1
|
Al-Sulaiti FK, Alkhiyami D, Elmekaty EZI, Awaisu A, Kheir N, El-Zubair A, Al-Sulaiti HK. Appropriateness of gentamicin therapeutic drug monitoring at a Middle Eastern tertiary hospital setting: a retrospective evaluation and quality audit. J Pharm Policy Pract 2024; 17:2375753. [PMID: 39011355 PMCID: PMC11249166 DOI: 10.1080/20523211.2024.2375753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction The use of gentamicin in the treatment of infectious diseases requires frequent monitoring to attain the best treatment outcomes. Objective This study aimed to evaluate the appropriateness of gentamicin therapeutic drug monitoring (TDM) at a tertiary care hospital in Qatar. Methods A one-year quantitative retrospective chart review of all gentamicin TDM records was conducted. Evidence-based criteria were applied to evaluate the appropriateness of gentamicin TDM in terms of indication, sampling times, and post-analytical actions. Results Out of 59 captured gentamicin TDM records, 58 gentamicin samples were eligible for evaluation. Overall, gentamicin TDM appropriateness was achieved in 50% (n = 29) of the evaluated records. However, 12% (n = 7) of gentamicin drug concentrations were below the assay quantification limits or were not sampled appropriately. Inappropriate post-analytical actions (22.4%, n = 13) and inappropriate sampling times (44.8%, n = 26) were recorded. Most of the gentamicin blood samples (n = 43; 74.2%) were taken appropriately at steady-state. Inappropriate sampling time relative to the last dose was captured in 31% (n = 18) of the cases. Although 27.6% (n = 16) of gentamicin concentrations were non-therapeutic, continuing gentamicin dosing without adjustment was the most frequent post-analytical action (69.8%, n = 37). Gentamicin dose regimen continuations, dose regimen decreases and dose regimen discontinuations were inappropriately applied in 27% (n = 10), 25% (n = 2) and 14% (n = 1) of the times, respectively. Conclusion Suboptimal gentamicin TDM practices exist in relation to sampling time and post-analytical actions. Studies exploring setting-specific reasons behind inappropriate TDM practices and methods of its optimisation are needed.
Collapse
Affiliation(s)
- Fatima Khalifa Al-Sulaiti
- Clinical Pharmacy and Practice Department, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
- Qatar National Research Fund, Qatar Foundation, Doha, Qatar
| | - Dania Alkhiyami
- Clinical Pharmacy Department, Al-Wakrah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Eman Zeyad I Elmekaty
- Clinical Pharmacy Department, Communicable Disease Center, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Awaisu
- Clinical Pharmacy and Practice Department, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Nadir Kheir
- College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- School of Pharmacy, The University of Auckland, Auckland, New Zealand
| | - Ahmed El-Zubair
- Clinical Pharmacy Department, Al-Khor Hospital, Hamad Medical Corporation, Doha, Qatar
| | | |
Collapse
|
2
|
Duong A, Marsot A. Nlmixr2 Versus NONMEM: An Evaluation of Maximum A Posteriori Bayesian Estimates Following External Evaluation of Gentamicin and Tobramycin Population Pharmacokinetic Models. Clin Pharmacol Drug Dev 2024; 13:739-747. [PMID: 38465725 DOI: 10.1002/cpdd.1395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024]
Abstract
The objective of this project is to compare the results of the same study carried out on NONMEM and nlmixr2. This analysis consists of evaluating previously published population pharmacokinetic models of gentamicin and tobramycin in our population of interest with sparse concentrations. A literature review was performed to determine the gentamicin and tobramycin models in critically ill adult patients. In parallel, gentamicin and tobramycin dosing data, information on the treatment, the patient, and the bacteria were collected retrospectively in 2 Quebec establishments. The external evaluations were previously performed using NONMEM Version 7.5. Model equations were rewritten with R, and external evaluations were performed using nlmixr2. Predictive performance was assessed based on the estimation of bias and imprecision of the prediction error for maximum a posteriori (MAP) Bayesian PK parameter and observed concentrations. Comparison between nlmixr2 and NONMEM was performed on 4 gentamicin and 3 tobramycin population pharmacokinetic models. Compared to NONMEM, for gentamicin and tobramycin clearance and central volume of distribution, nlmixr2 produced individual pharmacokinetic parameters with bias values ranging from -32.5% to 5.67% and imprecision values ranging from 6.33% to 32.5%. Despite these differences, population bias and imprecision for sparse concentrations were low and ranged from 0% to 5.3% and 0.2% to 6.5%, respectively. The external evaluations performed with both software packages resulted in the same interpretation in terms of population predictive performance for all 7 models. Nlmxir2 showed comparable predictive performance with NONMEM with sparse concentrations that are, at most, sampled twice within a single dose administration (peak and trough).
Collapse
Affiliation(s)
- Alexandre Duong
- Laboratoire de Suivi Thérapeutique Pharmacologique et Pharmacocinétique, Montréal, QC, Canada
- Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada
| | - Amélie Marsot
- Laboratoire de Suivi Thérapeutique Pharmacologique et Pharmacocinétique, Montréal, QC, Canada
- Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche CHU Sainte-Justine, Montréal, QC, Canada
| |
Collapse
|
3
|
Selig DJ, Reed T, Chung KK, Kress AT, Stewart IJ, DeLuca JP. Hemoperfusion with Seraph 100 Microbind Affinity Blood Filter Unlikely to Require Increased Antibiotic Dosing: A Simulations Study Using a Pharmacokinetic/Pharmacodynamic Approach. Blood Purif 2023; 52:25-31. [PMID: 35526522 DOI: 10.1159/000524457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023]
Abstract
INTRODUCTION The Seraph® 100 Microbind® Affinity Blood Filter (Seraph 100) is a hemoperfusion device that can remove pathogens from central circulation. However, the effect of Seraph 100 on achieving pharmacodynamic (PD) targets is not well described. We sought to determine the impact of Seraph 100 on ability to achieve PD targets for commonly used antibiotics. METHODS Estimates of Seraph 100 antibiotic clearance were obtained via literature. For vancomycin and gentamicin, published pharmacokinetic models were used to explore the effect of Seraph 100 on ability to achieve probability of target attainment (PTA). For meropenem and imipenem, the reported effect of continuous kidney replacement therapy (CKRT) on achieving PTA was used to extrapolate decisions for Seraph 100. RESULTS Seraph 100 antibiotic clearance is likely less than 0.5 L/h for most antibiotics. Theoretical Seraph 100 clearance up to 0.5 L/h and 2 L/h had a negligible effect on vancomycin PTA in virtual patients with creatinine clearance (CrCl) = 14 mL/min and CrCl >14 mL/min, respectively. Theoretical Seraph 100 clearance up to 0.5 L/h and 2 L/h had a negligible effect on gentamicin PTA in virtual patients with CrCl = 120 mL/min and CrCl <60 mL/min, respectively. CKRT intensity resulting in antibiotic clearance up to 2 L/h generally does not require dose increases for meropenem or imipenem. As Seraph 100 is prescribed intermittently and likely contributes far less to antibiotic clearance, dose increases would also not be required. CONCLUSION Seraph 100 clearance of vancomycin, gentamicin, meropenem, and imipenem is likely clinically insignificant. There is insufficient evidence to recommend increased doses. For aminoglycosides, we recommend extended interval dosing and initiating Seraph 100 at least 30 min to 1 h after completion of infusion to avoid the possibility of interference with maximum concentrations.
Collapse
Affiliation(s)
- Daniel J Selig
- Department of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Tyler Reed
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Kevin K Chung
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Adrian T Kress
- Department of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Ian J Stewart
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jesse P DeLuca
- Department of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
4
|
Duong A, Simard C, Williamson D, Marsot A. Model Re-Estimation: An Alternative for Poor Predictive Performance during External Evaluations? Example of Gentamicin in Critically Ill Patients. Pharmaceutics 2022; 14:pharmaceutics14071426. [PMID: 35890322 PMCID: PMC9315759 DOI: 10.3390/pharmaceutics14071426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/03/2022] [Accepted: 07/06/2022] [Indexed: 12/01/2022] Open
Abstract
Background: An external evaluation is crucial before clinical applications; however, only a few gentamicin population pharmacokinetic (PopPK) models for critically ill patients included it in the model development. In this study, we aimed to evaluate gentamicin PopPK models developed for critically ill patients. Methods: The evaluated models were selected following a literature review on aminoglycoside PopPK models for critically ill patients. The data of patients were retrospectively collected from two Quebec hospitals, the external evaluation and model re-estimation were performed with NONMEM® (v7.5) and the population bias and imprecisions were estimated. Dosing regimens were simulated using the best performing model. Results: From the datasets of 39 and 48 patients from the two Quebec hospitals, none of the evaluated models presented acceptable values for bias and imprecision. Following model re-estimations, all models showed an acceptable predictive performance. An a priori dosing nomogram was developed with the best performing re-estimated model and was consistent based on recommended dosing regimens. Conclusion: Due to the poor predictive performance during the external evaluations, the latter must be prioritized during model development. Model re-estimation may be an alternative to developing a new model, especially when most known models display similar covariates.
Collapse
Affiliation(s)
- Alexandre Duong
- Faculté de Pharmacie, Université de Montréal, Montreal, QC H3T 1J4, Canada; (D.W.); (A.M.)
- Laboratoire de Suivi Thérapeutique Pharmacologique et Pharmacocinétique, Faculté de Pharmacie, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Correspondence:
| | - Chantale Simard
- Institut Universitaire de Cardiologie et Pneumologie de Québec, Quebec, QC G1V 4G5, Canada;
- Faculté de Pharmacie, Université Laval, Quebec, QC G1V 0A6, Canada
| | - David Williamson
- Faculté de Pharmacie, Université de Montréal, Montreal, QC H3T 1J4, Canada; (D.W.); (A.M.)
- Hôpital Sacré-Cœur de Montréal, Université de Montréal, Montreal, QC H4J 1C5, Canada
| | - Amélie Marsot
- Faculté de Pharmacie, Université de Montréal, Montreal, QC H3T 1J4, Canada; (D.W.); (A.M.)
- Laboratoire de Suivi Thérapeutique Pharmacologique et Pharmacocinétique, Faculté de Pharmacie, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Centre de Recherche, CHU Sainte Justine, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
5
|
Hodiamont CJ, van den Broek AK, de Vroom SL, Prins JM, Mathôt RAA, van Hest RM. Clinical Pharmacokinetics of Gentamicin in Various Patient Populations and Consequences for Optimal Dosing for Gram-Negative Infections: An Updated Review. Clin Pharmacokinet 2022; 61:1075-1094. [PMID: 35754071 PMCID: PMC9349143 DOI: 10.1007/s40262-022-01143-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2022] [Indexed: 11/04/2022]
Abstract
Gentamicin is an aminoglycoside antibiotic with a small therapeutic window that is currently used primarily as part of short-term empirical combination therapy. Gentamicin dosing schemes still need refinement, especially for subpopulations where pharmacokinetics can differ from pharmacokinetics in the general adult population: obese patients, critically ill patients, paediatric patients, neonates, elderly patients and patients on dialysis. This review summarizes the clinical pharmacokinetics of gentamicin in these patient populations and the consequences for optimal dosing of gentamicin for infections caused by Gram-negative bacteria, highlighting new insights from the last 10 years. In this period, several new population pharmacokinetic studies have focused on these subpopulations, providing insights into the typical values of the most relevant pharmacokinetic parameters, the variability of these parameters and possible explanations for this variability, although unexplained variability often remains high. Both dosing schemes and pharmacokinetic/pharmacodynamic (PK/PD) targets varied widely between these studies. A gentamicin starting dose of 7 mg/kg based on total body weight (or on adjusted body weight in obese patients) appears to be the optimal strategy for increasing the probability of target attainment (PTA) after the first administration for the most commonly used PK/PD targets in adults and children older than 1 month, including critically ill patients. However, evidence that increasing the PTA results in higher efficacy is lacking; no studies were identified that show a correlation between estimated or predicted PK/PD target attainment and clinical success. Although it is unclear if performing therapeutic drug monitoring (TDM) for optimization of the PTA is of clinical value, it is recommended in patients with highly variable pharmacokinetics, including patients from all subpopulations that are critically ill (such as elderly, children and neonates) and patients on intermittent haemodialysis. In addition, TDM for optimization of the dosing interval, targeting a trough concentration of at least < 2 mg/L but preferably < 0.5–1 mg/L, has proven to reduce nephrotoxicity and is therefore recommended in all patients receiving more than one dose of gentamicin. The usefulness of the daily area under the plasma concentration–time curve for predicting nephrotoxicity should be further investigated. Additionally, more research is needed on the optimal PK/PD targets for efficacy in the clinical situations in which gentamicin is currently used, that is, as monotherapy for urinary tract infections or as part of short-term combination therapy.
Collapse
Affiliation(s)
- Caspar J Hodiamont
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Annemieke K van den Broek
- Division of Infectious Diseases, Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Suzanne L de Vroom
- Division of Infectious Diseases, Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jan M Prins
- Division of Infectious Diseases, Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Ron A A Mathôt
- Hospital Pharmacy and Clinical Pharmacology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Reinier M van Hest
- Hospital Pharmacy and Clinical Pharmacology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
6
|
He S, Cheng Z, Xie F. PK/PD guided gentamicin dosing in critically ill patients: a revisit of the Hartford nomogram. Int J Antimicrob Agents 2022; 59:106600. [DOI: 10.1016/j.ijantimicag.2022.106600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/29/2022] [Accepted: 04/28/2022] [Indexed: 11/05/2022]
|
7
|
He S, Cheng Z, Xie F. Population Pharmacokinetics and Dosing Optimization of Gentamicin in Critically Ill Patients Undergoing Continuous Renal Replacement Therapy. Drug Des Devel Ther 2022; 16:13-22. [PMID: 35023902 PMCID: PMC8747548 DOI: 10.2147/dddt.s343385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/23/2021] [Indexed: 12/29/2022] Open
Abstract
Purpose Appropriate gentamicin dosing in continuous renal replacement therapy (CRRT) patients remains undefined. This study aimed to develop a population pharmacokinetic (PK) model of gentamicin in CRRT patients and to infer the optimal dosing regimen for gentamicin. Methods Fourteen CRRT patients dosed with gentamicin were included to establish a population PK model to characterize the variabilities and influential covariates of gentamicin. The pharmacokinetic/pharmacodynamic (PK/PD) target attainment and risk of toxicity for different combinations of gentamicin regimens (3–7 mg/kg q24h) and CRRT effluent doses (30–50 mL/h/kg) were evaluated by Monte Carlo simulation. The probability of target attainment (PTA) was determined for the PK/PD indices of the ratio of drug peak concentration/minimum inhibitory concentration (Cmax/MIC > 10) and the ratio of area under the drug concentration–time curve/MIC over 24 h (AUC0-24h/MIC > 100), and the risk of toxicity was estimated by drug trough concentration thresholds (1 and 2 mg/L). Results A one-compartment model adequately described the PK characteristics of gentamicin. Covariates including body weight, age, gender, and CRRT modality did not influence the PK parameters of gentamicin based on our dataset. All studied gentamicin regimens failed to achieve satisfactory PTAs for pathogens with an MIC ≥2 mg/L. A good balance of PK/PD target attainment and risk of toxicity (>2 mg/L) was achieved under 7 mg/kg gentamicin q24h and 40 mL/kg/h CRRT dose for an MIC ≤1 mg/L. CRRT dose intensity had a significant impact on the target attainment of AUC0-24h/MIC >100 and risk of toxicity. Conclusion A combination of 7 mg/kg gentamicin q24h and 40 mL/kg/h CRRT dose might be considered as a starting treatment option for CRRT patients, and drug monitoring is required to manage toxicity.
Collapse
Affiliation(s)
- Sha He
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, People's Republic of China
| | - Zeneng Cheng
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, People's Republic of China
| | - Feifan Xie
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, People's Republic of China
| |
Collapse
|
8
|
Kim HY, Byashalira KC, Heysell SK, Märtson AG, Mpagama SG, Rao P, Sturkenboom MG, Alffenaar JWC. Therapeutic Drug Monitoring of Anti-infective Drugs: Implementation Strategies for 3 Different Scenarios. Ther Drug Monit 2022; 44:3-10. [PMID: 34686647 PMCID: PMC8755585 DOI: 10.1097/ftd.0000000000000936] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/14/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Therapeutic drug monitoring (TDM) supports personalized treatment. For successful implementation, TDM must have a turnaround time suited to the clinical needs of patients and their health care settings. Here, the authors share their views of how a TDM strategy can be tailored to specific settings and patient groups. METHODS The authors selected distinct scenarios for TDM: high-risk, complex, and/or critically ill patient population; outpatients; and settings with limited laboratory resources. In addition to the TDM scenario approach, they explored potential issues with the legal framework governing dose escalation. RESULTS The most important issues identified in the different scenarios are that critically ill patients require rapid turnaround time, outpatients require an easy sampling procedure for the sample matrix and sample collection times, settings with limited laboratory resources necessitate setting-specific analytic techniques, and all scenarios warrant a legal framework to capture the use of escalated dosages, ideally with the use of trackable dosing software. CONCLUSIONS To benefit patients, TDM strategies need to be tailored to the intended population. Strategies can be adapted for rapid turnaround time for critically ill patients, convenient sampling for outpatients, and feasibility for those in settings with limited laboratory resources.
Collapse
Affiliation(s)
- Hannah Yejin Kim
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
- Westmead Hospital, Sydney, NSW 2145, Australia
- Marie Bashir Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Scott K. Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Virginia, USA
| | - Anne-Grete Märtson
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands
| | | | - Prakruti Rao
- Division of Infectious Diseases and International Health, University of Virginia, Virginia, USA
| | - Marieke G.G. Sturkenboom
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands
| | - Jan-Willem C. Alffenaar
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
- Westmead Hospital, Sydney, NSW 2145, Australia
- Marie Bashir Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
9
|
PBPK Modeling and Simulation and Therapeutic Drug Monitoring: Possible Ways for Antibiotic Dose Adjustment. Processes (Basel) 2021. [DOI: 10.3390/pr9112087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pharmacokinetics (PK) is a branch of pharmacology present and of vital importance for the research and development (R&D) of new drugs, post-market monitoring, and continued optimizations in clinical contexts. Ultimately, pharmacokinetics can contribute to improving patients’ clinical outcomes, helping enhance the efficacy of treatments, and reducing possible adverse side effects while also contributing to precision medicine. This article discusses the methods used to predict and study human pharmacokinetics and their evolution to the current physiologically based pharmacokinetic (PBPK) modeling and simulation methods. The importance of therapeutic drug monitoring (TDM) and PBPK as valuable tools for Model-Informed Precision Dosing (MIPD) are highlighted, with particular emphasis on antibiotic therapy since dosage adjustment of antibiotics can be vital to ensure successful clinical outcomes and to prevent the spread of resistant bacterial strains.
Collapse
|
10
|
Ferreira A, Martins H, Oliveira JC, Lapa R, Vale N. PBPK Modeling and Simulation of Antibiotics Amikacin, Gentamicin, Tobramycin, and Vancomycin Used in Hospital Practice. Life (Basel) 2021; 11:life11111130. [PMID: 34833005 PMCID: PMC8620954 DOI: 10.3390/life11111130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/22/2022] Open
Abstract
The importance of closely observing patients receiving antibiotic therapy, performing therapeutic drug monitoring (TDM), and regularly adjusting dosing regimens has been extensively demonstrated. Additionally, antibiotic resistance is a contemporary concerningly dangerous issue. Optimizing the use of antibiotics is crucial to ensure treatment efficacy and prevent toxicity caused by overdosing, as well as to combat the prevalence and wide spread of resistant strains. Some antibiotics have been selected and reserved for the treatment of severe infections, including amikacin, gentamicin, tobramycin, and vancomycin. Critically ill patients often require long treatments, hospitalization, and require particular attention regarding TDM and dosing adjustments. As these antibiotics are eliminated by the kidneys, critical deterioration of renal function and toxic effects must be prevented. In this work, clinical data from a Portuguese cohort of 82 inpatients was analyzed and physiologically based pharmacokinetic (PBPK) modeling and simulation was used to study the influence of different therapeutic regimens and parameters as biological sex, body weight, and renal function on the biodistribution and pharmacokinetic (PK) profile of these four antibiotics. Renal function demonstrated the greatest impact on plasma concentration of these antibiotics, and vancomycin had the most considerable accumulation in plasma over time, particularly in patients with impaired renal function. Thus, through a PBPK study, it is possible to understand which pharmacokinetic parameters will have the greatest variation in a given population receiving antibiotic administrations in hospital context.
Collapse
Affiliation(s)
- Abigail Ferreira
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- LAQV/REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Helena Martins
- Departament of Pathology, Clinical Chemistry Service, Centro Hospitalar Universitário do Porto (CHUP), 4099-001 Porto, Portugal; (H.M.); (J.C.O.)
| | - José Carlos Oliveira
- Departament of Pathology, Clinical Chemistry Service, Centro Hospitalar Universitário do Porto (CHUP), 4099-001 Porto, Portugal; (H.M.); (J.C.O.)
| | - Rui Lapa
- LAQV/REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
11
|
Generating Genotype-Specific Aminoglycoside Combinations with Ceftazidime/Avibactam for KPC-Producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2021; 65:e0069221. [PMID: 34152820 DOI: 10.1128/aac.00692-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Antibiotic combinations, including ceftazidime/avibactam (CAZ/AVI), are frequently employed to combat KPC-producing Klebsiella pneumoniae (KPC-Kp), though such combinations have not been rationally optimized. Clinical KPC-Kp isolates with common genes encoding aminoglycoside-modifying enzymes (AMEs), aac(6')-Ib' or aac(6')-Ib, were used in static time-kill assays (n = 4 isolates) and the hollow-fiber infection model (HFIM; n = 2 isolates) to evaluate the activity of gentamicin, amikacin, and CAZ/AVI alone and in combinations. A short course, one-time aminoglycoside dose was also evaluated. Gentamicin plus CAZ/AVI was then tested in a mouse pneumonia model. Synergy with CAZ/AVI was more common with amikacin for aac(6')-Ib'-containing KPC-Kp but more common with gentamicin for aac(6')-Ib-containing isolates in time-kill assays. In the HFIM, although the isolates were aminoglycoside-susceptible at baseline, aminoglycoside monotherapies displayed variable initial killing, followed by regrowth and resistance emergence. CAZ/AVI combined with amikacin or gentamicin resulted in undetectable counts 50 h sooner than CAZ/AVI monotherapy against KPC-Kp with aac(6')-Ib'. CAZ/AVI monotherapy failed to eradicate KPC-Kp with aac(6')-Ib and a combination with gentamicin led to undetectable counts 70 h sooner than with amikacin. A one-time aminoglycoside dose with CAZ/AVI provided similar killing to aminoglycosides dosed for 7 days. In the mouse pneumonia model (n = 1 isolate), gentamicin and CAZ/AVI achieved a 6.0-log10 CFU/lung reduction at 24 h, which was significantly greater than either monotherapy (P < 0.005). Aminoglycosides in combination with CAZ/AVI were promising for KPC-Kp infections; this was true even for a one-time aminoglycoside dose. Selecting aminoglycosides based on AME genes or susceptibilities can improve the pharmacodynamic activity of the combination.
Collapse
|
12
|
Sridharan K, Al Jufairi M, Qader AM, Elsegai OAM. Dose Optimization of Gentamicin in Critically Ill Neonates. Curr Drug Metab 2021; 21:270-280. [PMID: 32394828 DOI: 10.2174/1389200221666200512111131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/11/2020] [Accepted: 04/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Appropriate dosing of gentamicin in critically ill neonates is still debated. OBJECTIVE To assess the peak concentration (Cmax) and area-under-the-time-concentration curve (AUC0-24) of gentamicin and to simulate the recommended doses using the Monte Carlo method. METHODS This was a retrospective study on critically ill neonates carried over a one-year period. The demographic characteristics, dosage regimen and gentamicin concentrations were recorded for each neonate. Using Bayesian pharmacokinetic modeling, Cmax and AUC0-24 were predicted. Dose recommendations for the target Cmax (μg/ml) of 12 were obtained, and Monte Carlo simulation (100,000 iterations) was used for predicting the pharmacokinetic parameters and recommended doses for various birth weight categories. RESULTS Eighty-two critically ill neonates (with an average gestational age of 33.7 weeks; and birth weight of 2.1 kg) were recruited. Higher Cmax and AUC0-24 values were predicted in premature neonates, with greater cumulative AUCs in extremely preterm neonates. The average administered dose was 4 mg/kg/day and 75% of the participants had Cmax greater than 12 μg/ml following a single dose, and 85% were found to be at steady state. On the contrary, only 25% of the study population had the recommended AUC0-24 (above 125 μg-hr/ml). Simulation tests indicate that 90% of the critically ill neonates would achieve recommended Cmax with doses ranging between 5 and 6 mg/kg/day. CONCLUSION Currently used dose of 4 mg/kg/day is adequate to maintain Cmax in a large majority of the study population, with one-fourth population reporting the recommended AUC0-24. Increasing the dose to 5-6 mg/kg/day will more likely help to achieve both the recommended Cmax and AUC0-24 values.
Collapse
Affiliation(s)
- Kannan Sridharan
- Department of Pharmacology & Therapeutics, College of Medicine & Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Muna Al Jufairi
- Department of Pediatrics, College of Medicine & Medical Sciences, Arabian Gulf University, Manama, Bahrain.,Neonatal Intensive Care Unit, Salmaniya Medical Hospital, Ministry of Health, Manama, Bahrain
| | - Ali Mohamed Qader
- College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Ola A M Elsegai
- Department of Pathology-Biochemistry, Salmaniya Medical Hospital, Ministry of Health, Manama, Bahrain
| |
Collapse
|
13
|
Duong A, Simard C, Wang YL, Williamson D, Marsot A. Aminoglycosides in the Intensive Care Unit: What Is New in Population PK Modeling? Antibiotics (Basel) 2021; 10:antibiotics10050507. [PMID: 33946905 PMCID: PMC8145041 DOI: 10.3390/antibiotics10050507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Although aminoglycosides are often used as treatment for Gram-negative infections, optimal dosing regimens remain unclear, especially in ICU patients. This is due to a large between- and within-subject variability in the aminoglycoside pharmacokinetics in this population. Objective: This review provides comprehensive data on the pharmacokinetics of aminoglycosides in patients hospitalized in the ICU by summarizing all published PopPK models in ICU patients for amikacin, gentamicin, and tobramycin. The objective was to determine the presence of a consensus on the structural model used, significant covariates included, and therapeutic targets considered during dosing regimen simulations. Method: A literature search was conducted in the Medline/PubMed database, using the terms: ‘amikacin’, ‘gentamicin’, ‘tobramycin’, ‘pharmacokinetic(s)’, ‘nonlinear mixed effect’, ‘population’, ‘intensive care’, and ‘critically ill’. Results: Nineteen articles were retained where amikacin, gentamicin, and tobramycin pharmacokinetics were described in six, 11, and five models, respectively. A two-compartment model was used to describe amikacin and tobramycin pharmacokinetics, whereas a one-compartment model majorly described gentamicin pharmacokinetics. The most recurrent significant covariates were renal clearance and bodyweight. Across all aminoglycosides, mean interindividual variability in clearance and volume of distribution were 41.6% and 22.0%, respectively. A common consensus for an optimal dosing regimen for each aminoglycoside was not reached. Conclusions: This review showed models developed for amikacin, from 2015 until now, and for gentamicin and tobramycin from the past decades. Despite the growing challenges of external evaluation, the latter should be more considered during model development. Further research including new covariates, additional simulated dosing regimens, and external validation should be considered to better understand aminoglycoside pharmacokinetics in ICU patients.
Collapse
Affiliation(s)
- Alexandre Duong
- Faculté de Pharmacie, Université de Montréal, Montréal, QC H3T 1J4, Canada; (Y.L.W.); (D.W.); (A.M.)
- Laboratoire de Suivi Thérapeutique Pharmacologique et Pharmacocinétique, Faculté de Pharmacie, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Correspondence: ; Tel.: +1-514-343-6111
| | - Chantale Simard
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada;
- Centre de Recherche, Institut Universitaire de Cardiologie et Pneumologie de Québec, Québec, QC G1V 4G5, Canada
| | - Yi Le Wang
- Faculté de Pharmacie, Université de Montréal, Montréal, QC H3T 1J4, Canada; (Y.L.W.); (D.W.); (A.M.)
- Laboratoire de Suivi Thérapeutique Pharmacologique et Pharmacocinétique, Faculté de Pharmacie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - David Williamson
- Faculté de Pharmacie, Université de Montréal, Montréal, QC H3T 1J4, Canada; (Y.L.W.); (D.W.); (A.M.)
- Hôpital Sacré-Cœur de Montréal, Montréal, QC H4J 1C5, Canada
| | - Amélie Marsot
- Faculté de Pharmacie, Université de Montréal, Montréal, QC H3T 1J4, Canada; (Y.L.W.); (D.W.); (A.M.)
- Laboratoire de Suivi Thérapeutique Pharmacologique et Pharmacocinétique, Faculté de Pharmacie, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Centre de Recherche, CHU Sainte Justine, Montréal, QC H3T 1C5, Canada
| |
Collapse
|
14
|
Spriet I, van Hest RM, Peetermans WE, Debaveye Y. Comment on: Effectiveness and safety of an institutional aminoglycoside-based regimen as empirical treatment of patients with pyelonephritis. J Antimicrob Chemother 2020; 75:3696-3697. [PMID: 32875320 DOI: 10.1093/jac/dkaa348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Isabel Spriet
- Pharmacy Department, University Hospitals Leuven, Leuven and Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Belgium, Belgium
| | - Reinier M van Hest
- Department of Hospital Pharmacy & Clinical Pharmacology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Willy E Peetermans
- Department of Internal Medicine, University Hospitals Leuven, Belgium and Department of Immunology and Microbiology, KU Leuven - University of Leuven, Belgium
| | - Yves Debaveye
- Department of Intensive Care Medicine, University Hospitals Leuven, Belgium and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, University of Leuven, Belgium
| |
Collapse
|
15
|
Garzón V, Bustos RH, G. Pinacho D. Personalized Medicine for Antibiotics: The Role of Nanobiosensors in Therapeutic Drug Monitoring. J Pers Med 2020; 10:E147. [PMID: 32993004 PMCID: PMC7712907 DOI: 10.3390/jpm10040147] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023] Open
Abstract
Due to the high bacterial resistance to antibiotics (AB), it has become necessary to adjust the dose aimed at personalized medicine by means of therapeutic drug monitoring (TDM). TDM is a fundamental tool for measuring the concentration of drugs that have a limited or highly toxic dose in different body fluids, such as blood, plasma, serum, and urine, among others. Using different techniques that allow for the pharmacokinetic (PK) and pharmacodynamic (PD) analysis of the drug, TDM can reduce the risks inherent in treatment. Among these techniques, nanotechnology focused on biosensors, which are relevant due to their versatility, sensitivity, specificity, and low cost. They provide results in real time, using an element for biological recognition coupled to a signal transducer. This review describes recent advances in the quantification of AB using biosensors with a focus on TDM as a fundamental aspect of personalized medicine.
Collapse
Affiliation(s)
- Vivian Garzón
- PhD Biosciences Program, Universidad de La Sabana, Chía 140013, Colombia;
| | - Rosa-Helena Bustos
- Therapeutical Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia;
| | - Daniel G. Pinacho
- Therapeutical Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia;
| |
Collapse
|
16
|
De Vries MC, Brown DA, Allen ME, Bindoff L, Gorman GS, Karaa A, Keshavan N, Lamperti C, McFarland R, Ng YS, O'Callaghan M, Pitceathly RDS, Rahman S, Russel FGM, Varhaug KN, Schirris TJJ, Mancuso M. Safety of drug use in patients with a primary mitochondrial disease: An international Delphi-based consensus. J Inherit Metab Dis 2020; 43:800-818. [PMID: 32030781 PMCID: PMC7383489 DOI: 10.1002/jimd.12196] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/29/2022]
Abstract
Clinical guidance is often sought when prescribing drugs for patients with primary mitochondrial disease. Theoretical considerations concerning drug safety in patients with mitochondrial disease may lead to unnecessary withholding of a drug in a situation of clinical need. The aim of this study was to develop consensus on safe medication use in patients with a primary mitochondrial disease. A panel of 16 experts in mitochondrial medicine, pharmacology, and basic science from six different countries was established. A modified Delphi technique was used to allow the panellists to consider draft recommendations anonymously in two Delphi rounds with predetermined levels of agreement. This process was supported by a review of the available literature and a consensus conference that included the panellists and representatives of patient advocacy groups. A high level of consensus was reached regarding the safety of all 46 reviewed drugs, with the knowledge that the risk of adverse events is influenced both by individual patient risk factors and choice of drug or drug class. This paper details the consensus guidelines of an expert panel and provides an important update of previously established guidelines in safe medication use in patients with primary mitochondrial disease. Specific drugs, drug groups, and clinical or genetic conditions are described separately as they require special attention. It is important to emphasise that consensus-based information is useful to provide guidance, but that decisions related to drug prescribing should always be tailored to the specific needs and risks of each individual patient. We aim to present what is current knowledge and plan to update this regularly both to include new drugs and to review those currently included.
Collapse
Affiliation(s)
- Maaike C. De Vries
- Radboudumc Amalia Children's HospitalRadboud Center for Mitochondrial MedicineNijmegenThe Netherlands
| | - David A. Brown
- Department of Human Nutrition, Foods, and Exercise and the Virginia Tech Center for Drug DiscoveryVirginia TechBlacksburgVirginia
| | - Mitchell E. Allen
- Department of Human Nutrition, Foods, and Exercise and the Virginia Tech Center for Drug DiscoveryVirginia TechBlacksburgVirginia
| | - Laurence Bindoff
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of NeurologyHaukeland University HospitalBergenNorway
| | - Gráinne S. Gorman
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- The Newcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Amel Karaa
- Genetics Unit, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusetts
| | - Nandaki Keshavan
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
- Metabolic UnitGreat Ormond Street Hospital NHS Foundation TrustLondonUK
| | - Costanza Lamperti
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- The Newcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- The Newcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Mar O'Callaghan
- Department of Neurology, Metabolic UnitHospital Sant Joan de DéuBarcelonaSpain
- CIBERERInstituto de Salud Carlos IIIBarcelonaSpain
| | - Robert D. S. Pitceathly
- Department of Neuromuscular DiseasesUCL Queen Square Institute of Neurology and The National Hospital for Neurology and NeurosurgeryLondonUK
| | - Shamima Rahman
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
- Metabolic UnitGreat Ormond Street Hospital NHS Foundation TrustLondonUK
| | - Frans G. M. Russel
- Department of Pharmacology and ToxicologyRadboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, RadboudumcNijmegenThe Netherlands
| | - Kristin N. Varhaug
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of NeurologyHaukeland University HospitalBergenNorway
| | - Tom J. J. Schirris
- Department of Pharmacology and ToxicologyRadboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, RadboudumcNijmegenThe Netherlands
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, Neurological InstituteUniversity of PisaPisaItaly
| |
Collapse
|
17
|
Gatti M. Pharmacokinetic analysis investigating gentamicin dosing in a major burned patient complicated by septic shock. J Chemother 2020; 32:208-212. [DOI: 10.1080/1120009x.2020.1733335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Lenhard JR, Rana AP, Wenzler E, Huang Y, Kreiswirth BN, Chen L, Bulman ZP. A coup d'état by NDM-producing Klebsiella pneumoniae overthrows the major bacterial population during KPC-directed therapy. Diagn Microbiol Infect Dis 2020; 98:115080. [PMID: 32619895 DOI: 10.1016/j.diagmicrobio.2020.115080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/17/2020] [Accepted: 05/08/2020] [Indexed: 10/24/2022]
Abstract
The objective of this study was to utilize a co-culture hollow-fiber infection model (HFIM) to characterize the interplay between a small, difficult-to-detect, New Delhi metallo-β-lactamase-producing Klebsiella pneumoniae (NDM-Kp) minor population and a larger K. pneumoniae carbapenemase (KPC)-producing K. pneumoniae population in the presence of KPC-directed antibacterial therapy. Selective plating onto agar with ceftazidime-avibactam was used to track the density of the NDM-Kp population. Susceptibility testing and the Verigene System failed to identify the small initial NDM-Kp population. However, a ceftazidime-avibactam Etest detected resistant colonies that were confirmed to be NDM-Kp. In the HFIM, all of the investigated drug regimens caused regrowth within 24 h and resulted in >109 CFU/mL of NDM-Kp. Our study demonstrates that the HFIM is a powerful tool for studying the population dynamics of multiple pathogens during antimicrobial exposure and also highlights that difficult-to-detect minor populations of drug-resistant bacteria may cause treatment failure without appropriate antibacterial therapy.
Collapse
Affiliation(s)
- Justin R Lenhard
- California Northstate University College of Pharmacy, Elk Grove, CA, USA
| | - Amisha P Rana
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Eric Wenzler
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Yanqin Huang
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Barry N Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Zackery P Bulman
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
19
|
Population pharmacokinetics of gentamicin in haemodialysis patients: modelling, simulations and recommendations. Eur J Clin Pharmacol 2020; 76:947-955. [DOI: 10.1007/s00228-020-02867-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/26/2020] [Indexed: 10/24/2022]
|
20
|
Ong DSY, van Werkhoven CH, Cremer OL, Thwaites GE, Bonten MJM. Is a randomized trial of a short course of aminoglycoside added to β-lactam antibiotics for empirical treatment in critically ill patients with sepsis justified? Clin Microbiol Infect 2017; 24:95-96. [PMID: 28989114 DOI: 10.1016/j.cmi.2017.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/23/2017] [Accepted: 09/27/2017] [Indexed: 11/26/2022]
Affiliation(s)
- D S Y Ong
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - C H van Werkhoven
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - O L Cremer
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - G E Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - M J M Bonten
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|