1
|
Yow HY, Ikawati M, Siswanto S, Hermawan A, Rahmat AK, Tan JSL, Tee YC, Ng KP, Ikawati Z. Influence of genetic polymorphisms on pharmacokinetics and treatment response of mycophenolic acid: a scoping review. Pharmacogenomics 2024; 25:259-288. [PMID: 38884938 PMCID: PMC11388138 DOI: 10.1080/14622416.2024.2344430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
This scoping review explores the impact of genetic polymorphisms on the pharmacokinetics and treatment responses of mycophenolic acid (MPA), an immunosuppressant. The study includes 83 articles from 1226 original studies, focusing on transplantation (n = 80) and autoimmune disorders (n = 3). Genetic variants in uridine 5'-diphospho-glucuronosyltransferase (UGT1A9, UGT1A8 and UGT2B7) and transmembrane transporters (ABCC2, SLCO1B1, SLCO1B3 and ABCB1) significantly affected MPA's pharmacokinetics and susceptibility to its adverse effect. Whereas variants in several genes including UGT1A9, UGT2B7, IMPDH1 and IMPDH2 have been associated with a higher risk of transplant rejection. However, there is a lack of studies on MPA's impact on autoimmune disorders and limited research on the Asian population. The findings underscore the need for further research on MPA's impact across different populations and diseases, particularly among other Asian ethnic groups, to advance personalized medicine in MPA therapy.
Collapse
Affiliation(s)
- Hui-Yin Yow
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Muthi Ikawati
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Soni Siswanto
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Adam Hermawan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
- Advanced Pharmaceutical Sciences Laboratory, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Alim Khodimul Rahmat
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Janet Sui-Ling Tan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Ying-Chew Tee
- Rheumatology Unit, Department of Medicine, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kok-Peng Ng
- Nephrology Unit, Department of Medicine, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Zullies Ikawati
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| |
Collapse
|
2
|
Zhong J, Yang K, Zhang M, Wu J, Liu L. SLCO1B3 T334G polymorphisms and mycophenolate mofetil-related adverse reactions in kidney transplant recipients. Pharmacogenomics 2023; 24:83-91. [PMID: 36475448 DOI: 10.2217/pgs-2022-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: The correlation between SLCO1B3 T334G polymorphisms and mycophenolate mofetil (MMF) adverse reactions in kidney recipients is unknown. Methods: A single-center, retrospective study was performed in which 111 patients were divided into four groups according to the type of adverse effect experienced. The clinical data and concentrations of MMF at different months after transplantation were statistically analyzed. Results: The G allele in the gastrointestinal reaction group was significantly higher than that in the no adverse effects group (p < 0.05). Logistic regression model showed that the SLCO1B3 T334G genotype was an independent risk factor for gastrointestinal reactions caused by MMF. Conclusion: Patients with the SLCO1B3 T334G GG genotype were more likely to experience gastrointestinal reactions.
Collapse
Affiliation(s)
- Jianxun Zhong
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430070, China
| | - Kun Yang
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430070, China
| | - Mi Zhang
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430070, China
| | - Jianhua Wu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430070, China
| | - Liang Liu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430070, China
| |
Collapse
|
3
|
Use of Pharmacogenetics to Optimize Immunosuppressant Therapy in Kidney-Transplanted Patients. Biomedicines 2022; 10:biomedicines10081798. [PMID: 35892699 PMCID: PMC9332547 DOI: 10.3390/biomedicines10081798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 12/17/2022] Open
Abstract
Immunosuppressant drugs (ISDs) are routinely used in clinical practice to maintain organ transplant survival. However, these drugs are characterized by a restricted therapeutic index, a high inter- and intra-individual pharmacokinetic variability, and a series of severe adverse effects. In particular, genetic factors have been estimated to play a role in this variability because of polymorphisms regarding genes encoding for enzymes and transporters involved in the ISDs pharmacokinetic. Several studies showed important correlations between genetic polymorphisms and ISDs blood levels in transplanted patients; therefore, this review aims to summarize the pharmacogenetics of approved ISDs. We used PubMed database to search papers on pharmacogenetics of ISDs in adults or pediatric patients of any gender and ethnicity receiving immunosuppressive therapy after kidney transplantation. We utilized as search term: “cyclosporine or tacrolimus or mycophenolic acid or sirolimus or everolimus and polymorphism and transplant”. Our data showed that polymorphisms in CYP3A5, CYP3A4, ABCB1, and UGT1A9 genes could modify the pharmacokinetics of immunosuppressants, suggesting that patient genotyping could be a helpful strategy to select the ideal ISDs dose for each patient.
Collapse
|
4
|
Cheng L, Yao P, Weng B, Yang M, Wang Q. Meta-analysis of the associations of IMPDH and UGT1A9 polymorphisms with rejection in kidney transplant recipients taking mycophenolic acid. Eur J Clin Pharmacol 2022; 78:1227-1238. [PMID: 35524809 DOI: 10.1007/s00228-022-03311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/05/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE To investigate the associations of IMPDH and UGT1A9 polymorphisms with rejection in kidney transplant recipients taking mycophenolic acid (MPA). METHODS PubMed, Web of Science, Embase, Cochrane Library, Wanfang Data, and the China Academic Journal Network Publishing Database were systematically searched for studies investigating the associations of IMPDH1, IMPDH2, and UGT1A9 polymorphisms with rejection in kidney transplant recipients taking MPA. Associations were evaluated by pooled odds ratios (ORs) and effect sizes (ESs) with 95% confidence intervals (CIs). RESULTS Twelve studies were included in the analysis, including a total of 2342 kidney transplant recipients. The results showed that compared with the TC + CC variant genotypes, the TT genotype of IMPDH2 3757 T > C was significantly associated with a higher risk of rejection (ES = 1.60, 95% CI = 1.07-2.40, P = 0.021), while there was no significant association of the IMPDH2 3757 T > C polymorphism with acute rejection within 1 year in kidney transplant recipients (OR = 1.49, 95% CI = 0.79-2.80, P = 0.217; ES = 1.44, 95% CI = 0.88-2.36, P = 0.142). The GG genotypes of IMPDH1 125G > A and IMPDH1 106G > A were significantly associated with a higher risk of rejection (ES = 1.91, 95% CI = 1.11-3.28, P = 0.019) and acute rejection within 1 year (ES = 2.12, 95% CI = 1.45-3.10, P < 0.001) than the variant genotypes GA + AA. The TT genotype of UGT1A9 275 T > A showed a decreased risk of rejection compared with the variant genotypes TA + AA (ES = 0.44, 95% CI = 0.23-0.84, P = 0.013). CONCLUSIONS IMPDH1, IMPDH2, and UGT1A9 polymorphisms were associated with rejection in kidney transplant recipients, and the genetic backgrounds of patients should be considered when using MPA.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Pharmacy, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Pu Yao
- Department of Pharmacy, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Bangbi Weng
- Department of Pharmacy, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ming Yang
- Department of Pharmacy, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| | - Qian Wang
- Department of Pharmacy, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
5
|
Hoffmann CV, Nevez G, Moal MC, Quinio D, Le Nan N, Papon N, Bouchara JP, Le Meur Y, Le Gal S. Selection of Pneumocystis jirovecii Inosine 5'-Monophosphate Dehydrogenase Mutants in Solid Organ Transplant Recipients: Implication of Mycophenolic Acid. J Fungi (Basel) 2021; 7:jof7100849. [PMID: 34682270 PMCID: PMC8537117 DOI: 10.3390/jof7100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Mycophenolic acid (MPA) targets the inosine 5'-monophosphate dehydrogenase (IMPDH) of human lymphocytes. It is widely used as an immunosuppressant to prevent rejection in solid organ transplant (SOT) recipients who, incidentally, are at risk for Pneumocystis pneumonia (PCP). We hypothesized that MPA exerts selective pressure on P. jirovecii microorganisms considering its in vitro antifungal activity on other fungi. Thus, we analysed impdh gene in P. jirovecii isolates from SOT recipients. P. jirovecii specimens from 26 patients diagnosed with PCP from 2010 to 2020 were retrospectively examined: 10 SOT recipients treated with MPA and 16 non-SOT patients without prior exposure to MPA. The P. jirovecii impdh gene was amplified and sequenced. Nucleotide sequences were aligned with the reference sequences retrieved from available P. jirovecii whole genomes. The deduced IMPDH protein sequences were aligned with available IMPDH proteins from Pneumocystis spp. and other fungal species known to be in vitro sensitive or resistant to MPA. A total of nine SNPs was identified. One SNP (G1020A) that results in an Ala261Thr substitution was identified in all SOT recipients and in none of the non-SOT patients. Considering that IMPDHs of other fungi, resistant to MPA, harbour Thr (or Ser) at the analogous position, the Ala261Thr mutation observed in MPA-treated patients was considered to represent the signature of P. jirovecii exposure to MPA. These results suggest that MPA may be involved in the selection of specific P. jirovecii strains that circulate in the SOT recipient population.
Collapse
Affiliation(s)
- Claire V. Hoffmann
- Laboratoire de Parasitologie et Mycologie, Hôpital de La Cavale Blanche, CHU de Brest, 29609 Brest, France; (C.V.H.); (D.Q.)
- Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP), Université d’Angers, Université de Brest, 29238 Brest, France;
| | - Gilles Nevez
- Laboratoire de Parasitologie et Mycologie, Hôpital de La Cavale Blanche, CHU de Brest, 29609 Brest, France; (C.V.H.); (D.Q.)
- Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP), Université d’Angers, Université de Brest, 29238 Brest, France;
- Correspondence: (G.N.); (S.L.G.); Tel.: +33-(0)-2-98-14-51-02 (G.N. & S.L.G.); Fax: +33-(0)-2-98-14-51-49 (G.N. & S.L.G.)
| | - Marie-Christine Moal
- Département de Néphrologie, CHU de Brest, 29609 Brest, France; (M.-C.M.); (Y.L.M.)
| | - Dorothée Quinio
- Laboratoire de Parasitologie et Mycologie, Hôpital de La Cavale Blanche, CHU de Brest, 29609 Brest, France; (C.V.H.); (D.Q.)
- Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP), Université d’Angers, Université de Brest, 29238 Brest, France;
| | - Nathan Le Nan
- Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP), Université d’Angers, Université de Brest, 29238 Brest, France;
| | - Nicolas Papon
- Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP), Université de Brest, Université d’Angers, 49035 Angers, France; (N.P.); (J.-P.B.)
| | - Jean-Philippe Bouchara
- Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP), Université de Brest, Université d’Angers, 49035 Angers, France; (N.P.); (J.-P.B.)
| | - Yannick Le Meur
- Département de Néphrologie, CHU de Brest, 29609 Brest, France; (M.-C.M.); (Y.L.M.)
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, Inserm, Labex IGO, 20609 Brest, France
| | - Solène Le Gal
- Laboratoire de Parasitologie et Mycologie, Hôpital de La Cavale Blanche, CHU de Brest, 29609 Brest, France; (C.V.H.); (D.Q.)
- Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP), Université d’Angers, Université de Brest, 29238 Brest, France;
- Correspondence: (G.N.); (S.L.G.); Tel.: +33-(0)-2-98-14-51-02 (G.N. & S.L.G.); Fax: +33-(0)-2-98-14-51-49 (G.N. & S.L.G.)
| |
Collapse
|
6
|
Shu Q, Fan Q, Hua B, Liu H, Wang S, Liu Y, Yao Y, Xie H, Ge W. Influence of SLCO1B1 521T>C, UGT2B7 802C>T and IMPDH1 -106G>A Genetic Polymorphisms on Mycophenolic Acid Levels and Adverse Reactions in Chinese Autoimmune Disease Patients. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:713-722. [PMID: 34188518 PMCID: PMC8233479 DOI: 10.2147/pgpm.s295964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022]
Abstract
Introduction Mycophenolate mofetil (MMF), a new type of immunosuppressant, has emerged as a frontline agent for treating autoimmune diseases. Mycophenolic acid (MPA) is an active metabolite of MMF. MPA exposure varies greatly among individuals, which may lead to adverse drug reactions such as gastrointestinal side effects, infection, and leukopenia. Genetic factors play an important role in the variation of MPA levels and its side effects. Although many published studies have focused on MMF use in patients after organ transplant, studies that examine the use of MMF in patients with autoimmune diseases are still lacking. Methods This study will not only explore the genetic factors affecting MPA levels and adverse reactions but also investigate the relationships between UGT1A9 −118(dT)9/10, UGT1A9 - 1818T>C, UGT2B7 802C>T, SLCO1B1 521T>C, SLCO1B3 334T>G, IMPDH1 −106G>A and MPA trough concentration (MPA C0), along with adverse reactions among Chinese patients with autoimmune diseases. A total of 120 patients with autoimmune diseases were recruited. The MPA trough concentration was detected using the enzyme multiplied immunoassay technique (EMIT). Genotyping was performed using a real-time polymerase chain reaction (PCR) system and validated allelic discrimination assays. Clinical data were collected for the determination of side effects. Results SLCO1B1 521T>C demonstrated a significant association with MPA C0/d (p=0.003), in which patients with the CC type showed a higher MPA C0/d than patients with the TT type (p=0.001) or the CT type (p=0.000). No significant differences were found in MPA C0/d among the other SNPs. IMPDH1 −106G>A was found to be significantly related to infections (p=0.006). Subgroup analysis revealed that UGT2B7 802C>T was significantly related to Pneumocystis carinii pneumonia infection (p=0.036), while SLCO1B1 521T>C was associated with anemia (p=0.029). Conclusion For Chinese autoimmune disease patients, SLCO1B1 521T>C was correlated with MPA C0/d and anemia. IMPDH1 −106G>A was significantly related to infections. UGT2B7 802C>T was significantly related to Pneumocystis carinii pneumonia infection.
Collapse
Affiliation(s)
- Qing Shu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Qingqing Fan
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Bingzhu Hua
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Hang Liu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Shiying Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Yunxing Liu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Yao Yao
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Han Xie
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Weihong Ge
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| |
Collapse
|
7
|
Na Takuathung M, Sakuludomkan W, Koonrungsesomboon N. The Impact of Genetic Polymorphisms on the Pharmacokinetics and Pharmacodynamics of Mycophenolic Acid: Systematic Review and Meta-analysis. Clin Pharmacokinet 2021; 60:1291-1302. [PMID: 34105062 DOI: 10.1007/s40262-021-01037-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Mycophenolic acid (MPA) is among the most commonly prescribed medications for immunosuppression following organ transplantation. Highly variable MPA exposure and drug response are observed among individuals receiving the same dosage of the drug. Identification of candidate genes whose polymorphisms could be used to predict MPA exposure and clinical outcome is of clinical value. OBJECTIVES This study aimed to determine the impact of genetic polymorphisms on the pharmacokinetics and pharmacodynamics of MPA in humans by means of a systematic review and meta-analysis. METHODS A systematic search was conducted on PubMed, EMBASE, Web of Sciences, Scopus, and the Cochrane Library databases. A meta-analysis was conducted to determine any associations between genetic polymorphisms and pharmacokinetic or pharmacodynamic parameters of MPA. Pooled-effect estimates were calculated by means of the random-effects model. RESULTS A total of 37 studies involving 3844 individuals were included in the meta-analysis. Heterozygous carriers of the UGT1A9 -275T>A polymorphism were observed to have a significantly lower MPA exposure than wild-type individuals. Four single nucleotide polymorphisms (SNPs), namely UGT1A9 -2152C>T, UGT1A8 518C>G, UGT2B7 211G>T, and SLCO1B1 521T>C, were also significantly associated with altered MPA pharmacokinetics. However, none of the investigated SNPs, including SNPs in the IMPDH gene, were found to be associated with the clinical efficacy of MPA. The only SNP that was associated with adverse outcomes was SLCO1B3 344T>G. CONCLUSIONS The present systematic review and meta-analysis identified six SNPs that were significantly associated with pharmacokinetic variability or adverse effects of MPA. Our findings represent the basis for future research and clinical implications with regard to the role of pharmacogenetics in MPA pharmacokinetics and drug response.
Collapse
Affiliation(s)
- Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros Road, Sriphoom, Muang, Chiang Mai, 50200, Thailand
| | - Wannachai Sakuludomkan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros Road, Sriphoom, Muang, Chiang Mai, 50200, Thailand
| | - Nut Koonrungsesomboon
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros Road, Sriphoom, Muang, Chiang Mai, 50200, Thailand.
- Musculoskeletal Science and Translational Research (MSTR) Center, , Chiang Mai University, Muang, Chiang Mai, Thailand.
| |
Collapse
|
8
|
Bergan S, Brunet M, Hesselink DA, Johnson-Davis KL, Kunicki PK, Lemaitre F, Marquet P, Molinaro M, Noceti O, Pattanaik S, Pawinski T, Seger C, Shipkova M, Swen JJ, van Gelder T, Venkataramanan R, Wieland E, Woillard JB, Zwart TC, Barten MJ, Budde K, Dieterlen MT, Elens L, Haufroid V, Masuda S, Millan O, Mizuno T, Moes DJAR, Oellerich M, Picard N, Salzmann L, Tönshoff B, van Schaik RHN, Vethe NT, Vinks AA, Wallemacq P, Åsberg A, Langman LJ. Personalized Therapy for Mycophenolate: Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit 2021; 43:150-200. [PMID: 33711005 DOI: 10.1097/ftd.0000000000000871] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT When mycophenolic acid (MPA) was originally marketed for immunosuppressive therapy, fixed doses were recommended by the manufacturer. Awareness of the potential for a more personalized dosing has led to development of methods to estimate MPA area under the curve based on the measurement of drug concentrations in only a few samples. This approach is feasible in the clinical routine and has proven successful in terms of correlation with outcome. However, the search for superior correlates has continued, and numerous studies in search of biomarkers that could better predict the perfect dosage for the individual patient have been published. As it was considered timely for an updated and comprehensive presentation of consensus on the status for personalized treatment with MPA, this report was prepared following an initiative from members of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT). Topics included are the criteria for analytics, methods to estimate exposure including pharmacometrics, the potential influence of pharmacogenetics, development of biomarkers, and the practical aspects of implementation of target concentration intervention. For selected topics with sufficient evidence, such as the application of limited sampling strategies for MPA area under the curve, graded recommendations on target ranges are presented. To provide a comprehensive review, this report also includes updates on the status of potential biomarkers including those which may be promising but with a low level of evidence. In view of the fact that there are very few new immunosuppressive drugs under development for the transplant field, it is likely that MPA will continue to be prescribed on a large scale in the upcoming years. Discontinuation of therapy due to adverse effects is relatively common, increasing the risk for late rejections, which may contribute to graft loss. Therefore, the continued search for innovative methods to better personalize MPA dosage is warranted.
Collapse
Affiliation(s)
- Stein Bergan
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Mercè Brunet
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Kamisha L Johnson-Davis
- Department of Pathology, University of Utah Health Sciences Center and ARUP Laboratories, Salt Lake City, Utah
| | - Paweł K Kunicki
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Florian Lemaitre
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Pierre Marquet
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Mariadelfina Molinaro
- Clinical and Experimental Pharmacokinetics Lab, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ofelia Noceti
- National Center for Liver Tansplantation and Liver Diseases, Army Forces Hospital, Montevideo, Uruguay
| | | | - Tomasz Pawinski
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | | | - Maria Shipkova
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Teun van Gelder
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Pathology, Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eberhard Wieland
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jean-Baptiste Woillard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Tom C Zwart
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Markus J Barten
- Department of Cardiac- and Vascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maja-Theresa Dieterlen
- Department of Cardiac Surgery, Heart Center, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Laure Elens
- Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics (PMGK) Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain and Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Satohiro Masuda
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Olga Millan
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Dirk J A R Moes
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Oellerich
- Department of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Nicolas Picard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | | | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nils Tore Vethe
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Alexander A Vinks
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Pierre Wallemacq
- Clinical Chemistry Department, Cliniques Universitaires St Luc, Université Catholique de Louvain, LTAP, Brussels, Belgium
| | - Anders Åsberg
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet and Department of Pharmacy, University of Oslo, Oslo, Norway; and
| | - Loralie J Langman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
9
|
Liu L, Luo Z, Liu F, Shang D, Qiu D, Jiao X, Zhou X, Chen S, Wu J, Li J. Effect of inosine monophosphate dehydrogenase-1 gene polymorphisms on mycophenolate mofetil effectiveness in neuromyelitis optica spectrum disorder patients. Mult Scler Relat Disord 2021; 49:102779. [PMID: 33524926 DOI: 10.1016/j.msard.2021.102779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/31/2020] [Accepted: 01/16/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Inosine monophosphate dehydrogenase-1 is the target of mycophenolate mofetil. This research investigated the association between the gene polymorphism of inosine monophosphate dehydrogenase-1 and effectiveness of mycophenolate mofetil therapy in neuromyelitis optica spectrum disorder patients. METHODS Fifty-nine neuromyelitis optica spectrum disorder patients accepted Mycophenolate Mofetil therapy for 1 year at least were divided into two groups: relapsing (n=21) and non-relapsing (n=38). Four single-nucleotide polymorphisms (SNPs: rs2228075, rs2278294, rs2288550, and rs3793165) in the inosine monophosphate dehydrogenase-1 gene were detected. Then we analyzed the allelic frequencies and the genotypes of SNPs in two groups. RESULTS The allelic frequency of rs2278294 distributed differently between the relapse and non-relapsing patients (P=0.03), while no significant difference found in rs2228075, rs2288550 and rs3793165 between two groups. The genotypes C/C, C/T and T/T of rs2278294 (P = 0.031) also distributed differently between the two groups. Logistic regression analysis (adjusted by optic neuritis) showed that compared to the wild genotype C/C, C/T genotype had a 9-fold protection against relapse (OR=0.111 (0.022-0.548)), and T/T genotype had a 6.7-fold protection against relapse (OR=0.149 (0.026-0.854)). CONCLUSION Our study provides preliminary evidence that the genotype of rs2278294 is associated with the response of neuromyelitis optica spectrum disorder patients to mycophenolate mofetil therapy. And compared to wild allelic C, the mutation to T tended to respond better to MMF.
Collapse
Affiliation(s)
- Lanzhi Liu
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya road, Changsha, Hunan, China.
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya road, Changsha, Hunan, China.
| | - Fan Liu
- Radiology department, Xiangya Hospital, Central South University, 87 Xiangya road, Changsha, Hunan, China.
| | - Danqing Shang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya road, Changsha, Hunan, China.
| | - Dongxu Qiu
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya road, Changsha, Hunan, China.
| | - Xiao Jiao
- Radiology department, Xiangya Hospital, Central South University, 87 Xiangya road, Changsha, Hunan, China.
| | - Xiaoliang Zhou
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya road, Changsha, Hunan, China.
| | - Si Chen
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya road, Changsha, Hunan, China.
| | - Junfang Wu
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya road, Changsha, Hunan, China.
| | - Jing Li
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya road, Changsha, Hunan, China.
| |
Collapse
|
10
|
Ehren R, Schijvens AM, Hackl A, Schreuder MF, Weber LT. Therapeutic drug monitoring of mycophenolate mofetil in pediatric patients: novel techniques and current opinion. Expert Opin Drug Metab Toxicol 2020; 17:201-213. [PMID: 33107768 DOI: 10.1080/17425255.2021.1843633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Introduction: Mycophenolate mofetil (MMF) is an ester prodrug of the immunosuppressant mycophenolic acid (MPA) and is recommended and widely used for maintenance immunosuppressive therapy in solid organ and stem-cell transplantation as well as in immunological kidney diseases. MPA is a potent, reversible, noncompetitive inhibitor of the inosine monophosphate dehydrogenase (IMPDH), a crucial enzyme in the de novo purine synthesis in T- and B-lymphocytes, thereby inhibiting cell-mediated immunity and antibody formation. The use of therapeutic drug monitoring (TDM) of MMF is still controversial as outcome data of clinical trials are equivocal. Areas covered: This review covers in great depth the existing literature on TDM of MMF in the field of pediatric (kidney) transplantation. In addition, the relevance of TDM in immunological kidney diseases, in particular childhood nephrotic syndrome is highlighted. Expert opinion: TDM of MMF has the potential to optimize therapy in pediatric transplantation as well as in nephrotic syndrome. Limited sampling strategies to estimate MPA exposure increase its feasibility. Future perspectives rather encompass approaches reflecting total immunosuppressive load than single drug TDM.
Collapse
Affiliation(s)
- Rasmus Ehren
- Faculty of Medicine and University Hospital Cologne, Department of Pediatrics, University of Cologne , Cologne, Germany
| | - Anne M Schijvens
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Agnes Hackl
- Faculty of Medicine and University Hospital Cologne, Department of Pediatrics, University of Cologne , Cologne, Germany
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Lutz T Weber
- Faculty of Medicine and University Hospital Cologne, Department of Pediatrics, University of Cologne , Cologne, Germany
| |
Collapse
|
11
|
Salvadori M, Tsalouchos A. Pharmacogenetics of immunosuppressant drugs: A new aspect for individualized therapy. World J Transplant 2020; 10:90-103. [PMID: 32864355 PMCID: PMC7428791 DOI: 10.5500/wjt.v10.i5.90] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/26/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, pharmacogenetics has emerged as an important tool for choosing the right immunosuppressant drug and its appropriate dose. Indeed, pharmacogenetics may exert its action on immunosuppressant drugs at three levels. Pharmacogenetics identifies and studies the genes involved in encoding the proteins involved in drug pharmacokinetics and in encoding the enzymes involved in drug degradation. Pharmacogenetics is also relevant in encoding the enzymes and proteins involved in codifying the transmembrane proteins involved in transmembrane passage favoring the absorption and intracellular action of several immunosuppressants. Pharmacogenetics concern the variability of genes encoding the proteins involved as immunosuppressant triggers in the pharmacodynamic pathways. Of course, not all genes have been discovered and studied, but some of them have been clearly examined and their relevance together with other factors such as age and race has been defined. Other genes on the basis of relevant studies have been proposed as good candidates for future studies. Unfortunately, to date, clear conclusions may be drawn only for those drugs that are metabolized by CYP3A5 and its genotyping before kidney, heart and lung transplantation is recommended. The conclusions of the studies on the recommended candidate genes, together with the development of omics techniques could in the future allow us to choose the right dose of the right immunosuppressant for the right patient.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Department of Renal Transplantation, Careggi University Hospital, Florence 50139, Italy
| | - Aris Tsalouchos
- Nephrology and Dialysis Unit, Saints Cosmas and Damian Hospital, Pescia 51017, Italy
| |
Collapse
|
12
|
Collins KS, Cheng YH, Ferreira RM, Gao H, Dollins MD, Janosevic D, Khan NA, White C, Dagher PC, Eadon MT. Interindividual Variability in Lymphocyte Stimulation and Transcriptomic Response Predicts Mycophenolic Acid Sensitivity in Healthy Volunteers. Clin Transl Sci 2020; 13:1137-1149. [PMID: 32415749 PMCID: PMC7719379 DOI: 10.1111/cts.12795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/23/2020] [Indexed: 11/30/2022] Open
Abstract
Mycophenolic acid (MPA) is an immunosuppressant commonly used to prevent renal transplant rejection and treat glomerulonephritis. MPA inhibits IMPDH2 within stimulated lymphocytes, reducing guanosine synthesis. Despite the widespread use of MPA, interindividual variability in response remains with rates of allograft rejection up to 15% and approximately half of individuals fail to achieve complete remission to lupus nephritis. We sought to identify contributors to interindividual variability in MPA response, hypothesizing that the HPRT1 salvage guanosine synthesis contributes to variability. MPA sensitivity was measured in 40 healthy individuals using an ex vivo lymphocyte viability assay. Measurement of candidate gene expression (n ± 40) and single‐cell RNA‐sequencing (n ± 6) in lymphocytes was performed at baseline, poststimulation, and post‐MPA treatment. After stimulation, HPRT1 expression was 2.1‐fold higher in resistant individuals compared with sensitive individuals (P ± 0.049). Knockdown of HPRT1 increased MPA sensitivity (12%; P ± 0.003), consistent with higher expression levels in resistant individuals. Sensitive individuals had higher IMPDH2 expression and 132% greater stimulation. In lymphocyte subpopulations, differentially expressed genes between sensitive and resistant individuals included KLF2 and LTB. Knockdown of KLF2 and LTB aligned with the predicted direction of effect on proliferation. In sensitive individuals, more frequent receptor‐ligand interactions were observed after stimulation (P ± 0.0004), but fewer interactions remained after MPA treatment (P ± 0.0014). These data identify a polygenic transcriptomic signature in lymphocyte subpopulations predictive of MPA response. The degree of lymphocyte stimulation, HPRT1, KLF2, and LTB expression may serve as markers of MPA efficacy.
Collapse
Affiliation(s)
- Kimberly S Collins
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ying-Hua Cheng
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ricardo M Ferreira
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hongyu Gao
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Matthew D Dollins
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Danielle Janosevic
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nida A Khan
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chloe White
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Pierre C Dagher
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael T Eadon
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
13
|
Tague LK, Byers DE, Hachem R, Kreisel D, Krupnick AS, Kulkarni HS, Chen C, Huang HJ, Gelman A. Impact of SLCO1B3 polymorphisms on clinical outcomes in lung allograft recipients receiving mycophenolic acid. THE PHARMACOGENOMICS JOURNAL 2020; 20:69-79. [PMID: 30992538 PMCID: PMC6800829 DOI: 10.1038/s41397-019-0086-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 01/20/2019] [Accepted: 03/27/2019] [Indexed: 12/18/2022]
Abstract
Single-nucleotide polymorphisms (SNPs) in genes involved in mycophenolic acid (MPA) metabolism have been shown to contribute to variable MPA exposure, but their clinical effects are unclear. We aimed to determine if SNPs in key genes in MPA metabolism affect outcomes after lung transplantation. We performed a retrospective cohort study of 275 lung transplant recipients, 228 receiving mycophenolic acid and a control group of 47 receiving azathioprine. Six SNPs known to regulate MPA exposure from the SLCO, UGT and MRP2 families were genotyped. Primary outcome was 1-year survival. Secondary outcomes were 3-year survival, nonminimal (≥A2 or B2) acute rejection, and chronic lung allograft dysfunction (CLAD). Statistical analyses included time-to-event Kaplan-Meier with log-rank test and Cox regression modeling. We found that SLCO1B3 SNPs rs4149117 and rs7311358 were associated with decreased 1-year survival [rs7311358 HR 7.76 (1.37-44.04), p = 0.021; rs4149117 HR 7.28 (1.27-41.78), p = 0.026], increased risk for nonminimal acute rejection [rs4149117 TT334/T334G: OR 2.01 (1.06-3.81), p = 0.031; rs7311358 GG699/G699A: OR 2.18 (1.13-4.21) p = 0.019] and lower survival through 3 years for MPA patients but not for azathioprine patients. MPA carriers of either SLCO1B3 SNP had shorter survival after CLAD diagnosis (rs4149117 p = 0.048, rs7311358 p = 0.023). For the MPA patients, Cox regression modeling demonstrated that both SNPs remained independent risk factors for death. We conclude that hypofunctional SNPs in the SLCO1B3 gene are associated with an increased risk for acute rejection and allograft failure in lung transplant recipients treated with MPA.
Collapse
Affiliation(s)
- Laneshia K Tague
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Derek E Byers
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Ramsey Hachem
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Alexander S Krupnick
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Hrishikesh S Kulkarni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Catherine Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Howard J Huang
- Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Andrew Gelman
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University in Saint Louis, Saint Louis, MO, USA.
| |
Collapse
|
14
|
Pharmacogenetics Biomarkers Predictive of Drug Pharmacodynamics as an Additional Tool to Therapeutic Drug Monitoring. Ther Drug Monit 2019; 41:121-130. [DOI: 10.1097/ftd.0000000000000591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Cilião HL, Camargo-Godoy RBO, Souza MFD, Zanuto A, Delfino VDA, Cólus IMDS. Polymorphisms in IMPDH2, UGT2B7, and CES2 genes influence the risk of graft rejection in kidney transplant recipients taking mycophenolate mofetil. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:97-102. [DOI: 10.1016/j.mrgentox.2018.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 04/11/2018] [Accepted: 06/01/2018] [Indexed: 01/07/2023]
|
16
|
Pazik J, Lewandowski Z, Nowacka Cieciura E, Ołdak M, Podgórska M, Sadowska A, Dęborska Materkowska D, Durlik M. Malnutrition Risk in Kidney Recipients Treated With Mycophenolate Mofetil Is Associated With IMPDH1 rs2278294 Polymorphism. Transplant Proc 2018; 50:1794-1797. [DOI: 10.1016/j.transproceed.2018.02.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 02/19/2018] [Indexed: 12/14/2022]
|
17
|
Meng HY, Luo ZH, Hu B, Jin WL, Yan CK, Li ZB, Xue YY, Liu Y, Luo YE, Xu LQ, Yang H. SNPs affecting the clinical outcomes of regularly used immunosuppressants. Pharmacogenomics 2018. [PMID: 29517418 DOI: 10.2217/pgs-2017-0182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent studies have suggested that genomic diversity may play a key role in different clinical outcomes, and the importance of SNPs is becoming increasingly clear. In this article, we summarize the bioactivity of SNPs that may affect the sensitivity to or possibility of drug reactions that occur among the signaling pathways of regularly used immunosuppressants, such as glucocorticoids, azathioprine, tacrolimus, mycophenolate mofetil, cyclophosphamide and methotrexate. The development of bioinformatics, including machine learning models, has enabled prediction of the proper immunosuppressant dosage with minimal adverse drug reactions for patients after organ transplantation or for those with autoimmune diseases. This article provides a theoretical basis for the personalized use of immunosuppressants in the future.
Collapse
Affiliation(s)
- Huan-Yu Meng
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Zhao-Hui Luo
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Bo Hu
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Wan-Lin Jin
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Cheng-Kai Yan
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Zhi-Bin Li
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Yuan-Yuan Xue
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Yu Liu
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Yi-En Luo
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Li-Qun Xu
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| |
Collapse
|
18
|
Cascorbi I. The Pharmacogenetics of Immune-Modulating Therapy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2018; 83:275-296. [PMID: 29801578 DOI: 10.1016/bs.apha.2018.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunosuppressive drugs are a prerequisite in organ transplantation to prevent rejection and are also widely used in inflammatory diseases such as inflammatory bowel disease (IBD) or also in some hematologic malignancies-depending on the mode of action. For thiopurine analogs the polymorphic thiopurine S-methyltransferase (TPMT) was early detected to be associated with thiopurine-induced leukopenia; recent studies identified also NUDT15 to be related to this severe side effect. For drugs like methotrexate and mycophenolate mofetil a number of ADME genes like UDP-glucuronosyltransferases (UGTs) and ABC efflux transporters were investigated, however, with partly contradicting results. For calcineurin inhibitors like cyclosporine and in particular tacrolimus however, cytochrome P450 3A4 and 3A5 variants were found to significantly affect the pharmacokinetics. Genetic variants in genes encoding relevant pharmacodynamic proteins, however, lacked compelling evidence to affect the clinical outcome. This chapter reviews the current evidence on the association of pharmacogenetic traits to dose finding and clinical outcome of small-molecule immunosuppressants. Moreover this chapter critically summarizes suitability to apply pharmacogenetics in clinical practice in order to optimize immunosuppressant therapy.
Collapse
Affiliation(s)
- Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
19
|
Varnell CD, Fukuda T, Kirby CL, Martin LJ, Warshaw BL, Patel HP, Chand DH, Barletta GM, Van Why SK, VanDeVoorde RG, Weaver DJ, Wilson A, Verghese PS, Vinks AA, Greenbaum LA, Goebel J, Hooper DK. Mycophenolate mofetil-related leukopenia in children and young adults following kidney transplantation: Influence of genes and drugs. Pediatr Transplant 2017; 21:10.1111/petr.13033. [PMID: 28869324 PMCID: PMC5905326 DOI: 10.1111/petr.13033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/27/2017] [Indexed: 12/31/2022]
Abstract
MMF is commonly prescribed following kidney transplantation, yet its use is complicated by leukopenia. Understanding the genetics mediating this risk will help clinicians administer MMF safely. We evaluated 284 patients under 21 years of age for incidence and time course of MMF-related leukopenia and performed a candidate gene association study comparing the frequency of 26 SNPs between cases with MMF-related leukopenia and controls. We matched cases by induction, steroid duration, race, center, and age. We also evaluated the impact of induction and SNPs on time to leukopenia in all cases. Sixty-eight (24%) patients had MMF-related leukopenia, of which 59 consented for genotyping and 38 were matched with controls. Among matched pairs, no SNPs were associated with leukopenia. With non-depleting induction, UGT2B7-900A>G (rs7438135) was associated with increased risk of MMF-related leukopenia (P = .038). Time to leukopenia did not differ between patients by induction agent, but 2 SNPs (rs2228075, rs2278294) in IMPDH1 were associated with increased time to leukopenia. MMF-related leukopenia is common after transplantation. UGT2B7 may influence leukopenia risk especially in patients without lymphocyte-depleting induction. IMPDH1 may influence time course of leukopenia after transplant.
Collapse
Affiliation(s)
- Charles D. Varnell
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Tsuyoshi Fukuda
- Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Cassie L. Kirby
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Lisa J. Martin
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Barry L. Warshaw
- Division of Nephrology, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Hiren P. Patel
- Division of Nephrology, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Deepa H. Chand
- Division of Nephrology, University of Illinois College of Medicine, Peoria, IL, USA,Abbvie, North Chicago, IL, USA
| | | | - Scott K. Van Why
- Division of Pediatric Nephrology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rene G. VanDeVoorde
- Division of Nephrology, Monroe Carell Jr. Children’s Hospital, Nashville, TN, USA
| | - Donald J. Weaver
- Division of Nephrology, Levine Children’s Hospital, Charlotte, NC, USA
| | - Amy Wilson
- Division of Nephrology, Riley Hospital for Children, Indianapolis, IN, USA
| | - Priya S. Verghese
- Division of Pediatric Nephrology, University of Minnesota Masonic Children’s Hospital, Minneapolis, MN, USA
| | - Alexander A. Vinks
- Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Larry A. Greenbaum
- Division of Nephrology, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Jens Goebel
- Division of Nephrology, Children’s Hospital Colorado, Aurora, CO, USA
| | - David K. Hooper
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA,James M. Anderson Center for Health Systems Excellence, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
20
|
Analytical Aspects of the Implementation of Biomarkers in Clinical Transplantation. Ther Drug Monit 2016; 38 Suppl 1:S80-92. [PMID: 26418704 DOI: 10.1097/ftd.0000000000000230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In response to the urgent need for new reliable biomarkers to complement the guidance of the immunosuppressive therapy, a huge number of biomarker candidates to be implemented in clinical practice have been introduced to the transplant community. This includes a diverse range of molecules with very different molecular weights, chemical and physical properties, ex vivo stabilities, in vivo kinetic behaviors, and levels of similarity to other molecules, etc. In addition, a large body of different analytical techniques and assay protocols can be used to measure biomarkers. Sometimes, a complex software-based data evaluation is a prerequisite for appropriate interpretation of the results and for their reporting. Although some analytical procedures are of great value for research purposes, they may be too complex for implementation in a clinical setting. Whereas the proof of "fitness for purpose" is appropriate for validation of biomarker assays used in exploratory drug development studies, a higher level of analytical validation must be achieved and eventually advanced analytical performance might be necessary before diagnostic application in transplantation medicine. A high level of consistency of results between laboratories and between methods (if applicable) should be obtained and maintained to make biomarkers effective instruments in support of therapeutic decisions. This overview focuses on preanalytical and analytical aspects to be considered for the implementation of new biomarkers for adjusting immunosuppression in a clinical setting and highlights critical points to be addressed on the way to make them suitable as diagnostic tools. These include but are not limited to appropriate method validation, standardization, education, automation, and commercialization.
Collapse
|
21
|
Pharmacogenetic Biomarkers Predictive of the Pharmacokinetics and Pharmacodynamics of Immunosuppressive Drugs. Ther Drug Monit 2016; 38 Suppl 1:S57-69. [DOI: 10.1097/ftd.0000000000000255] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Pouché L, Stojanova J, Marquet P, Picard N. New challenges and promises in solid organ transplantation pharmacogenetics: the genetic variability of proteins involved in the pharmacodynamics of immunosuppressive drugs. Pharmacogenomics 2016; 17:277-96. [PMID: 26799749 DOI: 10.2217/pgs.15.169] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Interindividual variability in immunosuppressive drug responses might be partly explained by genetic variants in proteins involved in the immune response or associated with IS pharmacodynamics. On a general basis, the pharmacogenetics of drug target proteins is less known and understood than that of proteins involved in drug disposition pathways. The aim of this review is to facilitate research related to the pharmacodynamics of the main immunosuppressive drugs used in solid organ transplantation. We elaborated a quality of evidence grading system based on a literature review and identified 'highly recommended', 'recommended' or 'potential' candidates for further research. It is likely that a number of additional rare variants might further explain drug response phenotypes in transplantation, and particularly the most severe ones. The advent of next-generation sequencing will help to identify those variants.
Collapse
Affiliation(s)
- Lucie Pouché
- Inserm, UMR 850, 2 Avenue Martin-Luther King, F-87042 Limoges, France.,CHU Limoges, Department of Pharmacology, Toxicology & Pharmacovigilance, 2 Avenue Martin-Luther King, F-87042 Limoges, France
| | - Jana Stojanova
- Laboratory of Chemical Carcinogenesis & Pharmacogenetics, University of Chile, Santiago, Chile
| | - Pierre Marquet
- Inserm, UMR 850, 2 Avenue Martin-Luther King, F-87042 Limoges, France.,CHU Limoges, Department of Pharmacology, Toxicology & Pharmacovigilance, 2 Avenue Martin-Luther King, F-87042 Limoges, France.,Univ. Limoges, Faculty of Medicine & Pharmacy, 2 rue du Dr Marcland, F-87025 Limoges, France.,FHU SUPORT, 87000 Limoges, France
| | - Nicolas Picard
- Inserm, UMR 850, 2 Avenue Martin-Luther King, F-87042 Limoges, France.,CHU Limoges, Department of Pharmacology, Toxicology & Pharmacovigilance, 2 Avenue Martin-Luther King, F-87042 Limoges, France.,Univ. Limoges, Faculty of Medicine & Pharmacy, 2 rue du Dr Marcland, F-87025 Limoges, France.,FHU SUPORT, 87000 Limoges, France
| |
Collapse
|
23
|
Impact of Genetic Polymorphisms on 6-Thioguanine Nucleotide Levels and Toxicity in Pediatric Patients with IBD Treated with Azathioprine. Inflamm Bowel Dis 2015; 21:2897-908. [PMID: 26332308 DOI: 10.1097/mib.0000000000000570] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Thiopurine-related toxicity results in discontinuation of therapy in up to 30% of patients with inflammatory bowel disease. Although thiopurine S-methyltransferase (TPMT) is implicated in toxicity, not all toxicity can be attributed to TPMT polymorphisms. We investigated the effects of polymorphisms of genes involved in thiopurine and folate metabolism pathways on 6-thioguanine nucleotide levels and toxicity. METHODS Retrospective clinical data and blood samples were collected from 132 pediatric patients with inflammatory bowel disease treated with azathioprine. Eighty-seven genetic polymorphisms of 30 genes were screened using the MassARRAY system, and 70 polymorphisms of 28 genes were selected for further analysis. RESULTS TPMT genotype (P < 0.001), concurrent use of mesalazine (P = 0.006), ABCC5 (rs2293001) (P < 0.001), ITPA (rs2236206 and rs8362) (P = 0.010 and P = 0.003), and ABCB1 (rs2032582) (P = 0.028) were all associated with the ratio of 6-thioguanine nucleotides to azathioprine dose. ADK (rs10824095) (P = 0.004, odds ratio [OR] = 6.220), SLC29A1 (rs747199) (P = 0.016, OR = 5.681), and TYMS (rs34743033) (P = 0.045, OR = 3.846) were associated with neutropenia. ABCC1 (rs2074087) (P = 0.022, OR = 3.406), IMPDH1 (rs2278294) (P = 0.027, OR = 0.276), and IMPDH2 (rs11706052) (P = 0.034, OR = 3.639) had a significant impact on lymphopenia. CONCLUSIONS This study describes genetic polymorphisms in genes whose products may affect pharmacokinetics and which may predict the relative likelihood of benefit or risk from thiopurine treatment. These findings may serve as a basis for personalized thiopurine therapy in pediatric patients with inflammatory bowel disease, although our data need to be validated in further studies.
Collapse
|
24
|
|
25
|
Hareedy MS, El Desoky ES, Woillard JB, Thabet RH, Ali AM, Marquet P, Picard N. Genetic variants in 6-mercaptopurine pathway as potential factors of hematological toxicity in acute lymphoblastic leukemia patients. Pharmacogenomics 2015; 16:1119-34. [PMID: 26237184 DOI: 10.2217/pgs.15.62] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM We investigated the associations between variants in genes coding for enzymes and transporters related to the 6-mercaptopurine pathway and clinical outcomes in pediatric patients with acute lymphoblastic leukemia. MATERIALS & METHODS Statistical association between gender, age and genotypes of selected SNPs, and the risks of hematological toxicity and relapse were investigated using a Cox proportional hazard model in 70 acute lymphoblastic leukemia patients from upper Egypt. RESULTS We found significant associations between ITPA, IMPDH1, SLC29A1, SLC28A2, SLC28A3 and ABCC4 SNPs and one or more of the hematological toxicity manifestations (neutropenia, agranulocytosis and leukopenia); age was significantly related to relapse. CONCLUSION Genetic polymorphisms in enzymes and transporters involved in the 6-mercaptopurine pathway should be considered during its use to avoid hematological toxicity.
Collapse
Affiliation(s)
- Mohammad Salem Hareedy
- Department of Pharmacology, Faculty of Medicine, Assiut University, 71515 Assiut, Egypt.,Inserm, UMR-850, Limoges, France
| | - Ehab S El Desoky
- Department of Pharmacology, Faculty of Medicine, Assiut University, 71515 Assiut, Egypt
| | - Jean-Baptiste Woillard
- Inserm, UMR-850, Limoges, France.,Department of Pharmacology, Toxicology & Pharmacovigilance, CHU Limoges, Limoges, France.,Faculty of Medicine, Laboratory of Medical Pharmacology, University of Limoges, Limoges, France
| | - Romany Helmy Thabet
- Department of Pharmacology, Faculty of Medicine, Assiut University, 71515 Assiut, Egypt
| | | | - Pierre Marquet
- Inserm, UMR-850, Limoges, France.,Department of Pharmacology, Toxicology & Pharmacovigilance, CHU Limoges, Limoges, France.,Faculty of Medicine, Laboratory of Medical Pharmacology, University of Limoges, Limoges, France
| | - Nicolas Picard
- Inserm, UMR-850, Limoges, France.,Department of Pharmacology, Toxicology & Pharmacovigilance, CHU Limoges, Limoges, France.,South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
26
|
Expression of IMPDH mRNA after mycophenolate administration in male volunteers. BIOMED RESEARCH INTERNATIONAL 2014; 2014:870209. [PMID: 25105143 PMCID: PMC4101204 DOI: 10.1155/2014/870209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 01/20/2023]
Abstract
Background. Mycophenolic acid (MPA) is the first-line antimetabolic immunosuppressants used in solid organ transplantation. Here, in vivo expressions of the pharmacodynamic marker IMPDH mRNA were analyzed to investigate its usefulness in assessing drug effects. Materials and Methods. Six healthy male volunteers who had the same genotype for genes known to be associated with drug metabolism and effects were selected to remove the confounding effect of these genotypes. Mycophenolate mofetil (MMF, 1 g) was administered once to each subject, and blood samples were collected with certain interval before and after MMF administration to measure lymphocyte expression levels of IMPDH1 and IMPDH2 mRNA. One week later, the experiment was repeated. Results. Whereas IMPDH1 mRNA expression was stable, IMPDH2 mRNA expression showed 2 peaks in the first week. Both IMPDH1 and IMPDH2 mRNA expression in the second week remarkably decreased from the first week. Conclusion. The temporary increase in IMPDH2 mRNA expression in the first week might be due to a reactive reaction against the plasma MPA concentration. In the second week, the intracellular guanosine monophosphate might be depleted, rendering IMPDH2 mRNA synthesis inactive. When MPA is regularly administered to reach a steady state, the IMPDH2 mRNA expression may be kept low and may effectively reflect biological responses regardless of drug intake.
Collapse
|
27
|
Pharmacology and toxicology of mycophenolate in organ transplant recipients: an update. Arch Toxicol 2014; 88:1351-89. [PMID: 24792322 DOI: 10.1007/s00204-014-1247-1] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 04/15/2014] [Indexed: 12/22/2022]
Abstract
This review aims to provide an update of the literature on the pharmacology and toxicology of mycophenolate in solid organ transplant recipients. Mycophenolate is now the antimetabolite of choice in immunosuppressant regimens in transplant recipients. The active drug moiety mycophenolic acid (MPA) is available as an ester pro-drug and an enteric-coated sodium salt. MPA is a competitive, selective and reversible inhibitor of inosine-5'-monophosphate dehydrogenase (IMPDH), an important rate-limiting enzyme in purine synthesis. MPA suppresses T and B lymphocyte proliferation; it also decreases expression of glycoproteins and adhesion molecules responsible for recruiting monocytes and lymphocytes to sites of inflammation and graft rejection; and may destroy activated lymphocytes by induction of a necrotic signal. Improved long-term allograft survival has been demonstrated for MPA and may be due to inhibition of monocyte chemoattractant protein 1 or fibroblast proliferation. Recent research also suggested a differential effect of mycophenolate on the regulatory T cell/helper T cell balance which could potentially encourage immune tolerance. Lower exposure to calcineurin inhibitors (renal sparing) appears to be possible with concomitant use of MPA in renal transplant recipients without undue risk of rejection. MPA displays large between- and within-subject pharmacokinetic variability. At least three studies have now reported that MPA exhibits nonlinear pharmacokinetics, with bioavailability decreasing significantly with increasing doses, perhaps due to saturable absorption processes or saturable enterohepatic recirculation. The role of therapeutic drug monitoring (TDM) is still controversial and the ability of routine MPA TDM to improve long-term graft survival and patient outcomes is largely unknown. MPA monitoring may be more important in high-immunological recipients, those on calcineurin-inhibitor-sparing regimens and in whom unexpected rejection or infections have occurred. The majority of pharmacodynamic data on MPA has been obtained in patients receiving MMF therapy in the first year after kidney transplantation. Low MPA area under the concentration time from 0 to 12 h post-dose (AUC0-12) is associated with increased incidence of biopsy-proven acute rejection although AUC0-12 optimal cut-off values vary across study populations. IMPDH monitoring to identify individuals at increased risk of rejection shows some promise but is still in the experimental stage. A relationship between MPA exposure and adverse events was identified in some but not all studies. Genetic variants within genes involved in MPA metabolism (UGT1A9, UGT1A8, UGT2B7), cellular transportation (SLCOB1, SLCO1B3, ABCC2) and targets (IMPDH) have been reported to effect MPA pharmacokinetics and/or response in some studies; however, larger studies across different ethnic groups that take into account genetic linkage and drug interactions that can alter a patient's phenotype are needed before any clinical recommendations based on patient genotype can be formulated. There is little data on the pharmacology and toxicology of MPA in older and paediatric transplant recipients.
Collapse
|
28
|
Dostalek M, Gohh RY, Akhlaghi F. Inosine monophosphate dehydrogenase expression and activity are significantly lower in kidney transplant recipients with diabetes mellitus. Ther Drug Monit 2013; 35:374-83. [PMID: 23666569 PMCID: PMC4109137 DOI: 10.1097/ftd.0b013e3182852697] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Inosine 5'-monophosphate dehydrogenase (IMPDH) is a target of the immunosuppressive drug, mycophenolic acid (MPA). A 12-hour clinical pharmacokinetic and pharmacodynamic study was conducted to compare IMPDH1 and IMPDH2 gene expression, IMPDHI and IMPDHII protein levels, and enzyme activity between kidney transplant recipients with respect to diabetes status. METHODS Nondiabetic (ND, n = 11) and diabetic (D, n = 9) kidney transplant recipients and on nontransplant nondiabetic (n = 10) and diabetic (n = 10) volunteers were included in the study. RESULTS Area under the effect curve values for gene expression: IMPDH1 [ND: 22.1 (13.8-31.3) versus D: 4.5 (2.3-6.5), P < 0.001] and IMPDH2 [ND: 15.3 (11.0-21.7) versus D: 6.1 (4.6-8.6), P < 0.001], protein level: IMPDHI [ND: 1.0 (0.5-1.3) versus 0.5 (0.4-0.7), P = 0.002] and IMPDHII [ND: 1.0 (0.6-1.6) versus D: 0.7 (0.6-0.8) P < 0.001] and enzyme activity [ND: 180 (105-245) versus D: 29.9 (15.3-35.6) µmole·s(-1)·mole(-1) adenosine monophosphate, P < 0.001] was significantly lower in transplant recipients with diabetes. Similar results were observed in nontransplanted volunteers. Kinetic studies of MPA-mediated suppression of IMPDH activity in nontransplanted individuals revealed an approximately 2.5-fold lower half-maximum effective concentration (EC50) for diabetic as compared with nondiabetic [ND: 50.2 (49.8-50.7) versus D: 15.8 (15.6-16.3) nmole/L, P = 0.004] volunteers. This difference was not related to several IMPDH gene variants. CONCLUSIONS This study indicates a significantly lower IMPDH gene expression, protein level, and enzyme activity in diabetic patients. Further clinical studies in a larger number of patients are warranted to verify whether MPA dosing must be optimized for kidney transplant recipients with diabetes mellitus.
Collapse
Affiliation(s)
- Miroslav Dostalek
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Reginald Y. Gohh
- Division of Organ Transplantation, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Fatemeh Akhlaghi
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
29
|
Impact of longitudinal exposure to mycophenolic acid on acute rejection in renal-transplant recipients using a joint modeling approach. Pharmacol Res 2013; 72:52-60. [DOI: 10.1016/j.phrs.2013.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/22/2013] [Accepted: 03/22/2013] [Indexed: 11/22/2022]
|
30
|
Lima BR, Nussenblatt RB, Sen HN. Pharmacogenetics of drugs used in the treatment of ocular inflammatory diseases. Expert Opin Drug Metab Toxicol 2013; 9:875-82. [PMID: 23521173 DOI: 10.1517/17425255.2013.783818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Ocular inflammatory diseases comprise uveitis, scleritis, and inflammation of adjacent structures of the eye. Therapy may be challenging and often involves corticosteroids and immunomodulatory agents. AREAS COVERED This review describes the genes involved in noninfectious ocular inflammatory diseases and focuses on pharmacogenetic studies regarding different classes of anti-inflammatory drugs used in the management of uveitis, including corticosteroids, antimetabolites, calcineurin inhibitors, alkylating agents, and biological agents. EXPERT OPINION Pharmacogenetics holds the promise of a personalized medicine with potential to customize treatment that can achieve the best clinical response and avoid toxicity. Several polymorphisms in various genes involved in the metabolism of drugs commonly utilized in the treatment of ocular inflammatory diseases have been described. Most promising is the polymorphism in thiopurinemethyltransferase gene for which a genotype analysis can reveal slow metabolizers of azathioprine and help avoid serious drug toxicity. Although pharmacogenetic studies with specific focus on ocular inflammatory diseases are lacking, knowledge from studies in rheumatologic diseases and transplant medicine can provide a platform for future research. Prospective clinical studies are needed to determine the clinical significance of such polymorphisms and their true effect on drug metabolism and side effects.
Collapse
Affiliation(s)
- Breno R Lima
- National Eye Institute, National Institutes of Health, Laboratory of Immunology, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
31
|
Abd Rahman AN, Tett SE, Staatz CE. Clinical Pharmacokinetics and Pharmacodynamics of Mycophenolate in Patients with Autoimmune Disease. Clin Pharmacokinet 2013; 52:303-31. [DOI: 10.1007/s40262-013-0039-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
|
33
|
Kuypers DR. Pharmacogenetics in solid organ transplantation: a transition from kinetics to dynamics. Pharmacogenomics 2012; 13:1679-83. [PMID: 23171332 DOI: 10.2217/pgs.12.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Dirk Rj Kuypers
- Department of Nephrology & Renal Transplantation, University Hospitals Leuven, Catholic University of Leuven, Herestraat 49, B-3000 Leuven, Belgium.
| |
Collapse
|
34
|
Abstract
BACKGROUND Interindividual variation in inosine monophosphate dehydrogenase (IMPDH) enzyme activity and adverse effects caused by mycophenolate mofetil (MMF) inhibition may be genetically determined, and if so, transplant recipients should receive personalized dosing regimens of MMF, which would maximize efficacy and minimize toxicity. Some studies have demonstrated a relationship between the single nucleotide polymorphism and the risk of acute rejection with IMPDH I variants rs2278293 and rs2278294 and IMPDH II variant rs11706052, whereas others have failed to exhibit an effect. The aim of this work was to investigate the influence of these polymorphisms on acute rejection rates, graft survival and function, and MMF doses in a large cohort of patients. METHODS A random sample of 1040 recipients from the Collaborative Transplant Study DNA bank was genotyped for the variants IMPDH I rs2278293 and rs2278294 and IMPDH II rs11706052. RESULTS The presence of the T (rs2278293) and G alleles (rs2278294) in the IMPDH I variants and carriage of the G allele (rs11706052) in the IMPDH II variant did not increase the risk of rejection or affect graft function by 1 year after transplantation. There was no association with MMF dose tolerated at 1 year. Furthermore, these polymorphisms did not impact graft or patient survival at 5 years. CONCLUSION This study represents the largest cohort of patients with the longest follow-up to date and does not support previous evidence for an association between these IMPDH variants and renal allograft rejection and graft survival.
Collapse
|
35
|
|
36
|
Pazik J, Ołdak M, Podgórska M, Lewandowski Z, Sitarek E, Płoski R, Szmidt J, Chmura A, Durlik M, Malejczyk J. Lymphocyte counts in kidney allograft recipients are associated with IMPDH2 3757T>C gene polymorphism. Transplant Proc 2012; 43:2943-5. [PMID: 21996196 DOI: 10.1016/j.transproceed.2011.08.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Inosine monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme for de novo synthesis of guanine nucleotides, is required for lymphocyte proliferation. Inhibition of IMPDH by mycophenolic acid (MPA) constitutes part of an immunosuppressive therapy in kidney allograft recipients. The 3757T>C polymorphic variant (rs11706052) of the IMPDH2 gene, which encodes 1 of 2 IMPDH isoenzymes, has been associated with increased IMPDH activity and reduced ability of MPA to exert antiproliferative effects on lymphocytes. The association of IMPDH2 3757T>C SNP with posttransplant courses of kidney allograft recipients remains unclear. Therefore, the aim of the present study was to evaluate associations between this single nucleotide polymorphism and common posttransplant complications among Polish kidney allotransplant recipients. We observed that the frequency of IMPDH2 3757C allele in this group (n=177) did not differ significantly from a control cohort representing the background population of Poland (n=550). There were no significant differences between patients carrying the IMPDH2 3757CT and TT genotypes with respect to acute rejection risk, neutropenia, or incidences of serious infections or gastrointestinal side effects. However, we noted that the 3757C allele was associated with higher lymphocyte counts and a reduced incidence of lymphopenia among kidney allograft recipients. Our findings may be of practical significance to tailor immunosuppressive regimens in kidney transplant recipients.
Collapse
Affiliation(s)
- J Pazik
- Department of Transplantation Medicine and Nephrology, Medical University of Warsaw, Warsaw, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cao W, Xiao H, Lai X, Luo Y, Shi J, Tan Y, Zheng W, He J, Xie W, Li L, Ye X, Yu X, Lin M, Cai Z, Huang H. Genetic Variations in the Mycophenolate Mofetil Target Enzyme Are Associated with Acute GVHD Risk after Related and Unrelated Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2012; 18:273-9. [DOI: 10.1016/j.bbmt.2011.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 06/30/2011] [Indexed: 12/31/2022]
|
38
|
Inosine monophosphate dehydrogenase activity in paediatrics: age-related regulation and response to mycophenolic acid. Eur J Clin Pharmacol 2012; 68:913-22. [DOI: 10.1007/s00228-011-1203-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
|
39
|
Glander P, Hambach P, Liefeldt L, Budde K. Inosine 5'-monophosphate dehydrogenase activity as a biomarker in the field of transplantation. Clin Chim Acta 2011; 413:1391-7. [PMID: 21889500 DOI: 10.1016/j.cca.2011.08.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/09/2011] [Accepted: 08/16/2011] [Indexed: 11/25/2022]
Abstract
Inosine 5'monophosphate dehydrogenase (IMPDH) is the rate limiting enzyme in the de novo synthesis of guanine nucleotides. The direct determination of target enzyme activity as a biomarker of mycophenolic acid (MPA) may help to estimate better the individual response to the immunosuppressant. However, the assessment of the clinical utility of this approach is limited by the diversity of the assay systems, which has not yet allowed the prospective assessment of this enzyme in larger patient cohorts. A recently validated and standardized assay allows the investigation of IMPDH activity in larger clinical studies. Although descriptive results from observational studies hold promise for a more individualized therapy in transplant medicine, more studies are needed to prospectively validate this approach.
Collapse
Affiliation(s)
- Petra Glander
- Charite-Universitätsmedizin Berlin, Department of Nephrology, Berlin, Germany.
| | | | | | | |
Collapse
|
40
|
Picard N, Marquet P. The influence of pharmacogenetics and cofactors on clinical outcomes in kidney transplantation. Expert Opin Drug Metab Toxicol 2011; 7:731-43. [PMID: 21434840 DOI: 10.1517/17425255.2011.570260] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Immunosuppressive drugs have a narrow therapeutic range and large inter-individual response variability. This has prompted pharmacogenetic studies, mostly with regard to their dose-concentration relationships, but also about proteins involved in their pharmacodynamics. Some polymorphisms of genes involved in their disposition pathways were shown to affect their dose-concentration relationships. The impact of pharmacogenetics on tissue distribution and the resulting clinical effects have less often been studied. More importantly, a few single nucleotide polymorphisms seem to have a significant impact on the incidence of acute rejection or the adverse effects of immunosuppressants. Environmental factors often interact with such genotype-phenotype relationships. AREAS COVERED This article reviews the impact of genetic polymorphisms of the metabolic enzymes, membrane transporters and target proteins of mycophenolic acid, calcineurin inhibitors and mammalian target of rapamycin inhibitors on clinical outcomes in kidney transplantation. EXPERT OPINION The current level of evidence is not yet high enough to recommend pharmacogenetic personalization of immunosuppressive regimens in transplant recipients. The prevention of cellular toxicity associated with local metabolism or transport, which cannot be addressed by routine monitoring, is worth investigating further.
Collapse
|
41
|
Wu TY, Fridley BL, Jenkins GD, Batzler A, Wang L, Weinshilboum RM. Mycophenolic acid response biomarkers: a cell line model system-based genome-wide screen. Int Immunopharmacol 2011; 11:1057-64. [PMID: 21396482 DOI: 10.1016/j.intimp.2011.02.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/16/2011] [Accepted: 02/24/2011] [Indexed: 10/18/2022]
Abstract
Mycophenolic acid (MPA) is commonly used to treat patients with solid organ transplants during maintenance immunosuppressive therapy. Response to MPA varies widely, both for efficacy and drug-induced toxicity. A portion of this variation can be explained by pharmacokinetic and pharmacodynamic factors, including genetic variation in MPA-metabolizing UDP-glucuronyltransferase isoforms and the MPA targets, inosine monophosphate dehydrogenase 1 and 2. However, much of the variation in MPA response presently remains unexplained. We set out to determine whether there might be additional genes that modify response to MPA by performing a genome-wide association study between basal gene mRNA expression profiles and an MPA cytotoxicity phenotype using a 271 human lymphoblastoid cell line model system to identify and functionally validate genes that might contribute to variation in MPA response. Our association study identified 41 gene expression probe sets, corresponding to 35 genes, that were associated with MPA cytotoxicity as a drug response phenotype (p<1×10(-6)). Follow-up siRNA-mediated knockdown-based functional validation identified four of these candidate genes, C17orf108, CYBRD1, NASP, and RRM2, whose knockdown shifted the MPA cytotoxicity curves in the direction predicted by the association analysis. These studies have identified novel candidate genes that may contribute to variation in response to MPA therapy and, as a result, may help make it possible to move toward more highly individualized MPA-based immunosuppressive therapy.
Collapse
Affiliation(s)
- Tse-Yu Wu
- Division of Clinical Pharmacology, Department of Pharmacology and Experimental Therapeutics, Rochester, MN 55905, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Garat A, Cardenas CLL, Lionet A, Devos A, Glowacki F, Kenani A, Migot-Nabias F, Allorge D, Lo-Guidice JM, Broly F, Cauffiez C. Inter-ethnic variability of three functional polymorphisms affecting the IMPDH2 gene. Mol Biol Rep 2010; 38:5185-8. [PMID: 21181270 DOI: 10.1007/s11033-010-0668-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 12/12/2010] [Indexed: 10/18/2022]
Abstract
Human type II inosine monophosphate dehydrogenase (IMPDH2) is a key enzyme in the purine nucleotide biosynthetic pathway and constitutes a pivotal biological target for immunosuppressant and antiviral drugs. Several Single Nucleotide Polymorphisms (SNP) affecting the IMPDH2 gene sequence have been reported with potential functional relevance and could impact drugs response. We aimed to determine the frequency of three of these polymorphisms, namely g.3375C>T (Leu(263)Phe), c.-95T>G and IVS7+10T>C, in Caucasians, Tunisians, Peruvians and Black Africans (Gabonese and Senegalese). The g.3375C>T and c.-95T>G polymorphisms are rare with a Minor Allele Frequency ≤1.0% in our populations, whereas the third variant, IVS7+10T>C, is more frequent and displays large interethnic variations, with an allelic frequency ranging from 14.6% in the French Caucasian population studied to less than 2% in Black African and Peruvian populations. This ethnic-related data might contribute to a better understanding of the variability in clinical outcome and/or dose adjustments of drugs that are IMPDH inhibitors such as mycophenolic acid.
Collapse
Affiliation(s)
- Anne Garat
- Equipe D'accueil 4483, Faculté de Médecine de Lille, Pôle Recherche, 1 place de Verdun, 59045 Lille Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|