münster, 48149 Münster, Germany.
| | - Barbara Suwelack
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| | - Stefan Reuter
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, 48149 Münster, Germany.
| |
Collapse
|
16
|
Jouve T, Noble J, Rostaing L, Malvezzi P. An update on the safety of tacrolimus in kidney transplant recipients, with a focus on tacrolimus minimization. Expert Opin Drug Saf 2019; 18:285-294. [DOI: 10.1080/14740338.2019.1599858] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Thomas Jouve
- Service de Néphrologie, Hémodialyse, Aphérèses et Transplantation Rénale, CHU Grenoble-Alpes, Grenoble, France
- Université Grenoble Alpes, Grenoble, France
| | - Johan Noble
- Service de Néphrologie, Hémodialyse, Aphérèses et Transplantation Rénale, CHU Grenoble-Alpes, Grenoble, France
- Université Grenoble Alpes, Grenoble, France
| | - Lionel Rostaing
- Service de Néphrologie, Hémodialyse, Aphérèses et Transplantation Rénale, CHU Grenoble-Alpes, Grenoble, France
- Université Grenoble Alpes, Grenoble, France
| | - Paolo Malvezzi
- Service de Néphrologie, Hémodialyse, Aphérèses et Transplantation Rénale, CHU Grenoble-Alpes, Grenoble, France
- Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
17
|
Rodrigues-Soares F, Suarez-Kurtz G. Pharmacogenomics research and clinical implementation in Brazil. Basic Clin Pharmacol Toxicol 2019; 124:538-549. [PMID: 30589990 DOI: 10.1111/bcpt.13196] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022]
Abstract
We searched PubMed entries and the Lattes database of Brazilian Pharmacogenetics Network investigators, for pharmacogenetic/genomic (PGx) studies in the Brazilian population, focusing on the drugs and genes included in the Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines. Warfarin was the most extensively studied drug in a PGx context: a genomewide association study targeting warfarin stable dose identified significant signals in VKORC1 and CYP2C9, several PGx dosing algorithms were developed based on these and other genes, and the implications of population admixture on extrapolation of dosing recommendations in the CPIC guidelines were examined. A study in renal transplanted patients disclosed association of CYP3A5*6 and CYP3A5*7 with tacrolimus dosing, which led to addition of these variants to CYP3A5*3 in the CPIC tacrolimus guideline. Studies verified predisposition of HIV-positive carriers of UGT1A1*28 to severe atazanavir-induced hyperbilirubinaemia, intolerance to 5-fluorouracyl in gastrointestinal cancer patients with deleterious DPYD variants, failure of HCV-infected carriers of IFNL3 rs12979860 to obtain a sustained viral response to PEG-IFN-α, and hypersensitivity reactions to abacavir in HIV-positive carriers of HLA-B*57:01. No prospective analyses of drug therapy outcomes or cost-effectiveness assessments of PGx-guided therapy were found. In conclusion, the limited adoption of PGx-informed drug prescription in Brazil reflects combination of recognized barriers to PGx implementation worldwide plus factors specific to the Brazilian population. The latter include rarity/absence of genetic variants on which international PGx guidelines are based (eg HLA-B*15.02 for phenytoin and carbamazepine) and the caveat of extrapolating to the admixed Brazilian population, guidelines based on categorical variables, such as continental ancestry (eg warfarin guidelines), "race" or ethnicity.
Collapse
|
18
|
|
19
|
Whole exome sequencing for the identification of CYP3A7 variants associated with tacrolimus concentrations in kidney transplant patients. Sci Rep 2018; 8:18064. [PMID: 30584253 PMCID: PMC6305386 DOI: 10.1038/s41598-018-36085-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023] Open
Abstract
The purpose of this study was to identify genotypes associated with dose-adjusted tacrolimus trough concentrations (C0/D) in kidney transplant recipients using whole-exome sequencing (WES). This study included 147 patients administered tacrolimus, including seventy-five patients in the discovery set and seventy-two patients in the replication set. The patient genomes in the discovery set were sequenced using WES. Also, known tacrolimus pharmacokinetics-related intron variants were genotyped. Tacrolimus C0/D was log-transformed. Sixteen variants were identified including novel CYP3A7 rs12360 and rs10211 by ANOVA. CYP3A7 rs2257401 was found to be the most significant variant among the periods by ANOVA. Seven variants including CYP3A7 rs2257401, rs12360, and rs10211 were analyzed by SNaPshot in the replication set and the effects on tacrolimus C0/D were verified. A linear mixed model (LMM) was further performed to account for the effects of the variants and clinical factors. The combined set LMM showed that only CYP3A7 rs2257401 was associated with tacrolimus C0/D after adjusting for patient age, albumin, and creatinine. The CYP3A7 rs2257401 genotype variant showed a significant difference on the tacrolimus C0/D in those expressing CYP3A5, showing its own effect. The results suggest that CYP3A7 rs2257401 may serve as a significant genetic marker for tacrolimus pharmacokinetics in kidney transplantation.
Collapse
|
20
|
Zhong Y, Li S, Chen L, Liu Z, Luo X, Xu P, Chen L. In Vivo Toxicity of Solasonine and Its Effects on cyp450 Family Gene Expression in the Livers of Male Mice from Four Strains. Toxins (Basel) 2018; 10:toxins10120487. [PMID: 30477109 PMCID: PMC6315709 DOI: 10.3390/toxins10120487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022] Open
Abstract
Solasonine was reported to inhibit tumour cell growth in several different models. The in vivo toxicity of solasonine, the effects of genetic background on its toxicity, and its possible roles in regulating the expression of cyp450 family genes were still unclear and required characterisation. Here, Horn’s assays were performed on male mice from four different strains, and the expression of cyp450 family genes in their livers was examined by RT-PCR and ELISA. Mice treated by intraperitoneal injection with high levels of solasonine showed immediate post-excitatory depression, intraperitoneal tissue adhesion, and dissolving of cells in the liver. Furthermore, these four mouse strains showed different toxicological sensitivity to solasonine. The strains, in decreasing order of LD50 value, rescuing speed of body weight, and more severe pathological symptoms, were KM, ICR, C57BL/6, and BALB/c. Interestingly, more cyp450 genes were downregulated at the mRNA and/or protein level in the livers of male mice from C57BL/6 or BALB/c strains than those from KM or ICR strains. These results suggest that (1) Solasonine has hepatic toxicity and downregulates cyp450 genes expression at transcriptional and/or post-transcriptional levels; (2) Genetic background is an important factor which can affect the in vivo toxicity; (3) Downregulation of cyp450 gene expression in the liver may be a clue to help understand whether or not a given strain is sensitive to solasonine; (4) Influences on the expression of cyp450 genes should be considered when using solasonine alone, or in combination with other drugs.
Collapse
Affiliation(s)
- Youbao Zhong
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China.
- Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Nanchang 330004, China.
| | - Shanshan Li
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China.
- Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Nanchang 330004, China.
| | - Liling Chen
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China.
- Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Nanchang 330004, China.
| | - Zhiyong Liu
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China.
- Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Nanchang 330004, China.
| | - Xiaoquan Luo
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China.
- Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Nanchang 330004, China.
| | - Peng Xu
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China.
- Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Nanchang 330004, China.
| | - Lai Chen
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China.
- Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Nanchang 330004, China.
| |
Collapse
|
21
|
Lv J, Liu F, Feng N, Sun X, Tang J, Xie L, Wang Y. CYP3A4 gene polymorphism is correlated with individual consumption of sufentanil. Acta Anaesthesiol Scand 2018; 62:1367-1373. [PMID: 29926893 DOI: 10.1111/aas.13178] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 05/04/2018] [Accepted: 05/11/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Pain is one of the major adverse clinical outcomes of cesarean section (CS). In the past few years, researchers and physicians have been optimizing post-operative analgesic modalities, but the results are still undesirable for the parturient. The cytochrome P-450 3A4 (CYP3A4) gene has been reported to contribute significantly to human liver microsomal oxidation of sufentanil and alfentanil. METHODS We detected the frequency of CYP3A4 mutant allele, which is associated with the metabolism of diverse drugs, including opioids used for anesthesia. We then investigated the correlation between sufentanil (an opioid analgesic) consumption and CYP3A4 genetic polymorphism. RESULTS We found the frequency of the CYP3A4∗1G (the mutant form of CYP3A) variant allele to be 0.279 in 71 parturients undergoing cesarean section and 137 age-matched parturients with vaginal delivery. Interestingly, the parturients with homozygous CYP3A4∗1G showed less sufentanil consumption compared with those having the wild-type genotype. CONCLUSION In summary, we found a correlation between CYP3A4 genetic polymorphism and sufentanil consumption. This might be helpful for optimizing the anesthesia strategies and reducing their side effects.
Collapse
Affiliation(s)
- J. Lv
- Department of Anesthesiology Qianfoshan Hospital Affiliated to Medical College of Shandong University Jinan China
- Department of Anesthesiology Zibo Center Hospital Zibo China
| | - F. Liu
- Linyi People's Hospital Linyi China
| | - N. Feng
- Department of Anesthesiology Zibo Center Hospital Zibo China
| | - X. Sun
- Department of Anesthesiology Zibo Center Hospital Zibo China
| | - J. Tang
- Department of Anesthesiology Zibo Center Hospital Zibo China
| | - L. Xie
- Department of Anesthesiology Zibo Center Hospital Zibo China
| | - Y. Wang
- Department of Anesthesiology Qianfoshan Hospital Affiliated to Medical College of Shandong University Jinan China
| |
Collapse
|
22
|
Abstract
This review is focused on present and future biomarkers, along with pharmacogenomics used in clinical practice for kidney transplantation. It aims to highlight biomarkers that could potentially be used to improve kidney transplant early and long-term graft survival, but also potentially patient co-morbidity. Future directions for improving outcomes are discussed, which include immune tolerance and personalising immunosuppression regimens.
Collapse
|
23
|
Hu R, Barratt DT, Coller JK, Sallustio BC, Somogyi AA. CYP3A5*3
and ABCB1
61A>G Significantly Influence Dose-adjusted Trough Blood Tacrolimus Concentrations in the First Three Months Post-Kidney Transplantation. Basic Clin Pharmacol Toxicol 2018; 123:320-326. [DOI: 10.1111/bcpt.13016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Rong Hu
- Discipline of Pharmacology; Adelaide Medical School; University of Adelaide; Adelaide SA Australia
| | - Daniel T. Barratt
- Discipline of Pharmacology; Adelaide Medical School; University of Adelaide; Adelaide SA Australia
| | - Janet K. Coller
- Discipline of Pharmacology; Adelaide Medical School; University of Adelaide; Adelaide SA Australia
| | - Benedetta C. Sallustio
- Discipline of Pharmacology; Adelaide Medical School; University of Adelaide; Adelaide SA Australia
- Department of Pharmacology; Queen Elizabeth Hospital; Adelaide SA Australia
| | - Andrew A. Somogyi
- Discipline of Pharmacology; Adelaide Medical School; University of Adelaide; Adelaide SA Australia
- Department of Clinical Pharmacology; Royal Adelaide Hospital; Adelaide SA Australia
| |
Collapse
|
24
|
Hoefer CC, Brick EJ, Savariar A, Kisor DF, Dawson A, Khatri A, Henriksen B. Allelic frequencies of 60 pharmacogene variants assessed within a Burmese population residing in northeast Indiana, USA. Pharmacogenomics 2018. [PMID: 29517466 DOI: 10.2217/pgs-2017-0204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM The aim of this study was to investigate 60 SNPs pertaining to drug metabolism and pharmacodynamics in the Burmese refugee population in the Fort Wayne, Indiana area to better inform patient care. MATERIALS & METHODS Sixty-two self-identified Burmese refugees were genotyped for 60 common SNPs pertaining to pharmacokinetic and pharmacodynamic pharmacogenes. The resulting allelic frequencies were compared with Ensembl's database for surrounding populations to Myanmar and America. RESULTS The frequency of OPRM1, CYP2D6, SLCO1B1, MTHFR and VKORC1 were approximately 20% different in the Burmese refugee population as compared with the Ensembl populations. CONCLUSION Our study demonstrates that genetic differences are expected to affect drug efficacy in patients with a Burmese background.
Collapse
Affiliation(s)
- Carrie C Hoefer
- Manchester University, College of Pharmacy, Fort Wayne, IN 46845, USA
| | - Emily J Brick
- Manchester University, College of Pharmacy, Fort Wayne, IN 46845, USA
| | - Ann Savariar
- Manchester University, College of Pharmacy, Fort Wayne, IN 46845, USA
| | - David F Kisor
- Manchester University, College of Pharmacy, Fort Wayne, IN 46845, USA
| | - Amy Dawson
- Fort Wayne Medical Education Program, Fort Wayne, IN 46802, USA
| | - Ahmad Khatri
- Fort Wayne Medical Education Program, Fort Wayne, IN 46802, USA
| | - Brian Henriksen
- Fort Wayne Medical Education Program, Fort Wayne, IN 46802, USA
| |
Collapse
|
25
|
Liu J, Ouyang Y, Chen D, Yao B, Lin D, Li Z, Zang Y, Liu H, Fu X. Donor and recipient P450 gene polymorphisms influence individual pharmacological effects of tacrolimus in Chinese liver transplantation patients. Int Immunopharmacol 2018; 57:18-24. [PMID: 29454235 DOI: 10.1016/j.intimp.2018.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/16/2022]
Abstract
The immunosuppressant drug tacrolimus (Tac) used for the prevention of immunological rejection is a metabolic substrate of cytochrome P450 enzymes. This study was designed to evaluate the short-term and long-term potential influence of single-nucleotide polymorphisms (SNPs) in CYP450 genes of liver transplant (LT) recipients as well as the donors on individual pharmacological effects of Tac and to guide individualized-medication from the perspective of pharmacogenomics. Twenty-one SNPs of the CYP450 gene were genotyped for both recipients and donors in 373 LT patients receiving Tac-based immunosuppressants. The Tac concentration/dosage ratio (C/D) was evaluated from the initial medication until one year after LT. The C/D ratio was significantly higher when the donor and/or recipient genotype of CYP3A5 rs776746 was G/G or rs15524 was T/T or rs4646450 was C/C all through one year after transplantation. Comparing the effect of donor gene variants of rs776746, rs15524, and rs4646450 on Tac C/D ratios with the recipients, statistically significant differences were found between the donor T/T group and the recipient T/T group in rs15524 at 1 month and 6 months, and at 6 months, the donor C/C group differed from the recipient C/C group in rs4646450. In conclusion, rs776746, rs15524, and rs4646450 of CYP3A5 had a significant influence on Tac pharmacological effects for both the initial use and long-term use. The donor liver genotype and the recipient intestine genotype contribute almost equally in the short-term, but the donor genotype had a greater effect than the recipient genotype at 6 months. Personalized Tac treatment after LT should be based on the CYP3A5 genotype.
Collapse
Affiliation(s)
- Jianyu Liu
- Institute of Transplant Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yabo Ouyang
- Institute of Hepatology, Beijing You'An Hospital, Capital Medical University, Beijing, China
| | - Dexi Chen
- Institute of Transplant Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bo Yao
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dongdong Lin
- Department of General Surgery, Beijing You'An Hospital, Capital Medical University, Beijing, China
| | - Zhiqiang Li
- Institute of Transplant Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yunjin Zang
- Institute of Transplant Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Huan Liu
- Institute of Transplant Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyue Fu
- Institute of Transplant Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
26
|
Oetting WS, Wu B, Schladt DP, Guan W, Remmel RP, Dorr C, Mannon RB, Matas AJ, Israni AK, Jacobson PA. Attempted validation of 44 reported SNPs associated with tacrolimus troughs in a cohort of kidney allograft recipients. Pharmacogenomics 2018; 19:175-184. [PMID: 29318894 PMCID: PMC6021962 DOI: 10.2217/pgs-2017-0187] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023] Open
Abstract
AIM Multiple genetic variants have been associated with variation in tacrolimus (TAC) trough concentrations. Unfortunately, additional studies do not confirm these associations, leading one to question if a reported association is accurate and reliable. We attempted to validate 44 published variants associated with TAC trough concentrations. MATERIALS & METHODS Genotypes of the variants in our cohort of 1923 kidney allograft recipients were associated with TAC trough concentrations. RESULTS Only variants in CYP3A4 and CYP3A5 were significantly associated with variation in TAC trough concentrations in our validation. CONCLUSION There is no evidence that common variants outside the CYP3A4 and CYP3A5 loci are associated with variation in TAC trough concentrations. In the future rare variants may be important and identified using DNA sequencing.
Collapse
Affiliation(s)
- William S Oetting
- Department of Experimental & Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Baolin Wu
- Department of Biostatistics, University of Minnesota, Minneapolis, MN 55455, USA
| | - David P Schladt
- Minneapolis Medical Research Foundation, Minneapolis, MN 55404, USA
| | - Weihua Guan
- Department of Biostatistics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rory P Remmel
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Casey Dorr
- Minneapolis Medical Research Foundation, Minneapolis, MN 55404, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Roslyn B Mannon
- Division of Nephrology, University of Alabama, Birmingham, AL 35233, USA
| | - Arthur J Matas
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ajay K Israni
- Minneapolis Medical Research Foundation, Minneapolis, MN 55404, USA
- Department of Medicine, Hennepin County Medical Center, Minneapolis, MN 55415, USA
- Department of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pamala A Jacobson
- Department of Experimental & Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
27
|
The combination of CYP3A4*22 and CYP3A5*3 single-nucleotide polymorphisms determines tacrolimus dose requirement after kidney transplantation. Pharmacogenet Genomics 2017; 27:313-322. [DOI: 10.1097/fpc.0000000000000296] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Tamashiro EY, Felipe CR, Genvigir FDV, Rodrigues AC, Campos AB, Hirata RDC, Tedesco-Silva H, Medina-Pestana JO. Influence of CYP3A4 and CYP3A5 polymorphisms on tacrolimus and sirolimus exposure in stable kidney transplant recipients. Drug Metab Pers Ther 2017; 32:89-95. [PMID: 28593920 DOI: 10.1515/dmpt-2016-0036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/07/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Polymorphisms in genes encoding for drug-metabolizing enzymes and drug transporters are among multiple factors that modulate the pharmacokinetic variability of tacrolimus (TAC) and sirolimus (SRL). This study aimed to evaluate the influence of single nucleotide polymorphisms (SNPs) on TAC and SRL dose-adjusted concentrations (C0/D) in stable kidney transplant recipients. METHODS This is an exploratory and prospective study, which includes 46 stable kidney transplant recipients. These patients were monitored from the 3rd to the 24th month after transplantation. The SRL group consisted of 25 patients receiving TAC, prednisone (PRED), and mycophenolate sodium (MPS), which were converted from TAC to SRL at 3rd month after transplantation. The TAC group consisted of 21 patients who underwent treatment with TAC, PRED, and MPS. Both groups were genotyped for CYP3A4 rs2242480 (g.20230G>A), CYP3A5 rs15524 (g.31611C>T), CYP2C8 rs10509681 (c.1196A>G) and ABCB1 rs1045642 (c.3435C>T), rs1128503 (c.1236C>T), and rs2032582 (c.2677G>T/A) polymorphisms. RESULTS In the TAC group, CYP3A4 rs2242480 A allele carriers were associated with lower TAC C0/D. For CYP3A5 rs15524 SNP, C0/D was higher among patients carrying TT genotype when compared with CT and CC genotype carriers in the SRL and, more consistently, in the TAC groups. For ABCB1 rs1045642 SNP, TT genotype was associated with reduced SRL C0/D, but only at month 15. CONCLUSIONS CYP3A4 rs2242480 and CYP3A5 rs15524 SNPs resulted in significant changes in SRL and TAC C0/D at different times after transplantation.
Collapse
|
29
|
Genvigir FDV, Nishikawa AM, Felipe CR, Tedesco-Silva H, Oliveira N, Salazar ABC, Medina-Pestana JO, Doi SQ, Hirata MH, Hirata RDC. Influence of ABCC2, CYP2C8, and CYP2J2 Polymorphisms on Tacrolimus and Mycophenolate Sodium-Based Treatment in Brazilian Kidney Transplant Recipients. Pharmacotherapy 2017; 37:535-545. [PMID: 28316087 DOI: 10.1002/phar.1928] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
STUDY OBJECTIVE To investigate the influence of single nucleotide polymorphisms (SNPs) in genes encoding metabolizing enzymes (CYP2C8, CYP2J2, and UGT2B7) and transporters (ABCC2 and ABCG2) on dose and dose-adjusted trough blood concentrations (C:D ratio), clinical outcomes, and occurrence of adverse events of tacrolimus and mycophenolate sodium in Brazilian kidney transplant recipients. DESIGN Pharmacogenetic analysis of patients enrolled in a previously published study. PATIENTS One hundred forty-eight adult kidney transplant recipients treated with tacrolimus, enteric-coated mycophenolate sodium, and prednisone for 90 days posttransplantation. MEASUREMENTS AND MAIN RESULTS ABCC2 c.-24C>T and c.3972C>T, ABCG2 c.421C>A, CYP2C8*3, CYP2J2 c.-76G>T, and UGT2B7 c.372A>G SNPs were determined by real-time polymerase chain reaction. The CYP3A5*3C SNP data were used to eliminate the confounding effect of this variant on the results. ABCC2 c.3972T allele carriers showed higher tacrolimus C:D values than did carriers of the c.3972CC genotype. The CYP2C8*3 variant was also associated with slightly higher tacrolimus C:D values and higher estimated glomerular filtration rate but only in CYP3A5-nonexpressing patients (CYP3A5*3C/*3C carriers). None of the SNPs were associated with mycophenolate sodium dose or episodes of biopsy-confirmed acute rejection or delayed graft function. The CYP2J2 c.-76T allele was associated with increased risk for treatment-induced nausea and/or vomiting (OR: 5.30, 95% confidence interval 1.49-18.79, p<0.05). CONCLUSION The ABCC2 c.3972C >T polymorphism affected tacrolimus C:D in Brazilian kidney transplant recipients. Further, CYP2C8*3 and CYP2J2 c.-76G>T SNPs influenced the renal function of these patients and the occurrence of adverse events during treatment with tacrolimus and mycophenolate sodium.
Collapse
Affiliation(s)
- Fabiana D V Genvigir
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Alvaro M Nishikawa
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Claudia R Felipe
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Helio Tedesco-Silva
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Nagilla Oliveira
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Antony B C Salazar
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Jose O Medina-Pestana
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Sonia Q Doi
- School of Medicine, Uniformed Services University, Bethesda, Maryland
| | - Mario H Hirata
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Rosario D C Hirata
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
30
|
Salgado PC, Genvigir FD, Felipe CR, Tedesco-Silva H, Medina-Pestana JO, Doi SQ, Hirata MH, Hirata RD. Association of the PPP3CA c.249G>A variant with clinical outcomes of tacrolimus-based therapy in kidney transplant recipients. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2017; 10:101-106. [PMID: 28435308 PMCID: PMC5386607 DOI: 10.2147/pgpm.s131390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The effects of genetic variants related to the pharmacodynamic mechanisms of immunosuppressive drugs on their therapeutic efficacy and safety have been poorly explored. This study was performed to investigate the influence of the PPP3CA c.249G>A variant on the clinical outcomes of kidney transplant recipients. PATIENTS AND METHODS A total of 148 Brazilian patients received tacrolimus (TAC)-based immunosuppressive therapy for 90 days post-kidney transplantation. The PPP3CA rs3730251 (c.249G>A) polymorphism was determined by real-time polymerase chain reaction. Single-nucleotide polymorphism (SNP) data for CYP3A5 rs776746 (CYP3A5*3C; g.6986A>G) were used to eliminate the confounding effects of this variant. RESULTS The PPP3CA c.249G>A SNP did not influence early TAC exposure, renal function, or other laboratory parameters, including levels of urea, creatinine, glucose, and lipids, and blood counts. This variant also did not account for the cumulative incidence of biopsy-confirmed acute rejection or delayed graft function. Regarding adverse events, PPP3CA c.249A allele carriers initially had a 3.05-fold increased probability of treatment-induced blood and lymphatic system disorders compared with c.249GG genotype individuals (95% confidence interval: 1.10-8.48, p=0.032). However, this result was not maintained after adjusting for body weight and CYP3A5*3C SNP status (p=0.086). CONCLUSION The PPP3CA c.249G>A variant does not influence the clinical outcomes of Brazilian patients in the early phase of TAC-based immunosuppressive regimen.
Collapse
Affiliation(s)
- Patricia C Salgado
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo
| | - Fabiana Dv Genvigir
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo
| | - Claudia R Felipe
- Division of Nephrology, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Helio Tedesco-Silva
- Division of Nephrology, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Jose O Medina-Pestana
- Division of Nephrology, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Sonia Q Doi
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Mario H Hirata
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo
| | - Rosario Dc Hirata
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo
| |
Collapse
|
31
|
Thölking G, Gerth HU, Schuette-Nuetgen K, Reuter S. Influence of tacrolimus metabolism rate on renal function after solid organ transplantation. World J Transplant 2017; 7:26-33. [PMID: 28280692 PMCID: PMC5324025 DOI: 10.5500/wjt.v7.i1.26] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/22/2016] [Accepted: 01/14/2017] [Indexed: 02/05/2023] Open
Abstract
The calcineurin inhibitor (CNI) tacrolimus (TAC) is an integral part of the immunosuppressive regimen after solid organ transplantation. Although TAC is very effective in prevention of acute rejection episodes, its highly variable pharmacokinetic and narrow therapeutic window require frequent monitoring of drug levels and dose adjustments. TAC can cause CNI nephrotoxicity even at low blood trough levels (4-6 ng/mL). Thus, other factors besides the TAC trough level might contribute to CNI-related kidney injury. Unfortunately, TAC pharmacokinetic is determined by a whole bunch of parameters. However, for daily clinical routine a simple application strategy is needed. To address this problem, we and others have evaluated a simple calculation method in which the TAC blood trough concentration (C) is divided by the daily dose (D). Fast TAC metabolism (C/D ratio < 1.05) was identified as a potential risk factor for an inferior kidney function after transplantation. In this regard, we recently showed a strong association between fast TAC metabolism and CNI nephrotoxicity as well as BKV infection. Therefore, the TAC C/D ratio may assist transplant clinicians in a simple way to individualize the immunosuppressive regimen.
Collapse
|
32
|
Zhang H, Chen M, Wang X, Yu S. Patients with CYP3A4*1G genetic polymorphism consumed significantly lower amount of sufentanil in general anesthesia during lung resection. Medicine (Baltimore) 2017; 96:e6013. [PMID: 28121959 PMCID: PMC5287983 DOI: 10.1097/md.0000000000006013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
CYP3A4, an isoform of cytochrome P450 enzymes, is responsible for the metabolism of 45% to 60% of currently prescribed drugs. It has been shown that CYP3A4*1G, a single nucleotide polymorphism (SNP), affects the enzymatic activity of CYP3A4. Sufentanil, a synthetic opioid commonly used for the induction and maintenance of general anesthesia, analgesia, and sedation, is mainly metabolized by CYP3A4. So far, the impact of CYP3A4*1G on sufentanil metabolism has not been investigated. In the present study, we first determined the frequency of CYP3A4*1G polymorphism in patients of Chinese Han nationality who underwent lung resection, and then compared the amount of sufentanil used in general anesthesia during the surgical procedure between wild type and mutant patients.DNA sequencing was performed to genotype the CYP3A4*1G allele in 191 patients. The sufentanil dosages consumed in general anesthesia were recorded and compared between wild-type and mutant patients.The frequency of the CYP3A4*1G variant allele was 0.202 (77/382). No significant difference was observed in age, body weight, or operation time between wild-type and mutant patients. The amount of sufentanil consumed by patients with the point mutation was significantly lower than that in the wild type group. No significant difference in sufentanil dosages was observed between females and males within wild type or within mutant group.High frequency of CYP3A4*1G variants was detected in patients of Chinese Han nationality. Significantly lower amount of sufentanil was consumed in mutant patients compared with wild type subjects, likely a result of impaired CYP3A4 activity due to the point mutation. These findings suggest genotyping of CYP3A4 might be of value in providing guidance for the use of sufentanil.
Collapse
|