1
|
Word LJ, McAden EP, Poole C, Nylander-French LA. The genetics of occupational asthma development among workers exposed to diisocyanates: A systematic literature review with meta-analysis. Front Genet 2022; 13:944197. [PMID: 36276967 PMCID: PMC9582143 DOI: 10.3389/fgene.2022.944197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Diisocyanates are widely used compounds that pose a safety concern for workers in occupations within the spray-paint, spray-foam insulation, and furniture varnish industries. Epidemiological studies show that only a subset of workers exposed to diisocyanates develop diisocyanate-induced occupational asthma (diisocyanate asthma, DA), indicating that genetic susceptibility may play a role. The purpose of this systematic literature review was to compile and meta-analyze the reported data on genetic susceptibility markers for DA. Three databases (Embase, Pubmed, and Scopus) were searched and 169 non-duplicate publications were identified, of which 22 relevant occupational studies were included in this review. Researchers reported prevalence odds ratios (PORs) for 943 comparisons in 82 different genes/serotypes. Protein network functions for the DA-associated genes from this review include: antigen processing, lymphocyte activation, cytokine production regulation, and response to oxidative stress. Meta-analysis of comparisons between workers with DA and controls was conducted for 23 genetic markers within: CTNNA3, GSTM1, GSTP1, GSTT1, HLA-C, HLA-DQB1, HLA-DR1, HLA-DR3, HLA-DR4, HLA-DR7, and HLA-DR8. These genes code for proteins that are involved in cell-cell adhesions (CTNNA3), glutathione conjugation for xenobiotic metabolism (GST gene family), and immune system response (HLA gene family). The most compelling pooled PORs were for two studies on CTNNA3 (increased DA risk: rs10762058 GG, rs7088181 GG, rs4378283 TT; PORs 4.38–4.97) and three studies on HLA-DR1 (decreased DA risk, POR 0.24). Bioinformatics of the predicted protein pathways for DA shows overlap with biomarker-associated pathways in workers before development of asthma, suggesting overlap in toxicokinetic and toxicodynamic pathways of diisocyanates. The control groups were also compared against each other and differences were negligible. Suggestions for improving future research are also presented. Of the highest importance, the literature was found to be profoundly publication-biased, in which researchers need to report the data for all studied markers regardless of the statistical significance level. We demonstrate the utility of evaluating the overlap in predicted protein pathway functions for identifying more consistency across the reported literature including for asthma research, biomarker research, and in vitro studies. This will serve as an important resource for researchers to use when generating new hypothesis-driven research about diisocyanate toxicology.
Collapse
Affiliation(s)
- Laura J. Word
- Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Emily P. McAden
- Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charles Poole
- Epidemiology, University of North Carolina at Chapel Hilll, Chapel Hill, NC, United States
| | - Leena A. Nylander-French
- Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Leena A. Nylander-French,
| |
Collapse
|
2
|
Taylor LW, French JE, Robbins ZG, Nylander-French LA. Epigenetic Markers Are Associated With Differences in Isocyanate Biomarker Levels in Exposed Spray-Painters. Front Genet 2021; 12:700636. [PMID: 34335698 PMCID: PMC8318037 DOI: 10.3389/fgene.2021.700636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Isocyanates are respiratory and skin sensitizers that are one of the main causes of occupational asthma globally. Genetic and epigenetic markers are associated with isocyanate-induced asthma and, before asthma develops, we have shown that genetic polymorphisms are associated with variation in plasma and urine biomarker levels in exposed workers. Inter-individual epigenetic variance may also have a significant role in the observed biomarker variability following isocyanate exposure. Therefore, we determined the percent methylation for CpG islands from DNA extracted from mononuclear blood cells of 24 male spray-painters exposed to 1,6-hexamethylene diisocyanate (HDI) monomer and HDI isocyanurate. Spray-painters’ personal inhalation and skin exposure to these compounds and the respective biomarker levels of 1,6-diaminohexane (HDA) and trisaminohexyl isocyanurate (TAHI) in their plasma and urine were measured during three repeated industrial hygiene monitoring visits. We controlled for inhalation exposure, skin exposure, age, smoking status, and ethnicity as covariates and performed an epigenome-wide association study (EWAS) using likelihood-ratio statistical modeling. We identified 38 CpG markers associated with differences in isocyanate biomarker levels (Bonferroni < 0.05). Annotations for these markers included 18 genes: ALG1, ANKRD11, C16orf89, CHD7, COL27A, FUZ, FZD9, HMGN1, KRT6A, LEPR, MAPK10, MED25, NOSIP, PKD1, SNX19, UNC13A, UROS, and ZFHX3. We explored the functions of the genes that have been published in the literature and used GeneMANIA to investigate gene ontologies and predicted protein-interaction networks. The protein functions of the predicted networks include keratinocyte migration, cell–cell adhesions, calcium transport, neurotransmitter release, nitric oxide production, and apoptosis regulation. Many of the protein pathway functions overlap with previous findings on genetic markers associated with variability both in isocyanate biomarker levels and asthma susceptibility, which suggests there are overlapping protein pathways that contribute to both isocyanate toxicokinetics and toxicodynamics. These predicted protein networks can inform future research on the mechanism of allergic airway sensitization by isocyanates and aid in the development of mitigation strategies to better protect worker health.
Collapse
Affiliation(s)
- Laura W Taylor
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - John E French
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Zachary G Robbins
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Leena A Nylander-French
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
3
|
Kuijpers E, van Wel L, Loh M, Galea KS, Makris KC, Stierum R, Fransman W, Pronk A. A Scoping Review of Technologies and Their Applicability for Exposome-Based Risk Assessment in the Oil and Gas Industry. Ann Work Expo Health 2021; 65:1011-1028. [PMID: 34219141 DOI: 10.1093/annweh/wxab039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/18/2021] [Accepted: 05/12/2021] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Oil and gas workers have been shown to be at increased risk of chronic diseases including cancer, asthma, chronic obstructive pulmonary disease, and hearing loss, among others. Technological advances may be used to assess the external (e.g. personal sensors, smartphone apps and online platforms, exposure models) and internal exposome (e.g. physiologically based kinetic modeling (PBK), biomonitoring, omics), offering numerous possibilities for chronic disease prevention strategies and risk management measures. The objective of this study was to review the literature on these technologies, by focusing on: (i) evaluating their applicability for exposome research in the oil and gas industry, and (ii) identifying key challenges that may hamper the successful application of such technologies in the oil and gas industry. METHOD A scoping review was conducted by identifying peer-reviewed literature with searches in MEDLINE/PubMed and SciVerse Scopus. Two assessors trained on the search strategy screened retrieved articles on title and abstract. The inclusion criteria used for this review were: application of the aforementioned technologies at a workplace in the oil and gas industry or, application of these technologies for an exposure relevant to the oil and gas industry but in another occupational sector, English language and publication period 2005-end of 2019. RESULTS In total, 72 articles were included in this scoping review with most articles focused on omics and bioinformatics (N = 22), followed by biomonitoring and biomarkers (N = 20), external exposure modeling (N = 11), PBK modeling (N = 10), and personal sensors (N = 9). Several studies were identified in the oil and gas industry on the application of PBK models and biomarkers, mainly focusing on workers exposed to benzene. The application of personal sensors, new types of exposure models, and omics technology are still in their infancy with respect to the oil and gas industry. Nevertheless, applications of these technologies in other occupational sectors showed the potential for application in this sector. DISCUSSION AND CONCLUSION New exposome technologies offer great promise for personal monitoring of workers in the oil and gas industry, but more applied research is needed in collaboration with the industry. Current challenges hindering a successful application of such technologies include (i) the technological readiness of sensors, (ii) the availability of data, (iii) the absence of standardized and validated methods, and (iv) the need for new study designs to study the development of disease during working life.
Collapse
Affiliation(s)
| | | | - Miranda Loh
- Institute of Occupational Medicine (IOM), Edinburgh, UK
| | - Karen S Galea
- Institute of Occupational Medicine (IOM), Edinburgh, UK
| | - Konstantinos C Makris
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | | | | | | |
Collapse
|
4
|
Taylor LW, French JE, Robbins ZG, Boyer JC, Nylander-French LA. Influence of Genetic Variance on Biomarker Levels After Occupational Exposure to 1,6-Hexamethylene Diisocyanate Monomer and 1,6-Hexamethylene Diisocyanate Isocyanurate. Front Genet 2020; 11:836. [PMID: 32973864 PMCID: PMC7466756 DOI: 10.3389/fgene.2020.00836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
We evaluated the impact of genetic variance on biomarker levels in a population of workers in the automotive repair and refinishing industry who were exposed to respiratory sensitizers 1,6-hexamethylene diisocyanate (HDI) monomer and one of its trimers, HDI isocyanurate. The exposures and respective urine and plasma biomarkers 1,6-diaminohexane (HDA) and trisaminohexyl isocyanurate (TAHI) were measured in 33 workers; and genome-wide microarrays (Affymetrix 6.0) were used to genotype the workers' single-nucleotide polymorphisms (SNPs). Linear mixed model analyses have indicated that interindividual variations in both inhalation and skin exposures influenced these biomarker levels. Using exposure values as covariates and a false discovery rate < 0.10 to assess statistical significance, we observed that seven SNPs were associated with HDA in plasma, five were associated with HDA in urine, none reached significance for TAHI in plasma, and eight were associated with TAHI levels in urine. The different genotypes for the 20 significant SNPs accounted for 4- to 16-fold changes observed in biomarker levels. Associated gene functions include transcription regulation, calcium ion transport, vascular morphogenesis, and transforming growth factor beta signaling pathway, which may impact toxicokinetics indirectly by altering inflammation levels. Additionally, in an expanded analysis using a minor allele cutoff of 0.05 instead of 0.10, there were biomarker-associated SNPs within three genes that have been associated with isocyanate-induced asthma: ALK, DOCK2, and LHPP. We demonstrate that genetic variance impacts the biomarker levels in workers exposed to HDI monomer and HDI isocyanurate and that genetics can be used to refine exposure predictions in small cohorts when quantitative personal exposure and biomarker measurements are included in the models.
Collapse
Affiliation(s)
- Laura W. Taylor
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - John E. French
- Nutrition Research Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Zachary G. Robbins
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jayne C. Boyer
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Leena A. Nylander-French
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
5
|
Hur GY, Park HS. Biological and genetic markers in occupational asthma. Curr Allergy Asthma Rep 2015; 15:488. [PMID: 25430950 DOI: 10.1007/s11882-014-0488-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Occupational asthma (OA) is a complex disease that is often hard to diagnose due to difficulties in detecting relevant exposure, along with inherent differences in disease susceptibility. Numerous studies have attempted to identify relevant biological and genetic markers for OA and to devise tools capable of detecting exposure to the causative agent. Immunological markers, including skin prick test reactivity and specific IgE and IgG antibodies can be used to detect high-molecular-weight allergens in cases of baker's asthma. For OA induced by low-molecular-weight agents, such as isocyanate, potential biomarkers include serum-specific IgE and IgG antibodies to isocyanate-HSA conjugate and IgG to cytokeratin 19 and transglutaminase-2. For protein-based markers, ferritin/transferrin and vitamin D-binding protein levels have been suggested for isocyanate-OA. Genetic markers of susceptibility to isocyanate-OA include human leukocyte antigen and CTNNA3. Further investigations will be needed to identify better biomarkers for OA, which may be used to inform clinical decision.
Collapse
Affiliation(s)
- Gyu-Young Hur
- Department of Internal Medicine, Korea University College of Medicine, 148 Gurodong-Ro, Guro, Seoul, 152-703, South Korea,
| | | |
Collapse
|
6
|
Is the analysis of histamine and/or interleukin-4 release after isocyanate challenge useful in the identification of patients with IgE-mediated isocyanate asthma? J Immunol Methods 2015; 422:35-50. [PMID: 25865264 DOI: 10.1016/j.jim.2015.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/21/2015] [Accepted: 03/25/2015] [Indexed: 11/20/2022]
Abstract
Isocyanates are a well-known and frequent cause of occupational asthma. The implementation of specific inhalation challenges (SICs) is the gold standard in asthma diagnosis supporting occupational case history, lung function testing, specific skin prick tests and the detection of specific IgE. However, the diagnosis is not always definitive. An interesting new approach, analyses of individual genetic susceptibilities, requires discrimination between a positive SIC reaction arising from IgE-mediated immune responses and one from other pathophysiological mechanisms. Hence, additional refinement tools would be helpful in defining sub-classes of occupational asthma and diagnosis. We used total IgE levels, specific IgE and SIC results for sub-classification of 27 symptomatic isocyanate workers studied. Some mutations in glutathione S-transferases (GSTs) are suspected either to enhance or to decrease the individual risk in the development of isocyanate asthma. Our patient groups were assessed for the point mutations GSTP1*I105V and GSTP1*A114V as well as deletions (null mutations) of GSTM1 and GSTT1. There seems to be a higher risk in developing IgE-mediated reactions when GSTM1 is deleted, while GSTT1 deletions were found more frequently in the SIC positive group. Blood samples taken before SIC, 30-60 min and 24h after SIC, were analyzed for histamine and IL-4, classical markers for the IgE-mediated antigen-specific activation of basophils or mast cells. We suggest that the utility of histamine measurements might provide an additional useful marker reflecting isocyanate-induced cellular reactions (although the sampling times require optimization). The promising measurement of IL-4 is not feasible at present due to the lack of a reliable, validated assay.
Collapse
|
7
|
Nylander-French LA, Wu MC, French JE, Boyer JC, Smeester L, Sanders AP, Fry RC. DNA methylation modifies urine biomarker levels in 1,6-hexamethylene diisocyanate exposed workers: a pilot study. Toxicol Lett 2014; 231:217-26. [PMID: 25445006 DOI: 10.1016/j.toxlet.2014.10.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 10/08/2014] [Accepted: 10/17/2014] [Indexed: 01/04/2023]
Abstract
DNA methylation may mediate inter-individual responses to chemical exposure and, thus, modify biomarker levels of exposure and effects. We analyzed inter-individual differences in inhalation and skin exposure to 1,6-hexamethylene diisocyanate (HDI) and urine biomarker 1,6-hexamethylene diamine (HDA) levels in 20 automotive spray-painters. Genome-wide 5-methyl cytosine (CpG) DNA methylation was assessed in each individual's peripheral blood mononuclear cells (PBMC) DNA using the Illumina 450K CpG array. Mediation analysis using linear regression models adjusted for age, ethnicity, and smoking was conducted to identify and assess the association between HDI exposure, CpG methylation, and urine HDA biomarker levels. We did not identify any CpGs common to HDI exposure and biomarker level suggesting that CpG methylation is a mediator that only partially explains the phenotype. Functional significance of genic- and intergenic-CpG methylation status was tested using protein-protein or protein-DNA interactions and gene-ontology enrichment to infer networks. Combined, the results suggest that methylation has the potential to affect HDI mass transport, permeation, and HDI metabolism. We demonstrate the potential use of PBMC methylation along with quantitative exposure and biomarker data to guide further investigation into the mediators of occupational exposure and biomarkers and its role in risk assessment.
Collapse
Affiliation(s)
- Leena A Nylander-French
- CIH Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, CB #7431, Chapel Hill, NC 27599-7431, USA.
| | - Michael C Wu
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Jayne C Boyer
- CIH Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, CB #7431, Chapel Hill, NC 27599-7431, USA
| | - Lisa Smeester
- CIH Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, CB #7431, Chapel Hill, NC 27599-7431, USA
| | - Alison P Sanders
- CIH Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, CB #7431, Chapel Hill, NC 27599-7431, USA; Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rebecca C Fry
- CIH Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, CB #7431, Chapel Hill, NC 27599-7431, USA
| |
Collapse
|
8
|
Tinnerberg H, Broberg K, Lindh CH, Jönsson BAG. Biomarkers of exposure in Monday morning urine samples as a long-term measure of exposure to aromatic diisocyanates. Int Arch Occup Environ Health 2013; 87:365-72. [DOI: 10.1007/s00420-013-0872-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 03/28/2013] [Indexed: 11/28/2022]
|
9
|
Pingarilho M, Oliveira NG, Martins C, Gomes BC, Fernandes AS, Martins V, Labilloy A, de Lima JP, Rueff J, Gaspar JF. Induction of sister chromatid exchange by acrylamide and glycidamide in human lymphocytes: Role of polymorphisms in detoxification and DNA-repair genes in the genotoxicity of glycidamide. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 752:1-7. [DOI: 10.1016/j.mrgentox.2012.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 10/11/2012] [Accepted: 12/05/2012] [Indexed: 10/27/2022]
|
10
|
Wisnewski AV, Mhike M, Hettick JM, Liu J, Siegel PD. Hexamethylene diisocyanate (HDI) vapor reactivity with glutathione and subsequent transfer to human albumin. Toxicol In Vitro 2013; 27:662-71. [PMID: 23178851 PMCID: PMC3587365 DOI: 10.1016/j.tiv.2012.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 11/10/2012] [Accepted: 11/12/2012] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Airway fluid glutathione (GSH) reactivity with inhaled vapors of diisocyanate, a common occupational allergen, is postulated to be a key step in exposure-induced asthma pathogenesis. METHODS A mixed (vapor/liquid) phase exposure system was used to model the in vivo reactivity of inhaled HDI vapor with GSH in the airway fluid. HDI-GSH reaction products, and their capacity to transfer HDI to human albumin, were characterized through mass spectrometry and serologic assays, using HDI-specific polyclonal rabbit serum. RESULTS HDI vapor exposure of 10mM GSH solutions resulted in primarily S-linked, bis(GSH)-HDI reaction products. In contrast, lower GSH concentrations (100μM) resulted in mainly mono(GSH)-HDI conjugates, with varying degrees of HDI hydrolysis, dimerization and/or intra-molecular cyclization, depending upon the presence/absence of H2PO4(-)/HPO4(2-) and Na(+)/Cl(-) ions. The ion composition and GSH concentration of the fluid phase, during HDI vapor exposure, strongly influenced the transfer of HDI from GSH to albumin, as did the pH and duration of the carbamoylating reaction. When carbamoylation was performed overnight at pH 7, 25 of albumin's lysines were identified as potential sites of conjugation with partially hydrolyzed HDI. When carbamoylation was performed at pH 9, more rapid (within 3h) and extensive modification was observed, including additional lysine sites, intra-molecular cross-linkage with HDI, and novel HDI-GSH conjugation. CONCLUSIONS The data define potential mechanisms by which the levels of GSH, H2PO4(-)/HPO4(2-), and/or other ions (e.g. H(+)/OH(-), Na(+), Cl(-)) affect the reactivity of HDI vapor with self-molecules in solution (e.g. airway fluid), and thus, might influence the clinical response to HDI respiratory tract exposure.
Collapse
Affiliation(s)
- Adam V Wisnewski
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | | | | | | | | |
Collapse
|
11
|
Kenyon NJ, Morrissey BM, Schivo M, Albertson TE. Occupational asthma. Clin Rev Allergy Immunol 2013; 43:3-13. [PMID: 21573916 DOI: 10.1007/s12016-011-8272-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Occupational asthma is the most common occupational lung disease. Work-aggravated asthma and occupational asthma are two forms of asthma causally related to the workplace, while reactive airways dysfunction syndrome is a separate entity and a subtype of occupational asthma. The diagnosis of occupational asthma is most often made on clinical grounds. The gold standard test, specific inhalation challenge, is rarely used. Low molecular weight isocyanates are the most common compounds that cause occupational asthma. Workers with occupational asthma secondary to low molecular weight agents may not have elevated specific IgE levels. The mechanisms of occupational asthma associated with these compounds are partially described. Not all patients with occupational asthma will improve after removal from the workplace.
Collapse
Affiliation(s)
- Nicholas J Kenyon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of California, Davis, 4150 V. Street, Sacramento, CA 95817, USA.
| | | | | | | |
Collapse
|
12
|
Muñoz B, Magaña JJ, Romero-Toledo I, Juárez-Pérez E, López-Moya A, Leyva-García N, López-Campos C, Dávila-Borja VM, Albores A. The relationship among IL-13, GSTP1, and CYP1A1 polymorphisms and environmental tobacco smoke in a population of children with asthma in Northern Mexico. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 33:226-232. [PMID: 22236719 DOI: 10.1016/j.etap.2011.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 11/30/2011] [Accepted: 12/04/2011] [Indexed: 05/31/2023]
Abstract
Exposure to environmental tobacco smoke (ETS) during early childhood increases the risk of developing asthma. The intention of this study was to genotype a population of children from Coahuila state in Northern Mexico and to determine whether polymorphisms of the CYP1A1, GSTP1, and IL13 genes are associated with exposure to ETS and subsequently a higher risk for asthma. IL13 plays an important role in the development of allergic response, particularly those related with airway inflammation. CYP1A1 and GSTP1 are xenobiotic-metabolizing enzymes induced by repeated exposure to toxicants. Polymorphisms of these genes have been related with ETS exposure and increased risk for asthma. To assess the effect of IL13 (-1112 C>T and Arg110Gln), GSTP1 (Ile105Val), and CYP1A1 (Ile462Val) on asthma risk and ETS exposure, we recruited 201 unrelated children and classified them into four groups: (1) control without ETS exposure; (2) control with ETS exposure; (3) with asthma and with ETS exposure and (4) with asthma and without ETS exposure. No association among ETS exposure, asthma, and the studied polymorphisms was denoted by multivariate analysis of this population.
Collapse
Affiliation(s)
- Balam Muñoz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, DF 07360, Mexico.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Environmental isocyanate-induced asthma: morphologic and pathogenetic aspects of an increasing occupational disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:3672-87. [PMID: 22016709 PMCID: PMC3194110 DOI: 10.3390/ijerph8093672] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 08/30/2011] [Accepted: 09/06/2011] [Indexed: 11/17/2022]
Abstract
Occupational diseases affect more and more people every year. According to the International Labour Organization (ILO), in 2000 an estimated amount of at least 160 million people became ill as a result of occupational-related hazards or injuries. Globally, occupational deaths, diseases and injuries account for an estimated loss of 4% of the Gross Domestic Product. Important substances that are related to occupational diseases are isocyanates and their products. These substances, which are used in a lot of different industrial processes, are not only toxic and irritant, but also allergenic. Although the exposure to higher concentrations could be monitored and restricted by technical means, very low concentrations are difficult to monitor and may, over time, lead to allergic reactions in some workers, ending in an occupational disease. In order to prevent the people from sickening, the mechanisms underlying the disease, by patho-physiological and genetical means, have to be known and understood so that high risk groups and early signs in the development of an allergic reaction could be detected before the exposure to isocyanates leads to an occupational disease. Therefore, this paper reviews the so far known facts concerning the patho-physiologic appearance and mechanisms of isocyanate-associated toxic reactions and possible genetic involvement that might trigger the allergic reactions.
Collapse
|
14
|
Wisnewski AV, Hettick JM, Siegel PD. Toluene diisocyanate reactivity with glutathione across a vapor/liquid interface and subsequent transcarbamoylation of human albumin. Chem Res Toxicol 2011; 24:1686-93. [PMID: 21806041 DOI: 10.1021/tx2002433] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glutathione has previously been identified as a reaction target for toluene diisocyanate (TDI) in vitro and in vivo, and has been suggested to contribute to toxic and allergic reactions to exposure. In this study, the reactivity of reduced glutathione (GSH) with TDI in vitro was further investigated using a mixed phase (vapor/liquid) exposure system to model the in vivo biophysics of exposure in the lower respiratory tract. HPLC/MS/MS was used to characterize the observed reaction products. Under the conditions tested, the major reaction products between TDI vapor and GSH were S-linked bis(GSH)-TDI and to a lesser extent mono(GSH)-TDI conjugates (with one N═C═O hydrolyzed). The vapor-phase-generated GSH-TDI conjugates were capable of transcarbamoylating human albumin in a pH-dependent manner, resulting in changes in the self-protein's conformation/charge, on the basis of electrophoretic mobility under native conditions. Specific sites of human albumin-TDI conjugation, mediated by GSH-TDI, were identified (Lys(73), Lys(159), Lys(190), Lys(199), Lys(212), Lys(351), Lys(136/137), Lys(413/414), and Lys(524/525)) along with overlap with those susceptible to direct conjugation by TDI. Together, the data extend the proof-of-principle for GSH to act as a "shuttle" for a reactive form of TDI, which could contribute to clinical responses to exposure.
Collapse
Affiliation(s)
- Adam V Wisnewski
- Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520-8057, USA.
| | | | | |
Collapse
|
15
|
Genetic variability in susceptibility to occupational respiratory sensitization. J Allergy (Cairo) 2011; 2011:346719. [PMID: 21747866 PMCID: PMC3124895 DOI: 10.1155/2011/346719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/18/2011] [Indexed: 02/07/2023] Open
Abstract
Respiratory sensitization can be caused by a variety of substances at workplaces, and the health and economic burden linked to allergic respiratory diseases continues to increase. Although the main factors that affect the onset of the symptoms are the types and intensity of allergen exposure, there is a wide range of interindividual variation in susceptibility to occupational/environmental sensitizers. A number of gene variants have been reported to be associated with various occupational allergic respiratory diseases. Examples of genes include, but are not limited to, genes involved in immune/inflammatory regulation, antioxidant defenses, and fibrotic processes. Most of these variants act in combination with other genes and environmental factors to modify disease progression, severity, or resolution after exposure to allergens. Therefore, understanding the role of genetic variability and the interaction between genetic and environmental/occupational factors provides new insights into disease etiology and may lead to the development of novel preventive and therapeutic strategies. This paper will focus on the current state of knowledge regarding genetic influences on allergic respiratory diseases, with specific emphasis on diisocyanate-induced asthma and chronic beryllium disease.
Collapse
|
16
|
Säkkinen K, Tornaeus J, Hesso A, Hirvonen A, Vainio H, Norppa H, Rosenberg C. Protein adducts as biomarkers of exposure to aromatic diisocyanates in workers manufacturing polyurethane (PUR) foam. ACTA ACUST UNITED AC 2011; 13:957-65. [PMID: 21344094 DOI: 10.1039/c0em00595a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work was undertaken to investigate the usefulness of diisocyanate-related protein adducts in blood samples as biomarkers of occupational exposure to toluene diisocyanate (TDI; 2,4- and 2,6-isomers) and 4,4'-methylenediphenyl diisocyanate (MDI). Quantification of adducts as toluene diamines (TDAs) and methylenedianiline (MDA) was performed on perfluoroacylated derivatives by gas chromatography-mass spectrometry (GC-MS/MS) in negative chemical ionisation mode. TDI-derived adducts were found in 77% of plasma and in 59% of globin samples from exposed workers manufacturing flexible polyurethane foam. The plasma levels ranged from 0.003 to 0.58 nmol mL(-1) and those in globin from 0.012 to 0.33 nmol g(-1). The 2,6-isomer amounted to about two-thirds of the sum concentration of TDA isomers. MDI-derived adducts were detected in 3.5% of plasma and in 7% of globin samples from exposed workers manufacturing rigid polyurethane foam. A good correlation was found between the sum of TDA isomers in urine and that in plasma. The relationship between globin adducts and urinary metabolites was ambiguous. Monitoring TDI-derived TDA in plasma thus appears to be an appropriate method for assessing occupational exposure. Contrary to TDI exposure, adducts in plasma or globin were not useful in assessing workers' exposure to MDI. An important outcome of the study was that no amine-related adducts were detected in globin samples from TDI- or MDI-exposed workers, alleviating concerns that TDI or MDI might pose a carcinogenic hazard. Further studies are nevertheless required to judge whether diisocyanates per se could be such a hazard.
Collapse
Affiliation(s)
- Kirsi Säkkinen
- Work Environment Development, Finnish Institute of Occupational Health, Topeliuksenkatu 41 a A, FI-00250 Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
17
|
Palikhe NS, Kim JH, Park HS. Biomarkers predicting isocyanate-induced asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2010; 3:21-6. [PMID: 21217921 PMCID: PMC3005314 DOI: 10.4168/aair.2011.3.1.21] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 06/01/2010] [Indexed: 11/20/2022]
Abstract
Three diisocyanates can cause occupational asthma (OA): toluene diisocyanate (TDI), 4,4 diphenylmethane diisocyanate (MDI), and 1,6-hexamethylene diisocyanate (HDI). We analyzed potential biomarkers of isocyanate-induced OA, based on investigated immunologic, genetic, neurogenic, and protein markers, because there is no serological testing method. The prevalence of serum IgG to cytokeratin (CK)18 and CK19 in TDI-OA was significantly higher than in controls, although the prevalence of these antibodies was too low for them to be used as biomarkers. Another candidate biomarker was serum IgG to tissue transglutaminase (tTG), because the prevalence of serum specific IgG to tTG was significantly higher in patients with TDI-OA than in controls. The human leukocyte antigen (HLA) DRB1*1501-DQB1*0602-DPB1*0501 haplotype may be used as a genetic marker for TDI-OA in Koreans via enhanced specific IgE sensitization in exposed subjects. The genetic polymorphisms of catenin alpha 3, alpha-T catenin (CTNNA3) were significantly associated with TDI-OA. Additionally, examining the neurokinin 2 receptor (NK2R) 7853G>A and 11424 G>A polymorphisms, the NK2R 7853GG genotype had higher serum vascular endothelial growth factor (VEGF) levels than the GA or AA genotypes among Korean workers exposed to TDI. To identify new serologic markers using a proteomic approach, differentially expressed proteins between subjects with MDI-OA and asymptomatic exposed controls in a Korean population showed that the optimal serum cutoff levels were 69.8 ng/mL for ferritin and 2.5 µg/mL for transferrin. When these two parameters were combined, the sensitivity was 71.4% and the specificity was 85.7%. The serum cytokine matrix metalloproteinase-9 (MMP-9) level is a useful biomarker for identifying cases of TDI-OA among exposed workers. Despite these possible biomarkers, more effort should be focused on developing early diagnostic biomarkers using a comprehensive approach based on the pathogenic mechanisms of isocyanate-induced OA.
Collapse
Affiliation(s)
- Nami Shrestha Palikhe
- Department of Allergy & Rheumatology, Ajou University School of Medicine, Suwon, Korea
| | | | | |
Collapse
|
18
|
Wisnewski AV, Jones M. Pro/Con debate: Is occupational asthma induced by isocyanates an immunoglobulin E-mediated disease? Clin Exp Allergy 2010; 40:1155-62. [PMID: 20545707 DOI: 10.1111/j.1365-2222.2010.03550.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Isocyanates, low-molecular weight chemicals essential to polyurethane production, are one of the most common causes of occupational asthma, yet the mechanisms by which exposure leads to disease remain unclear. While isocyanate asthma closely mirrors other Type I Immune Hypersensitivity (Allergic) disorders, one important characteristic of hypersensitivity ('allergen'-specific IgE) is reportedly absent in a large portion of affected individuals. This variation from common environmental asthma (which typically is induced by high-molecular weight allergens) is important for two reasons. (1) Allergen-specific IgE is an important mediator of many of the symptoms of bronchial hyper-reactivity in 'allergic asthma'. Lack of allergen-specific IgE in isocyanate hypersensitive individuals suggests differences in pathogenic mechanisms, with potentially unique targets for prevention and therapy. (2) Allergen-specific IgE forms the basis of the most commonly used diagnostic tests for hypersensitivity (skin prick and RAST). Without allergen-specific IgE, isocyanates may go unrecognized as the cause of asthma. In hypersensitive individuals, chronic exposure can lead to bronchial hyperreactivity that persists years after exposure ceases. Thus, the question of whether or not isocyanate asthma is an IgE-mediated disease, has important implications for disease screening/surveillance, diagnosis, treatment and prevention. The present Pro/Con Debate, addresses contemporary, controversial issues regarding IgE in isocyanate asthma.
Collapse
Affiliation(s)
- A V Wisnewski
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06520-8057, USA.
| | | |
Collapse
|