1
|
Shao W, Zeng Z, Star A. An Ultrasensitive Norfentanyl Sensor Based on a Carbon Nanotube-Based Field-Effect Transistor for the Detection of Fentanyl Exposure. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37784-37793. [PMID: 37523478 PMCID: PMC10416144 DOI: 10.1021/acsami.3c05958] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
The opioid crisis is a worldwide public health crisis that has affected millions of people. In recent years, synthetic opioids, primarily illicit fentanyl, have become the primary driver of overdose deaths. There is a great need for a highly sensitive, portable, and inexpensive analytical tool that can quickly indicate the presence and relative threat of fentanyl. In this work, we develop a semiconductor enriched (sc-) single-walled carbon nanotube (SWCNT)-based field-effect transistor (FET) biosensor functionalized with norfentanyl antibodies for the sensitive detection of norfentanyl, the primary inactive metabolite of fentanyl, in urine samples. Different sensor configurations were explored in order to obtain the most optimized sensing results. Moreover, by employing the "reduced" antibody, we achieved orientated immobilization of the norfentanyl antibody and thus brought the antigen-antibody interaction closer to the sensor surface, further improving the sensitivity. The reported norfentanyl biosensors have a limit of detection in the fg/mL region in both calibration samples and synthetic urine samples, showing ultrasensitivity and high reliability.
Collapse
Affiliation(s)
- Wenting Shao
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zidao Zeng
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Star
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
2
|
Magarbeh L, Gorbovskaya I, Wells R, Jhirad R, Le Foll B, Müller DJ. Pharmacogenetics of Lethal Opioid Overdose: Review of Current Evidence and Preliminary Results from a Pilot Study. J Pers Med 2023; 13:918. [PMID: 37373907 DOI: 10.3390/jpm13060918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
There has been a worldwide substantial increase in accidental opioid-overdose deaths. The aim of this review, along with preliminary results from our pilot study, is to highlight the use of pharmacogenetics as a tool to predict causes of accidental opioid-overdose death. For this review, a systematic literature search of PubMed® between the time period of January 2000 to March 2023 was carried out. We included study cohorts, case-controls, or case reports that investigated the frequency of genetic variants in opioid-related post-mortem samples and the association between these variants and opioid plasma concentrations. A total of 18 studies were included in our systematic review. The systematic review provides evidence of the use of CYP2D6, and to a lower extent, CYP2B6 and CYP3A4/5 genotyping in identifying unexpectedly high or low opioid and metabolite blood concentrations from post-mortem samples. Our own pilot study provides support for an enrichment of the CYP2B6*4-allele in our methadone-overdose sample (n = 41) compared to the anticipated frequency in the general population. The results from our systematic review and the pilot study highlight the potential of pharmacogenetics in determining vulnerability to overdose of opioids.
Collapse
Affiliation(s)
- Leen Magarbeh
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Ilona Gorbovskaya
- Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Factor-Inwentash Faculty of Social Work, University of Toronto, Toronto, ON M5S 1V4, Canada
| | - Richard Wells
- Office of the Chief Coroner and Ontario Forensic Pathology Service, Toronto, ON M3M 0B1, Canada
| | - Reuven Jhirad
- Office of the Chief Coroner and Ontario Forensic Pathology Service, Toronto, ON M3M 0B1, Canada
| | - Bernard Le Foll
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Department of Family and Community Medicine, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Acute Care Program, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
- Waypoint Research Institute, Waypoint Centre for Mental Health Care, Penetanguishene, ON L9M 1G3, Canada
| | - Daniel J Müller
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
3
|
Tackling the challenges of developing microneedle-based electrochemical sensors. Mikrochim Acta 2022; 189:440. [DOI: 10.1007/s00604-022-05510-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
|
4
|
Eapen-John D, Mohiuddin AG, Kennedy JL. A potential paradigm shift in opioid crisis management: The role of pharmacogenomics. World J Biol Psychiatry 2022; 23:411-423. [PMID: 34854362 DOI: 10.1080/15622975.2021.2012397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pharmacogenetic investigations into the opioid crisis suggest genetic variation could be a significant cause of opioid-related morbidity and mortality. Variability in opioid system genes, including single nucleotide polymorphisms, manifest after pharmacogenetic testing, as previously invisible risk factors for addiction and overdose. Pharmacodynamic genes regulate opioid-sensitive brain networks and neural reward circuitry. Pharmacokinetic genes expressed in drug metabolic pathways regulate blood levels of active vs. inactive opioid metabolites. Elucidating the complex interplay of genetic variations in pharmacokinetic and pharmacodynamic pathways will shed new light on the addictive and toxic properties of opioids. This narrative review serves to promote understanding of key genetic mechanisms affecting the metabolism and actions of opioids, and to explore causes of the recent surge in opioid-related mortality associated with COVID-19. Personalised treatment plans centred around an individual's genetic makeup could make opioid-based pain management and opioid use disorder (OUD) treatments safer and more effective at both the individual and system levels.
Collapse
Affiliation(s)
- David Eapen-John
- Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Ayeshah G Mohiuddin
- Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - James L Kennedy
- Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Zhao J, Cai S, Zhang L, Rao Y, Kang X, Feng Z. Progress, Challenges, and Prospects of Research on the Effect of Gene Polymorphisms on Adverse Reactions to Opioids. Pain Ther 2022; 11:395-409. [PMID: 35429333 PMCID: PMC9098754 DOI: 10.1007/s40122-022-00374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
The abuse of opioids has become one of the most serious concerns in the world. Opioid use can cause serious adverse reactions, including respiratory depression, postoperative nausea and vomiting, itching, and even death. These adverse reactions are also important complications of clinical application of opioid drugs that may affect patient safety and recovery. Due to the fear of adverse reactions of opioids, clinicians often do not dare to use opioids in an adequate or appropriate amount, thus affecting the clinical medication strategy and the quality of treatment for patients. The prediction of adverse reactions to opioids is one of the most concerned problems in clinical practice. At present, the correlation between gene polymorphism and the efficacy of opiates has been widely studied and preliminarily confirmed, but the research on the effect of gene polymorphism on the adverse reactions of opiates is relatively limited. Existing studies have made encouraging progress in predicting the incidence and severity of adverse opioid reactions and clinical management by using genetic testing, but most of these studies are single-center, small-sample clinical studies or animal experiments, which have strong limitations. When the same receptor or enzyme is studied by different experimental methods, different or even opposite conclusions can be drawn. These phenomena indicate that the correlation between gene polymorphism and adverse opioid reaction still needs further research and demonstration. At present, it is still too early to use genetic testing to predict opioid adverse reactions in clinic. In this paper, the correlation between gene polymorphism and adverse opioid reactions and a small number of clinical applications were reviewed in terms of pharmacokinetics and pharmacodynamics, in order to provide some suggestions for future research and clinical drug decision making.
Collapse
|
6
|
Cook-Sather SD, Urban E, Romano VA, Romano MA. When Fentanyl Finds an Outlier: Talking With Teenagers About the Danger. Pediatrics 2021; 148:peds.2021-051368. [PMID: 34521727 DOI: 10.1542/peds.2021-051368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Scott D Cook-Sather
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania .,Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elynor Urban
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
7
|
Butelman ER, Baynard C, McElroy BD, Prisinzano TE, Kreek MJ. Profile of a short-acting κ-antagonist, LY2795050, on self-grooming behaviors, forced swim test and locomotor activity: sex comparison in mice. J Psychopharmacol 2021; 35:579-590. [PMID: 33769112 DOI: 10.1177/0269881121996883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Novel short-acting κ(kappa)-opioid receptor selective antagonists are translational tools to examine the impact of the κ-receptor/dynorphin system in assays related to central nervous system dysfunction (e.g., substance use disorders, anhedonia and depression). The effects of such compounds have been compared in males and females under very limited conditions. AIMS The goal of this study was to examine potential sex differences in the effects of a κ-agonist and a short-acting κ-antagonist in an ethologically relevant test of anhedonia, the "splash test" of self-grooming, and also in the forced swim test and in locomotor activity. METHODS We examined the dose-dependence of grooming deficits caused by the κ-agonist U50,488 (0.1-3.2 mg/kg intraperitoneal (i.p.)) in gonadally intact adult male and female C57BL/6J mice. We then compared the effects of the short-acting κ-antagonist LY2795050 ((3-chloro-4-(4-(((2S)-2-pyridin-3-ylpyrrolidin-1-yl)methyl) phenoxy)benzamide)); 0.032-0.1 mg/kg i.p.) in blocking grooming deficits caused by U50,488 (3.2 mg/kg). The effects of LY2795050 were also studied in the forced swim test (FST). The effects of LY2795050 in blocking the locomotor depressant effects of U50,488 (10 mg/kg) were also studied. RESULTS U50,488 produced dose-dependent grooming deficits in male and female mice, and LY2795050 prevented these effects. In contrast, LY2795050 decreased immobility in the FST in males at a dose of 0.1 mg/kg, but not in females, up to a dose of 0.32 mg/kg. Also, LY2795050 (0.32 mg/kg) prevented and also reversed the locomotor-depressant effects of U50,488 (10 mg/kg), in males and females. CONCLUSIONS This study further implicates the κ-receptor system in ethologically relevant aspects of anhedonia, and confirms sexual dimorphism in some behavioral effects of novel κ-antagonists.
Collapse
Affiliation(s)
- Eduardo R Butelman
- Laboratory on the Biology of Addictive Diseases, The Rockefeller University, New York, USA
| | - Caroline Baynard
- Laboratory on the Biology of Addictive Diseases, The Rockefeller University, New York, USA
| | - Bryan D McElroy
- Laboratory on the Biology of Addictive Diseases, The Rockefeller University, New York, USA
| | | | - Mary Jeanne Kreek
- Laboratory on the Biology of Addictive Diseases, The Rockefeller University, New York, USA
| |
Collapse
|
8
|
Brandl E, Halford Z, Clark MD, Herndon C. Pharmacogenomics in Pain Management: A Review of Relevant Gene-Drug Associations and Clinical Considerations. Ann Pharmacother 2021; 55:1486-1501. [PMID: 33771051 DOI: 10.1177/10600280211003875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To provide an overview of clinical recommendations regarding genomic medicine relating to pain management and opioid use disorder. DATA SOURCES A literature review was conducted using the search terms pain management, pharmacogenomics, pharmacogenetics, pharmacokinetics, pharmacodynamics, and opioids on PubMed (inception to February 1, 2021), CINAHL (2016 through February 1, 2021), and EMBASE (inception through February 1, 2021). STUDY SELECTION AND DATA EXTRACTION All relevant clinical trials, review articles, package inserts, and guidelines evaluating applicable pharmacogenotypes were considered for inclusion. DATA SYNTHESIS More than 300 Food and Drug Administration-approved medications contain pharmacogenomic information in their labeling. Genetic variability may alter the therapeutic effects of commonly prescribed pain medications. Pharmacogenomic-guided therapy continues to gain traction in clinical practice, but a multitude of barriers to widespread pharmacogenomic implementation exist. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE Pain is notoriously difficult to treat given the need to balance safety and efficacy when selecting pharmacotherapy. Pharmacogenomic data can help optimize outcomes for patients with pain. With improved technological advances, more affordable testing, and a better understanding of genomic variants resulting in treatment disparities, pharmacogenomics continues to gain popularity. Unfortunately, despite these and other advancements, pharmacogenomic testing and implementation remain underutilized and misunderstood in clinical care, in part because of a lack of health care professionals trained in assessing and implementing test results. CONCLUSIONS A one-size-fits-all approach to pain management is inadequate and outdated. With increasing genomic data and pharmacogenomic understanding, patient-specific genomic testing offers a comprehensive and personalized treatment alternative worthy of additional research and consideration.
Collapse
Affiliation(s)
- Emily Brandl
- Memphis Veterans Affairs Medical Center, Memphis, TN, USA
| | | | - Matthew D Clark
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chris Herndon
- Southern Illinois University Edwardsville School of Pharmacy, Edwardsville, IL, USA.,St Louis University School of Medicine, MO, USA
| |
Collapse
|
9
|
Metwally H, Agrawal P, Smith R, Liu C, LeBlanc Y, Covey TR, Oleschuk R. Detection of Opioids on Mail/Packages Using Open Port Interface Mass Spectrometry (OPI-MS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2370-2378. [PMID: 33079532 DOI: 10.1021/jasms.0c00295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Opioids (and their more potent synthetic analogues) are used therapeutically as effective pain killers; however, recreational use and consequent overdoses are implicated in the deaths of thousands of people across the world annually. Trafficking of opioids and other illegal drugs through international mail has become a significant challenge for law enforcement personnel. Hundreds of millions of letters are sorted by the U.S. and Canadian postal services every day. Chemical analysis of this immense volume of mail requires a very fast sampling/detection method. This work explores the use of real-time mass spectrometry analysis with the recently developed Open Port Interface (OPI) for acoustically dispensed nanoliter volume sample droplets, a type of liquid microjunction surface sampling probe, for rapid and easy non-intrusive detection of fentanyl, heroin, and oxycodone. The OPI coupled to mass spectrometry is a novel sample introduction method that allows the rapid analysis of sample surfaces without preparation or modification. Opioids on different packaging materials (e.g., paper, bubble wrap, Ziploc bags) were rapidly (<10 s) interrogated by the OPI, and the sensitivities of the method compared. Furthermore, an opioid surrogate (caffeine) could be facilely detected on envelopes after processing through postal services.
Collapse
Affiliation(s)
- Haidy Metwally
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Prashant Agrawal
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Rachael Smith
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Chang Liu
- SCIEX, 71 Four Valley Drive, Concord, Ontario L4K 4 V8, Canada
| | - Yves LeBlanc
- SCIEX, 71 Four Valley Drive, Concord, Ontario L4K 4 V8, Canada
| | - Thomas R Covey
- SCIEX, 71 Four Valley Drive, Concord, Ontario L4K 4 V8, Canada
| | - Richard Oleschuk
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|