1
|
Buchner DA, Nadeau JH. Contrasting genetic architectures in different mouse reference populations used for studying complex traits. Genome Res 2015; 25:775-91. [PMID: 25953951 PMCID: PMC4448675 DOI: 10.1101/gr.187450.114] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/31/2015] [Indexed: 01/14/2023]
Abstract
Quantitative trait loci (QTLs) are being used to study genetic networks, protein functions, and systems properties that underlie phenotypic variation and disease risk in humans, model organisms, agricultural species, and natural populations. The challenges are many, beginning with the seemingly simple tasks of mapping QTLs and identifying their underlying genetic determinants. Various specialized resources have been developed to study complex traits in many model organisms. In the mouse, remarkably different pictures of genetic architectures are emerging. Chromosome Substitution Strains (CSSs) reveal many QTLs, large phenotypic effects, pervasive epistasis, and readily identified genetic variants. In contrast, other resources as well as genome-wide association studies (GWAS) in humans and other species reveal genetic architectures dominated with a relatively modest number of QTLs that have small individual and combined phenotypic effects. These contrasting architectures are the result of intrinsic differences in the study designs underlying different resources. The CSSs examine context-dependent phenotypic effects independently among individual genotypes, whereas with GWAS and other mouse resources, the average effect of each QTL is assessed among many individuals with heterogeneous genetic backgrounds. We argue that variation of genetic architectures among individuals is as important as population averages. Each of these important resources has particular merits and specific applications for these individual and population perspectives. Collectively, these resources together with high-throughput genotyping, sequencing and genetic engineering technologies, and information repositories highlight the power of the mouse for genetic, functional, and systems studies of complex traits and disease models.
Collapse
Affiliation(s)
- David A Buchner
- Department of Genetics and Genome Sciences, Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Joseph H Nadeau
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122, USA
| |
Collapse
|
2
|
A population-based association study of casein kinase 1 epsilon loci with heroin dependence in Han Chinese. J Mol Neurosci 2013; 53:143-9. [PMID: 24338102 DOI: 10.1007/s12031-013-0186-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 11/15/2013] [Indexed: 02/08/2023]
Abstract
Pharmacogenetic studies have confirmed that the genetic variant of the casein kinase 1 epsilon (Csnk1ε) gene contributes to response variability to amphetamine and methamphetamine in both mice and humans. A polymorphism in the Csnk1ε gene has been reported to be associated with heroin dependence. In this study, to identify markers contributing to the genetic susceptibility of the Csnk1ε gene to heroin dependence, we examined the potential association between heroin dependence and 14 single nucleotide polymorphisms (SNPs; rs1997644, rs135764, rs867198, rs135763, rs135757, rs6001090, rs5750581, rs1534891, rs1005473, rs3890379, rs2075984, rs2075983, rs135749, and rs135745) of the Csnk1ε gene using the MassARRAY system. Participants included 398 heroin-dependent patients and 436 healthy controls from a Han Chinese population. The result revealed a strong association between the rs135745 (3'-untranslated region) genotype distribution and heroin dependence (P = 0.0006). The frequency of the C allele was significantly higher in the heroin-dependent patients than in the healthy controls (χ(2) = 7.172, P = 0.007, OR = 1.426, 95 % CI = 1.099-1.849). Further genotype and clinical phenotype correlation study of the rs135745 carriers showed that the amount of heroin self-injection was higher in patients with the GC + CC genotype compared to the patients with the GG genotypes (P < 0.01). Strong linkage disequilibrium (LD) was observed in block 1, block 2, and block 3 (D' > 0.9), whereas significant evidence of LD was not observed between these SNPs in our sample population. These findings point to a role for Csnk1ε polymorphisms in heroin dependence among the Han Chinese population and may be informative for future genetic or neurobiological studies on heroin dependence.
Collapse
|
3
|
Huang Y, Wang L, Bennett B, Williams RW, Wang YJ, Gu WK, Jiao Y. Potential role of Atp5g3 in epigenetic regulation of alcohol preference or obesity from a mouse genomic perspective. GENETICS AND MOLECULAR RESEARCH 2013; 12:3662-74. [PMID: 24085430 DOI: 10.4238/2013.september.18.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The mitochondrial ATP synthase, subunit c, isoform 3 gene (Atp5g3) encodes subunit 9, the subunit of the multisubunit enzyme that catalyzes ATP synthesis during oxidative phosphorylation in mitochondria. According to the Ensembl database, Atp5g3 in mice is located on chromosome 2 between 73746504 and 73749383 bp, within the genomic regions of two sets of quantitative trait loci - alcohol preference and body weight. Both of those traits are more influenced by epigenetic factors than many other traits are. Using currently available phenotype and gene expression profiles from the GeneNetwork database, we obtained correlations between Atp5g3 and alcoholism- and obesity-relevant phenotypes. The correlation in expression levels between Atp5g3 and each of its 12 partner genes in the molecular interaction are different in various tissues and genes. Transcriptome mapping indicated that Atp5g3 is differentially regulated in the hippocampus, cerebellum, and liver. Owing to a lack of known polymorphisms of Atp5g3 among three relevant mouse strains, C57BL/6J (B6), DBA/2J (D2), and BALB/ cJ, the molecular mechanism for the connection between Atp5g3 and alcoholism and body weight requires further investigation.
Collapse
Affiliation(s)
- Y Huang
- Department of Orthopaedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Bryant CD, Parker CC, Zhou L, Olker C, Chandrasekaran RY, Wager TT, Bolivar VJ, Loudon AS, Vitaterna MH, Turek FW, Palmer AA. Csnk1e is a genetic regulator of sensitivity to psychostimulants and opioids. Neuropsychopharmacology 2012; 37:1026-35. [PMID: 22089318 PMCID: PMC3280656 DOI: 10.1038/npp.2011.287] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Csnk1e, the gene encoding casein kinase 1-epsilon, has been implicated in sensitivity to amphetamines. Additionally, a polymorphism in CSNK1E was associated with heroin addiction, suggesting that this gene may also affect opioid sensitivity. In this study, we first conducted genome-wide quantitative trait locus (QTL) mapping of methamphetamine (MA)-induced locomotor activity in C57BL/6J (B6) × DBA/2J (D2)-F(2) mice and a more highly recombinant F(8) advanced intercross line. We identified a QTL on chromosome 15 that contained Csnk1e (63-86 Mb; Csnk1e=79.25 Mb). We replicated this result and further narrowed the locus using B6.D2(Csnk1e) and D2.B6(Csnk1e) reciprocal congenic lines (78-86.8 and 78.7-81.6 Mb, respectively). This locus also affected sensitivity to the μ-opioid receptor agonist fentanyl. Next, we directly tested the hypothesis that Csnk1e is a genetic regulator of sensitivity to psychostimulants and opioids. Mice harboring a null allele of Csnk1e showed an increase in locomotor activity following MA administration. Consistent with this result, coadministration of a selective pharmacological inhibitor of Csnk1e (PF-4800567) increased the locomotor stimulant response to both MA and fentanyl. These results show that a narrow genetic locus that contains Csnk1e is associated with differences in sensitivity to MA and fentanyl. Furthermore, gene knockout and selective pharmacological inhibition of Csnk1e define its role as a negative regulator of sensitivity to psychostimulants and opioids.
Collapse
Affiliation(s)
- Camron D Bryant
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Clarissa C Parker
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Lili Zhou
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, USA,Department of Neurobiology and Physiology, Northwestern University, Evanston, IL, USA
| | - Christopher Olker
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, USA,Department of Neurobiology and Physiology, Northwestern University, Evanston, IL, USA
| | | | - Travis T Wager
- Neuroscience Medicinal Chemistry, Pfizer Worldwide Research Development, Groton, CT, USA
| | - Valerie J Bolivar
- Wadsworth Center, New York State Department of Health, Albany, NY, USA,Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY, USA
| | - Andrew S Loudon
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Martha H Vitaterna
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, USA,Department of Neurobiology and Physiology, Northwestern University, Evanston, IL, USA
| | - Fred W Turek
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, USA,Department of Neurobiology and Physiology, Northwestern University, Evanston, IL, USA
| | - Abraham A Palmer
- Department of Human Genetics, University of Chicago, Chicago, IL, USA,Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA,Department of Human Genetics, University of Chicago, 920 E 58th Street, CLSC 507D, Chicago, IL 60637, USA, Tel: +1 773 834 2897, Fax: +1 773 834 0505, E-mail:
| |
Collapse
|
5
|
Tarantino LM, Eisener-Dorman AF. Forward genetic approaches to understanding complex behaviors. Curr Top Behav Neurosci 2012; 12:25-58. [PMID: 22297575 PMCID: PMC6989028 DOI: 10.1007/7854_2011_189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Assigning function to genes has long been a focus of biomedical research.Even with complete knowledge of the genomic sequences of humans, mice and other experimental organisms, there is still much to be learned about gene function and control. Ablation or overexpression of single genes using knockout or transgenic technologies has provided functional annotation for many genes, but these technologies do not capture the extensive genetic variation present in existing experimental mouse populations. Researchers have only recently begun to truly appreciate naturally occurring genetic variation resulting from single nucleotide substitutions,insertions, deletions, copy number variation, epigenetic changes (DNA methylation,histone modifications, etc.) and gene expression differences and how this variation contributes to complex phenotypes. In this chapter, we will discuss the benefits and limitations of different forward genetic approaches that capture the genetic variation present in inbred mouse strains and present the utility of these approaches for mapping QTL that influence complex behavioral phenotypes.
Collapse
|
6
|
Slawińska A, Witkowski A, Nieuwland M, Minozzi G, Bednarczyk M, Siwek M. Quantitative trait loci associated with the humoral innate immune response in chickens were confirmed in a cross between Green-Legged Partridgelike and White Leghorn. Poult Sci 2011; 90:1909-15. [PMID: 21844254 DOI: 10.3382/ps.2011-01465] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Natural antibodies (NA) create a crucial barrier at the initial steps of the innate humoral immune response. The main role of NA in the defense system is to bind the pathogens at early stages of infection. Different pathogens are recognized by the presence of highly conserved antigen determinant [e.g., lipopolysaccharide (LPS) in gram-negative bacteria or lipoteichoic acid (LTA) in gram-positive bacteria]. In chickens, a different genetic background of NA binds LPS and LTA antigens, encoded by different QTL. The main objective of this work was to confirm known QTL associated with LPS and LTA NA. For this purpose a chicken reference population was created by crossing 2 breeds: a commercial layer, White Leghorn, and a Polish indigenous chicken, Green-Legged Partridgelike. The chromosomal regions analyzed harbored to GGA3, GGA5, GGA6, GGA8, GGA9, GGA10, GGA14, GGA15, GGA18, and GGAZ. The data collected consisted of the NA titers binding LPS and LTA (determined by ELISA at 12 wk of age) as well as the genotypes (30 short tandem repeat markers; average of 3 markers/chromosome, collected for generations F(0), F(1), and F(2)). The analyses were performed with 3 statistical models (paternal and maternal half-sib, line cross, and linkage analysis and linkage disequilibrium) implemented in GridQTL software (http://www.gridqtl.org.uk/). The QTL study of humoral innate immune response traits resulted in the confirmation of 3 QTL associated with NA titers binding LPS (located on GGA9, GGA18, and GGAZ) and 2 QTL associated with NA titers binding LTA (located on GGA5 and GGA14). A set of candidate genes within the regions of the validated QTL has been proposed.
Collapse
Affiliation(s)
- A Slawińska
- Department of Animal Biotechnology, University of Technology and Life Sciences, Mazowiecka 28, 85-225 Bydgoszcz, Poland.
| | | | | | | | | | | |
Collapse
|
7
|
Crabbe JC, Phillips TJ, Belknap JK. The complexity of alcohol drinking: studies in rodent genetic models. Behav Genet 2010; 40:737-50. [PMID: 20552264 DOI: 10.1007/s10519-010-9371-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 05/22/2010] [Indexed: 02/01/2023]
Abstract
Risk for alcohol dependence in humans has substantial genetic contributions. Successful rodent models generally attempt to address only selected features of the human diagnosis. Most such models target the phenotype of oral administration of alcohol solutions, usually consumption of or preference for an alcohol solution versus water. Data from rats and mice for more than 50 years have shown genetic influences on preference drinking and related phenotypes. This paper summarizes some key findings from that extensive literature. Much has been learned, including the genomic location and possible identity of several genes influencing preference drinking. We report new information from congenic lines confirming QTLs for drinking on mouse chromosomes 2 and 9. There are many strengths of the various phenotypic assays used to study drinking, but there are also some weaknesses. One major weakness, the lack of drinking excessively enough to become intoxicated, has recently been addressed with a new genetic animal model, mouse lines selectively bred for their high and intoxicating blood alcohol levels after a limited period of drinking in the circadian dark. We report here results from a second replicate of that selection and compare them with the first replicate.
Collapse
Affiliation(s)
- John C Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
8
|
Abstract
OBJECTIVE Loci on mouse chromosome 2 have previously been associated with ethanol consumption. Here, we used a limited access choice paradigm in which mice consume large quantities of ethanol (2-3 g/kg/2 h) with a high preference (>80%). In addition, mouse chromosome substitution strains were used to further evaluate the contribution of chromosome 2 to ethanol consumption. METHODS AND RESULTS First, we compared the two parental inbred mouse strains, C57BL/6J and A/J, in the limited access choice paradigm for ethanol intake and ethanol preference, as well as for ethanol metabolism and taste sensitivity. Then, the effect of chromosome 2 substitution on these measures was determined. Compared with C57BL/6J mice, A/J and C57BL/6J-Chr 2/NaJ (CSS-2) mice showed profoundly reduced ethanol intake and preference. The strains were not different with regard to ethanol metabolism or taste sensitivity. Limited access ethanol consumption in F2 progeny derived from reciprocal C57BL/6J xCSS-2 and CSS-2 xC57BL/6J intercrosses and subsequent quantitative trait loci mapping identified two loci: one locus on chromosome 2 for ethanol intake and a separate locus on distal chromosome 2 for ethanol preference. This latter locus was dependent on the grandparental origin. CONCLUSION Using a limited access choice paradigm, we found that mouse chromosome 2 carries an allelic variant of a locus for ethanol intake and a distinct locus selective for ethanol preference. The heritability of alcoholism has been suggested to be parent-specific, perhaps resulting from genetic imprinting. Our findings suggest that grandparent-influenced vulnerability for ethanol consumption is conferred by genes on chromosome 2, providing important new leads to enhance our understanding of the heritability of alcoholism.
Collapse
|