1
|
Gotta V, Bielicki JA, Paioni P, Csajka C, Bräm DS, Berger C, Giger E, Buettcher M, Posfay-Barbe KM, Van den Anker J, Pfister M. Pharmacometric in silico studies used to facilitate a national dose standardisation process in neonatology - application to amikacin. Swiss Med Wkly 2024; 154:3632. [PMID: 38635904 DOI: 10.57187/s.3632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND AND AIMS Pharmacometric in silico approaches are frequently applied to guide decisions concerning dosage regimes during the development of new medicines. We aimed to demonstrate how such pharmacometric modelling and simulation can provide a scientific rationale for optimising drug doses in the context of the Swiss national dose standardisation project in paediatrics using amikacin as a case study. METHODS Amikacin neonatal dosage is stratified by post-menstrual age (PMA) and post-natal age (PNA) in Switzerland and many other countries. Clinical concerns have been raised for the subpopulation of neonates with a post-menstrual age of 30-35 weeks and a post-natal age of 0-14 days ("subpopulation of clinical concern"), as potentially oto-/nephrotoxic trough concentrations (Ctrough >5 mg/l) were observed with a once-daily dose of 15 mg/kg. We applied a two-compartmental population pharmacokinetic model (amikacin clearance depending on birth weight and post-natal age) to real-world demographic data from 1563 neonates receiving anti-infectives (median birth weight 2.3 kg, median post-natal age six days) and performed pharmacometric dose-exposure simulations to identify extended dosing intervals that would ensure non-toxic Ctrough (Ctrough <5 mg/l) dosages in most neonates. RESULTS In the subpopulation of clinical concern, Ctrough <5 mg/l was predicted in 59% versus 79-99% of cases in all other subpopulations following the current recommendations. Elevated Ctrough values were associated with a post-natal age of less than seven days. Simulations showed that extending the dosing interval to ≥36 h in the subpopulation of clinical concern increased the frequency of a desirable Ctrough below 5 mg/l to >80%. CONCLUSION Pharmacometric in silico studies using high-quality real-world demographic data can provide a scientific rationale for national paediatric dose optimisation. This may increase clinical acceptance of fine-tuned standardised dosing recommendations and support their implementation, including in vulnerable subpopulations.
Collapse
Affiliation(s)
- Verena Gotta
- SwissPedDose/SwissPedNet collaboration expert team, Zürich/Basel/Lausanne, Switzerland
- Pediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland
- Pediatric Clinical Pharmacy, University of Basel Children's Hospital, Basel Switzerland
| | - Julia Anna Bielicki
- Paediatric Research Centre and Paediatric Infectious Diseases and Vaccinology Division, University of Basel Children's Hospital, Basel, Switzerland
- Centre for Neonatal and Paediatric Infection, St George's University, London, United Kingdom
| | - Paolo Paioni
- SwissPedDose/SwissPedNet collaboration expert team, Zürich/Basel/Lausanne, Switzerland
- Division of Infectious Diseaeses, University Children's Hospital Zurich, Zurich, Switzerland
| | - Chantal Csajka
- SwissPedDose/SwissPedNet collaboration expert team, Zürich/Basel/Lausanne, Switzerland
- Centre for Research and Innovation, University Hospital and University of Lausanne, Lausanne, Switzerland
- School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, Geneva/Lausanne, Switzerland
| | - Dominic Stefan Bräm
- Pediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland
| | - Christoph Berger
- Division of Infectious Diseaeses, University Children's Hospital Zurich, Zurich, Switzerland
- SwissPedDose, Zurich, Switzerland
| | | | - Michael Buettcher
- SwissPedDose/SwissPedNet collaboration expert team, Zürich/Basel/Lausanne, Switzerland
- Pediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland
- Paediatric Infectious Diseases, Lucerne Children's Hospital, Cantonal Hospital Lucerne, and Faculty of Health Sciences and Medicine, University Lucerne, Lucerne, Switzerland
| | - Klara M Posfay-Barbe
- General Pediatrics and Pediatric Infectious Diseases Unit, Department of Woman, Child and Adolescent, University Hospitals of Geneva and Medical School of Geneva, Geneva, Switzerland
| | - John Van den Anker
- Pediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland
| | - Marc Pfister
- Pediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland
| |
Collapse
|
2
|
Briki M, André P, Thoma Y, Widmer N, Wagner AD, Decosterd LA, Buclin T, Guidi M, Carrara S. Precision Oncology by Point-of-Care Therapeutic Drug Monitoring and Dosage Adjustment of Conventional Cytotoxic Chemotherapies: A Perspective. Pharmaceutics 2023; 15:pharmaceutics15041283. [PMID: 37111768 PMCID: PMC10147065 DOI: 10.3390/pharmaceutics15041283] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Therapeutic drug monitoring (TDM) of conventional cytotoxic chemotherapies is strongly supported yet poorly implemented in daily practice in hospitals. Analytical methods for the quantification of cytotoxic drugs are instead widely presented in the scientific literature, while the use of these therapeutics is expected to keep going for longer. There are two main issues hindering the implementation of TDM: turnaround time, which is incompatible with the dosage profiles of these drugs, and exposure surrogate marker, namely total area under the curve (AUC). Therefore, this perspective article aims to define the adjustment needed from current to efficient TDM practice for cytotoxics, namely point-of-care (POC) TDM. For real-time dose adjustment, which is required for chemotherapies, such POC TDM is only achievable with analytical methods that match the sensitivity and selectivity of current methods, such as chromatography, as well as model-informed precision dosing platforms to assist the oncologist with dose fine-tuning based on quantification results and targeted intervals.
Collapse
Affiliation(s)
- Myriam Briki
- Service and Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- Bio/CMOS Interfaces Laboratory, École Polytechnique Fédérale de Lausanne-EPFL, 2002 Neuchâtel, Switzerland
| | - Pascal André
- Service and Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Yann Thoma
- School of Engineering and Management Vaud, HES-SO University of Applied Sciences and Arts Western Switzerland, 1401 Yverdon-les-Bains, Switzerland
| | - Nicolas Widmer
- Service and Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- Pharmacy of the Eastern Vaud Hospitals, 1847 Rennaz, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, 1206 Geneva, Switzerland
| | - Anna D Wagner
- Service of Medical Oncology, Department of Oncology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Laurent A Decosterd
- Service and Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Thierry Buclin
- Service and Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Monia Guidi
- Service and Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, 1206 Geneva, Switzerland
- Centre for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Sandro Carrara
- Bio/CMOS Interfaces Laboratory, École Polytechnique Fédérale de Lausanne-EPFL, 2002 Neuchâtel, Switzerland
| |
Collapse
|
3
|
Goutelle S, Guidi M, Gotta V, Csajka C, Buclin T, Widmer N. From Personalized to Precision Medicine in Oncology: A Model-Based Dosing Approach to Optimize Achievement of Imatinib Target Exposure. Pharmaceutics 2023; 15:pharmaceutics15041081. [PMID: 37111566 PMCID: PMC10142039 DOI: 10.3390/pharmaceutics15041081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Imatinib is a targeted cancer therapy that has significantly improved the care of patients with chronic myeloid leukemia (CML) and gastrointestinal stromal tumor (GIST). However, it has been shown that the recommended dosages of imatinib are associated with trough plasma concentration (Cmin) lower than the target value in many patients. The aims of this study were to design a novel model-based dosing approach for imatinib and to compare the performance of this method with that of other dosing methods. Three target interval dosing (TID) methods were developed based on a previously published PK model to optimize the achievement of a target Cmin interval or minimize underexposure. We compared the performance of those methods to that of traditional model-based target concentration dosing (TCD) as well as fixed-dose regimen using simulated patients (n = 800) as well as real patients’ data (n = 85). Both TID and TCD model-based approaches were effective with about 65% of Cmin achieving the target imatinib Cmin interval of 1000–2000 ng/mL in 800 simulated patients and more than 75% using real data. The TID approach could also minimize underexposure. The standard 400 mg/24 h dosage of imatinib was associated with only 29% and 16.5% of target attainment in simulated and real conditions, respectively. Some other fixed-dose regimens performed better but could not minimize over- or underexposure. Model-based, goal-oriented methods can improve initial dosing of imatinib. Combined with subsequent TDM, these approaches are a rational basis for precision dosing of imatinib and other drugs with exposure–response relationships in oncology.
Collapse
Affiliation(s)
- Sylvain Goutelle
- Service de Pharmacie, GH Nord, Hospices Civils de Lyon, 69002 Lyon, France
- Univ. Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5558, LBBE—Laboratoire de Biométrie et Biologie Évolutive, 69100 Villeurbanne, France
- Univ. Lyon, Université Claude Bernard Lyon 1, ISPB—Faculté de Pharmacie de Lyon, 69008 Lyon, France
- Correspondence: ; Tel.: +33-4-72-16-80-99
| | - Monia Guidi
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (M.G.); (N.W.)
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
| | - Verena Gotta
- Pediatric Pharmacology and Pharmacometrics, University of Basel Children’s Hospital, 4056 Basel, Switzerland
| | - Chantal Csajka
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Thierry Buclin
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (M.G.); (N.W.)
| | - Nicolas Widmer
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (M.G.); (N.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
- Pharmacy of the Eastern Vaud Hospitals, 1847 Rennaz, Switzerland
| |
Collapse
|
4
|
The Application of Virtual Therapeutic Drug Monitoring to Assess the Pharmacokinetics of Imatinib in a Chinese Cancer Population Group. J Pharm Sci 2023; 112:599-609. [PMID: 36202248 DOI: 10.1016/j.xphs.2022.09.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Imatinib is used in gastrointestinal stromal tumours (GIST) and chronic myeloid leukaemia (CML). Oncology patients demonstrate altered physiology compared to healthy adults, e.g. reduced haematocrit, increased α-1 acid glycoprotein, decreased albumin and reduced glomerular filtration rate (GFR), which may influence imatinib pharmacokinetics. Given that Chinese cancer patients often report raised imatinib plasma concentrations and wider inter-individual variability reported in trough concentration when compared to Caucasian cancer patients, therapeutic drug monitoring (TDM) has been advocated. METHOD This study utilised a previously validated a Chinese cancer population and assessed the impact of imatinib virtual-TDM in Chinese and Caucasian cancer populations across a dosing range from 200-800 mg daily. RESULTS Staged dose titration to 800 mg daily, resulted in recapitulation to within the target therapeutic range for 50 % (Chinese) and 42.1% (Caucasian) subjects possessing plasma concentration < 550 ng/mL when dosed at 400 mg daily. For subjects with plasma concentrations >1500 ng/mL when dosed at 400 mg daily, a dose reduction to 200 mg once daily was able to recover 67 % (Chinese) and 87.4 % (Caucasian) patients to the target therapeutic range. CONCLUSION Virtual TDM highlights the benefit of pharmacokinetic modelling to optimising treatments in challenging oncology population groups.
Collapse
|
5
|
Shriyan B, Mehta P, Patil A, Jadhav S, Kumar S, Puri AS, Govalkar R, Krishnamurthy MN, Punatar S, Gokarn A, Khattry N, Gota V. Role of ADME gene polymorphisms on imatinib disposition: results from a population pharmacokinetic study in chronic myeloid leukaemia. Eur J Clin Pharmacol 2022; 78:1321-1330. [PMID: 35652931 DOI: 10.1007/s00228-022-03345-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Imatinib is a substrate of CYP3A4, ABCB1 and ABCG2, and is known to have wide variability in pharmacokinetics (PK). At the same time, a clear relationship between drug levels and response also exists for imatinib in chronic myeloid leukaemia (CML). Therefore, pharmacogenetic-based dosing of imatinib is an attractive proposition. This study aims to characterize the population pharmacokinetics of imatinib in order to identify significant covariates including pharmacogenetic variants. METHODS Forty-nine patients with CML were enrolled in the study after being on imatinib for at least 4 consecutive weeks. Steady-state pharmacokinetic sampling was performed either in a sparse (4 samples each, n = 44) or intensive manner (9 samples each, n = 5). An additional pharmacogenetic sample was also collected from all patients. Plasma imatinib levels were estimated using a validated HPLC method. Pharmacogenetic variants were identified using the PharmacoScan array platform. Population pharmacokinetic analysis was carried out using NONMEM v7.2. Seven SNPs within CYP3A4, ABCB1 and ABCG2 genes were evaluated for covariate effect on the clearance of imatinib. RESULTS Imatinib PK was well characterized using a one-compartment model with zero-order absorption. The clearance and volume of distribution were found to be 10.2 L/h and 389 L respectively. Only SNP rs1128503 of the ABCB1 gene had a small but insignificant effect on imatinib clearance, with a 25% reduction in clearance observed in patients carrying the polymorphism. Twenty-three out of forty-nine patients (47%) carried the polymorphic allele, of whom 17 were heterozygous and six were homozygous. CONCLUSION Our study conclusively proves that genetic polymorphisms in the CYP3A4 and ABC family of transporters do not have any role in the personalized dosing of imatinib in CML.
Collapse
Affiliation(s)
- Bharati Shriyan
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
| | - Parsshava Mehta
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
| | - Anand Patil
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
| | - Shraddha Jadhav
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
| | - Sharath Kumar
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
| | - Apeksha S Puri
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
| | - Ravina Govalkar
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India.,Gahlot Institute of Pharmacy, Koparkhairane, Navi Mumbai, 400709, India
| | - Manjunath Nookala Krishnamurthy
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Sachin Punatar
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, 400012, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Anant Gokarn
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, 400012, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Navin Khattry
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, 400012, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Vikram Gota
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India. .,Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
6
|
Fukuda N, Akamine Y, Abumiya M, Takahashi S, Yoshioka T, Kameoka Y, Takahashi N, Miura M. Relationship between achievement of major molecular response or deep molecular response and nilotinib plasma concentration in patients with chronic myeloid leukemia receiving first-line nilotinib therapy. Cancer Chemother Pharmacol 2022; 89:609-616. [PMID: 35316401 DOI: 10.1007/s00280-022-04419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/08/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE We evaluated the plasma exposure and response relationships of nilotinib for patients with newly diagnosed chronic myeloid leukemia (CML) in real-world practice. METHODS For the 26 patients enrolled in this study, at 3, 6, 12, and 24 months after nilotinib administration, the trough plasma concentrations (Ctrough) of nilotinib were analyzed. The relationships between nilotinib Ctrough and the molecular response to nilotinib treatment at each point (each n = 26) were evaluated. RESULTS Median nilotinib Ctrough values were significantly higher in patients with a major molecular response (MMR) at 3 months than in patients without an MMR (809 and 420 ng/mL, respectively; P = 0.046). Based on the area under the receiver-operating characteristic curve, the threshold value of the nilotinib Ctrough at 3 months for predicting MMR achievement was 619 ng/mL at the best sensitivity (71.4%) and specificity (77.8%). Patients with a nilotinib Ctrough of above 619 ng/mL had a significantly shorter time to achievement of a deep molecular response (DMR; 9.0 and 18.0 months, respectively; P = 0.020) and higher rates of DMR by 2 years in Kaplan-Meier plots (P = 0.025) compared with that in patients with a nilotinib Ctrough of less than 619 ng/mL. CONCLUSION For patients with newly diagnosed CML, the nilotinib dose may be adjusted using a Ctrough of above 619 ng/mL as the minimum effective concentration, i.e., the lowest concentration required for MMR or DMR achievement within a shorter time, during early stages after beginning therapy to obtain faster and deeper clinical responses.
Collapse
Affiliation(s)
- Natsuki Fukuda
- Department of Pharmacy, Akita University Hospital, 1-1-1 Hondo, Akita, Japan
| | - Yumiko Akamine
- Department of Pharmacy, Akita University Hospital, 1-1-1 Hondo, Akita, Japan
| | - Maiko Abumiya
- Department of Pharmacy, Akita University Hospital, 1-1-1 Hondo, Akita, Japan
| | - Saori Takahashi
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan.,Clinical Research Promotion and Support Center, Akita University Hospital, Akita, Japan
| | - Tomoko Yoshioka
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Yoshihiro Kameoka
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan.,Clinical Research Promotion and Support Center, Akita University Hospital, Akita, Japan
| | - Naoto Takahashi
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Masatomo Miura
- Department of Pharmacy, Akita University Hospital, 1-1-1 Hondo, Akita, Japan. .,Department of Pharmacokinetics, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan.
| |
Collapse
|
7
|
Corral Alaejos Á, Zarzuelo Castañeda A, Jiménez Cabrera S, Sánchez-Guijo F, Otero MJ, Pérez-Blanco JS. External evaluation of population pharmacokinetic models of imatinib in adults diagnosed with chronic myeloid leukaemia. Br J Clin Pharmacol 2021; 88:1913-1924. [PMID: 34705297 DOI: 10.1111/bcp.15122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/29/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
AIMS Imatinib is considered the standard first-line treatment in newly diagnosed patients with chronic-phase myeloid leukaemia (CML). Several imatinib population pharmacokinetic (popPK) models have been developed. However, their predictive performance has not been well established when extrapolated to different populations. Therefore, this study aimed to perform an external evaluation of available imatinib popPK models developed mainly in adult patients, and to evaluate the improvement in individual model-based predictions through Bayesian forecasting computed by each model at different treatment occasions. METHODS A literature review was conducted through PubMed and Scopus to identify popPK models. Therapeutic drug monitoring data collected in adult CML patients treated with imatinib was used for external evaluation, including prediction- and simulated-based diagnostics together with Bayesian forecasting analysis. RESULTS Fourteen imatinib popPK studies were included for model-performance evaluation. A total of 99 imatinib samples were collected from 48 adult CML patients undergoing imatinib treatment with a minimum of one plasma concentration measured at steady-state between January 2016 and December 2020. The model proposed by Petain et al showed the best performance concerning prediction-based diagnostics in the studied population. Bayesian forecasting demonstrated a significant improvement in predictive performance at the second visit. Inter-occasion variability contributed to reducing bias and improving individual model-based predictions. CONCLUSIONS Imatinib popPK studies developed in Caucasian subjects including α1-acid glycoprotein showed the best model performance in terms of overall bias and precision. Moreover, two imatinib samples from different visits appear sufficient to reach an adequate model-based individual prediction performance trough Bayesian forecasting.
Collapse
Affiliation(s)
| | | | | | - Fermín Sánchez-Guijo
- Institute for Biomedical Research of Salamanca, Salamanca, Spain.,Haematology Department, University Hospital of Salamanca, Salamanca, Spain.,Department of Medicine, University of Salamanca, Salamanca, Spain
| | - María José Otero
- Pharmacy Service, University Hospital of Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Jonás Samuel Pérez-Blanco
- Department of Pharmaceutical Sciences, Pharmacy Faculty, University of Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca, Salamanca, Spain
| |
Collapse
|
8
|
Adiwidjaja J, Gross AS, Boddy AV, McLachlan AJ. Physiologically-based pharmacokinetic model predictions of inter-ethnic differences in imatinib pharmacokinetics and dosing regimens. Br J Clin Pharmacol 2021; 88:1735-1750. [PMID: 34535920 DOI: 10.1111/bcp.15084] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/28/2021] [Accepted: 09/04/2021] [Indexed: 01/06/2023] Open
Abstract
AIMS This study implements a physiologically-based pharmacokinetic (PBPK) modelling approach to investigate inter-ethnic differences in imatinib pharmacokinetics and dosing regimens. METHODS A PBPK model of imatinib was built in the Simcyp Simulator (version 17) integrating in vitro drug metabolism and clinical pharmacokinetic data. The model accounts for ethnic differences in body size and abundance of drug-metabolising enzymes and proteins involved in imatinib disposition. Utility of this model for prediction of imatinib pharmacokinetics was evaluated across different dosing regimens and ethnic groups. The impact of ethnicity on imatinib dosing was then assessed based on the established range of trough concentrations (Css,min ). RESULTS The PBPK model of imatinib demonstrated excellent predictive performance in describing pharmacokinetics and the attained Css,min in patients from different ethnic groups, shown by prediction differences that were within 1.25-fold of the clinically-reported values in published studies. PBPK simulation suggested a similar dose of imatinib (400-600 mg/d) to achieve the desirable range of Css,min (1000-3200 ng/mL) in populations of European, Japanese and Chinese ancestry. The simulation indicated that patients of African ancestry may benefit from a higher initial dose (600-800 mg/d) to achieve imatinib target concentrations, due to a higher apparent clearance (CL/F) of imatinib compared to other ethnic groups; however, the clinical data to support this are currently limited. CONCLUSION PBPK simulations highlighted a potential ethnic difference in the recommended initial dose of imatinib between populations of European and African ancestry, but not populations of Chinese and Japanese ancestry.
Collapse
Affiliation(s)
- Jeffry Adiwidjaja
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Special Region of Yogyakarta, Indonesia
| | - Annette S Gross
- Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline R&D, Sydney, NSW, Australia
| | - Alan V Boddy
- UniSA Cancer Research Institute and UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Andrew J McLachlan
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Bandiera C, Cardoso E, Locatelli I, Digklia A, Zaman K, Diciolla A, Cristina V, Stravodimou A, Veronica AL, Dolcan A, Sarivalasis A, Liapi A, Bouchaab H, Orcurto A, Dotta-Celio J, Peters S, Decosterd L, Widmer N, Wagner D, Csajka C, Schneider MP. Optimizing Oral Targeted Anticancer Therapies Study for Patients With Solid Cancer: Protocol for a Randomized Controlled Medication Adherence Program Along With Systematic Collection and Modeling of Pharmacokinetic and Pharmacodynamic Data. JMIR Res Protoc 2021; 10:e30090. [PMID: 34185020 PMCID: PMC8278299 DOI: 10.2196/30090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 01/23/2023] Open
Abstract
Background The strengthening or substitution of intravenous cytotoxic chemotherapy cycles by oral targeted anticancer therapies, such as protein kinase inhibitors (PKIs), has provided impressive clinical benefits and autonomy as well as a better quality of life for patients with cancer. Despite these advances, adverse event management at home and medication adherence remain challenging. In addition, PKI plasma concentrations vary significantly among patients with cancer receiving the same dosage, which could explain part of the observed variability in the therapeutic response. Objective The aim of this optimizing oral targeted anticancer therapies (OpTAT) study is to optimize and individualize targeted anticancer treatments to improve patient care and self-monitoring through an interprofessional medication adherence program (IMAP) combined with measurement PKI plasma concentrations. Methods The OpTAT study has two parts: (1) a 1:1 randomized medication adherence program, in which the intervention consists of regular motivational interviewing sessions between the patient and the pharmacist, along with the delivery of PKIs in electronic monitors, and (2) a systematic collection of blood samples and clinical and biological data for combined pharmacokinetic and pharmacodynamic analysis. On the basis of the electronic monitor data, medication adherence will be compared between groups following the three operational definitions: implementation of treatment during the persistent period, persistence with treatment and longitudinal adherence. The implementation will be described using generalized estimating equation models. The persistence of PKI use will be represented using a Kaplan-Meier survival curve. Longitudinal adherence is defined as the product of persistence and implementation. PKI pharmacokinetics will be studied using a population approach. The relationship between drug exposure and efficacy outcomes will be explored using Cox regression analysis of progression-free survival. The relationship between drug exposure and toxicity will be analyzed using a pharmacokinetic-pharmacodynamic model and by logistic regression analysis. Receiver operating characteristic analyses will be applied to evaluate the best exposure threshold associated with clinical benefits. Results The first patient was included in May 2015. As of June 2021, 262 patients had participated in at least one part of the study: 250 patients gave at least one blood sample, and 130 participated in the adherence study. Data collection is in process, and the final data analysis is planned to be performed in 2022. Conclusions The OpTAT study will inform us about the effectiveness of the IMAP program in patients with solid cancers treated with PKIs. It will also shed light on PKI pharmacokinetic and pharmacodynamic properties, with the aim of learning how to adapt the PKI dosage at the individual patient level to increase PKI clinical suitability. The IMAP program will enable interprofessional teams to learn about patients’ needs and to consider their concerns about their PKI self-management, considering the patient as an active partner. Trial Registration ClinicalTrials.gov NCT04484064; https://clinicaltrials.gov/ct2/show/NCT04484064. International Registered Report Identifier (IRRID) DERR1-10.2196/30090
Collapse
Affiliation(s)
- Carole Bandiera
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.,Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Evelina Cardoso
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Isabella Locatelli
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Antonia Digklia
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Khalil Zaman
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Antonella Diciolla
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Valérie Cristina
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Athina Stravodimou
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Aedo Lopez Veronica
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ana Dolcan
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Apostolos Sarivalasis
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Aikaterini Liapi
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Hasna Bouchaab
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Angela Orcurto
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jennifer Dotta-Celio
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Solange Peters
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Laurent Decosterd
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nicolas Widmer
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.,Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,School of Pharmaceutical Sciences, University of Lausanne, Lausanne, Switzerland.,Pharmacy of the Eastern Vaud Hospitals, Rennaz, Switzerland
| | - Dorothea Wagner
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Chantal Csajka
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.,Center for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,School of Pharmaceutical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Marie Paule Schneider
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Therapeutic Drug Monitoring of Targeted Anticancer Protein Kinase Inhibitors in Routine Clinical Use: A Critical Review. Ther Drug Monit 2021; 42:33-44. [PMID: 31479043 DOI: 10.1097/ftd.0000000000000699] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Therapeutic response to oral targeted anticancer protein kinase inhibitors (PKIs) varies widely between patients, with insufficient efficacy of some of them and unacceptable adverse reactions of others. There are several possible causes for this heterogeneity, such as pharmacokinetic (PK) variability affecting blood concentrations, fluctuating medication adherence, and constitutional or acquired drug resistance of cancer cells. The appropriate management of oncology patients with PKI treatments thus requires concerted efforts to optimize the utilization of these drug agents, which have probably not yet revealed their full potential. METHODS An extensive literature review was performed on MEDLINE on the PK, pharmacodynamics, and therapeutic drug monitoring (TDM) of PKIs (up to April 2019). RESULTS This review provides the criteria for determining PKIs suitable candidates for TDM (eg, availability of analytical methods, observational PK studies, PK-pharmacodynamics relationship analysis, and randomized controlled studies). It reviews the major characteristics and limitations of PKIs, the expected benefits of TDM for cancer patients receiving them, and the prerequisites for the appropriate utilization of TDM. Finally, it discusses various important practical aspects and pitfalls of TDM for supporting better implementation in the field of cancer treatment. CONCLUSIONS Adaptation of PKIs dosage regimens at the individual patient level, through a rational TDM approach, could prevent oncology patients from being exposed to ineffective or unnecessarily toxic drug concentrations in the era of personalized medicine.
Collapse
|
11
|
Lin R, Lin W, Wang C, Dong J, Zheng W, Zeng D, Liu Y, Lin C, Jiao Z, Huang P. Population pharmacokinetics of azathioprine active metabolite in patients with inflammatory bowel disease and dosage regimens optimisation. Basic Clin Pharmacol Toxicol 2020; 128:482-492. [PMID: 33150655 DOI: 10.1111/bcpt.13530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/12/2020] [Accepted: 11/02/2020] [Indexed: 12/25/2022]
Abstract
Azathioprine is a first-line drug used to maintain the remission of inflammatory bowel disease (IBD). As a prodrug, azathioprine is metabolised to produce active 6-thioguanine nucleotides (6-TGN). There are large individual variations in the pharmacokinetics/pharmacodynamics of 6-TGN in patients with IBD. Here, we aimed to develop a model to quantitatively investigate factors that affect 6-TGN pharmacokinetics to formulate a dosage guideline for azathioprine. Data were collected prospectively from 100 adult patients with IBD who were receiving azathioprine. Patients were genotyped for two single-nucleotide polymorphisms (TPMT*3C c.719A > G and NUDT15 c.415C > T). Using high-performance liquid chromatography, we measured 156 steady-state trough concentrations of 6-TGN within the range 0.09 to 1.16 mg/L (ie 133-1733 pmol per 8 × 108 RBC). The covariates analysed included sex, age, body-weight, laboratory tests and concomitant medications. A population pharmacokinetic model was established using "non-linear mixed-effects modelling" software and the "first-order conditional estimation method with interaction." Body-weight, TPMT*3C polymorphisms and co-therapy with mesalazine were found to be important factors influencing the clearance of 6-TGN. A dosage guideline for azathioprine was developed based on the PPK model that enables individualised azathioprine dosing in adult patients with different body-weights, TPMT*3C genotypes and co-administration with mesalazine.
Collapse
Affiliation(s)
- Rongfang Lin
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Weiwei Lin
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Changlian Wang
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jiashan Dong
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Weiwei Zheng
- Department of Gastroenterology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Dayong Zeng
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yiwei Liu
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Cuihong Lin
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zheng Jiao
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Pinfang Huang
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
12
|
Pena MÁ, Muriel J, Saiz-Rodríguez M, Borobia AM, Abad-Santos F, Frías J, Peiró AM. Effect of Cytochrome P450 and ABCB1 Polymorphisms on Imatinib Pharmacokinetics After Single-Dose Administration to Healthy Subjects. Clin Drug Investig 2020; 40:617-628. [PMID: 32415468 DOI: 10.1007/s40261-020-00921-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Validated genomic biomarkers for oncological drugs are expanding to improve targeted therapies. Pharmacogenetics research focusing on the mechanisms underlying imatinib suboptimal response might help to explain the different treatment outcomes and drug safety profiles. OBJECTIVE To investigate whether polymorphisms in genes encoding cytochrome P450 (CYP) enzymes and ABCB1 transporter affect imatinib pharmacokinetic parameters. METHODS A prospective, multicenter, pharmacogenetic pilot study was performed in the context of two separate oral imatinib bioequivalence clinical trials, which included 26 healthy volunteers. DNA was extracted in order to analyze polymorphisms in genes CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5 and ABCB1. Imatinib plasma concentrations were measured by HPLC-MS/MS. Pharmacokinetic parameters were calculated by non-compartmental methods using WinNonlin software. RESULTS Volunteers (n = 26; aged 24 ± 3 years; 69% male) presented regular pharmacokinetic imatinib data (concentration at 24 h, 436 ± 140 ng/mL and at 72 h, 40 ± 26 ng/mL; AUC0-72 32,868 ± 10,713 ng/mL⋅h; and Cmax 2074 ± 604 ng/mL). CYP2B6 516GT carriers showed a significant reduction of imatinib concentration at 24 h (23%, 391 ng/dL vs 511 ng/dL in 516GG carriers, p = 0.005) and elimination half-life (11%, 12.6 h vs 14.1 h in 516GG carriers, p = 0.041). Carriers for CYP3A4 (*22/*22, *1/*20 and *1/*22 variants) showed a reduced frequency of adverse events compared to *1/*1 carriers (0 vs 64%, p = 0.033). The other polymorphisms analyzed did not influence pharmacokinetics or drug toxicity. CONCLUSION CYP2B6 G516T and CYP3A4 *20,*22 polymorphisms could influence imatinib plasma concentrations and safety profile, after single-dose administration to healthy subjects. This finding needs to be confirmed before it is implemented in clinical practice in oncological patients under treatment with imatinib.
Collapse
Affiliation(s)
- María Ángeles Pena
- Alicante Clinical Trials Unit, Department of Health, Alicante-General Hospital, Alicante, Spain.,Clinical Pharmacology Service, Department of Health, Alicante-General Hospital, c/Pintor Baeza, 12, 03010, Alicante, Spain
| | - Javier Muriel
- Alicante Institute for Health and Biomedical Research (ISABIAL Foundation), Alicante, Spain
| | - Miriam Saiz-Rodríguez
- Clinical Pharmacology Service, University Hospital La Princesa, Autonomous University of Madrid, Madrid, Spain
| | - Alberto M Borobia
- Clinical Pharmacology Department, La Paz University Hospital, Universidad Autónoma de Madrid. IdiPAZ, Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Service, University Hospital La Princesa, Autonomous University of Madrid, Madrid, Spain.,Institute Teófilo Hernando for Drug I+D, School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Jesús Frías
- Clinical Pharmacology Department, La Paz University Hospital, Universidad Autónoma de Madrid. IdiPAZ, Madrid, Spain
| | - Ana M Peiró
- Alicante Clinical Trials Unit, Department of Health, Alicante-General Hospital, Alicante, Spain. .,Clinical Pharmacology Service, Department of Health, Alicante-General Hospital, c/Pintor Baeza, 12, 03010, Alicante, Spain.
| |
Collapse
|
13
|
Buclin T, Thoma Y, Widmer N, André P, Guidi M, Csajka C, Decosterd LA. The Steps to Therapeutic Drug Monitoring: A Structured Approach Illustrated With Imatinib. Front Pharmacol 2020; 11:177. [PMID: 32194413 PMCID: PMC7062864 DOI: 10.3389/fphar.2020.00177] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/07/2020] [Indexed: 01/07/2023] Open
Abstract
Pharmacometric methods have hugely benefited from progress in analytical and computer sciences during the past decades, and play nowadays a central role in the clinical development of new medicinal drugs. It is time that these methods translate into patient care through therapeutic drug monitoring (TDM), due to become a mainstay of precision medicine no less than genomic approaches to control variability in drug response and improve the efficacy and safety of treatments. In this review, we make the case for structuring TDM development along five generic questions: 1) Is the concerned drug a candidate to TDM? 2) What is the normal range for the drug's concentration? 3) What is the therapeutic target for the drug's concentration? 4) How to adjust the dosage of the drug to drive concentrations close to target? 5) Does evidence support the usefulness of TDM for this drug? We exemplify this approach through an overview of our development of the TDM of imatinib, the very first targeted anticancer agent. We express our position that a similar story shall apply to other drugs in this class, as well as to a wide range of treatments critical for the control of various life-threatening conditions. Despite hurdles that still jeopardize progress in TDM, there is no doubt that upcoming technological advances will shape and foster many innovative therapeutic monitoring methods.
Collapse
Affiliation(s)
- Thierry Buclin
- Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Yann Thoma
- School of Management and Engineering Vaud (HEIG-VD), University of Applied Science Western Switzerland (HES-SO), Yverdon-les-Bains, Switzerland
| | - Nicolas Widmer
- Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Pharmacy of Eastern Vaud Hospitals, Rennaz, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Pascal André
- Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Monia Guidi
- Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Chantal Csajka
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.,Center for Research and Innovation in Clinical Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Laurent A Decosterd
- Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
14
|
Adiwidjaja J, Boddy AV, McLachlan AJ. Implementation of a Physiologically Based Pharmacokinetic Modeling Approach to Guide Optimal Dosing Regimens for Imatinib and Potential Drug Interactions in Paediatrics. Front Pharmacol 2020; 10:1672. [PMID: 32082165 PMCID: PMC7002565 DOI: 10.3389/fphar.2019.01672] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/23/2019] [Indexed: 12/18/2022] Open
Abstract
Long-term use of imatinib is effective and well-tolerated in children with chronic myeloid leukaemia (CML) yet defining an optimal dosing regimen for imatinib in younger patients is a challenge. The potential interactions between imatinib and coadministered drugs in this "special" population also remains largely unexplored. This study implements a physiologically based pharmacokinetic (PBPK) modeling approach to investigate optimal dosing regimens and potential drug interactions with imatinib in the paediatric population. A PBPK model for imatinib was developed in the Simcyp Simulator (version 17) utilizing in silico, in vitro drug metabolism, and in vivo pharmacokinetic data and verified using an independent set of published clinical pharmacokinetic data. The model was then extrapolated to children and adolescents (aged 2-18 years) by incorporating developmental changes in organ size and maturation of drug-metabolising enzymes and plasma protein responsible for imatinib disposition. The PBPK model described imatinib pharmacokinetics in adult and paediatric populations and predicted drug interaction with carbamazepine, a cytochrome P450 (CYP)3A4 and 2C8 inducer, with a good accuracy (evaluated by visual inspections of the simulation results and predicted pharmacokinetic parameters that were within 1.25-fold of the clinically observed values). The PBPK simulation suggests that the optimal dosing regimen range for imatinib is 230-340 mg/m2/d in paediatrics, which is supported by the recommended initial dose for treatment of childhood CML. The simulations also highlighted that children and adults being treated with imatinib have similar vulnerability to CYP modulations. A PBPK model for imatinib was successfully developed with an excellent performance in predicting imatinib pharmacokinetics across age groups. This PBPK model is beneficial to guide optimal dosing regimens for imatinib and predict drug interactions with CYP modulators in the paediatric population.
Collapse
Affiliation(s)
- Jeffry Adiwidjaja
- Sydney Pharmacy School, The University of Sydney, Sydney, NSW, Australia
| | - Alan V. Boddy
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
- University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | | |
Collapse
|
15
|
Wagner AD, Oertelt-Prigione S, Adjei A, Buclin T, Cristina V, Csajka C, Coukos G, Dafni U, Dotto GP, Ducreux M, Fellay J, Haanen J, Hocquelet A, Klinge I, Lemmens V, Letsch A, Mauer M, Moehler M, Peters S, Özdemir BC. Gender medicine and oncology: report and consensus of an ESMO workshop. Ann Oncol 2019; 30:1914-1924. [PMID: 31613312 DOI: 10.1093/annonc/mdz414] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The importance of sex and gender as modulators of disease biology and treatment outcomes is well known in other disciplines of medicine, such as cardiology, but remains an undervalued issue in oncology. Considering the increasing evidence for their relevance, European Society for Medical Oncology decided to address this topic and organized a multidisciplinary workshop in Lausanne, Switzerland, on 30 November and 1 December 2018. DESIGN Twenty invited faculty members and 40 selected physicians/scientists participated. Relevant content was presented by faculty members on the basis of a literature review conducted by each speaker. Following a moderated consensus session, the final consensus statements are reported here. RESULTS Clinically relevant sex differences include tumour biology, immune system activity, body composition and drug disposition and effects. The main differences between male and female cells are sex chromosomes and the level of sexual hormones they are exposed to. They influence both local and systemic determinants of carcinogenesis. Their effect on carcinogenesis in non-reproductive organs is largely unknown. Recent evidence also suggests differences in tumour biology and molecular markers. Regarding body composition, the difference in metabolically active, fat-free body mass is one of the most prominent: in a man and a woman of equal weight and height, it accounts for 80% of the man's and 65% of the woman's body mass, and is not taken into account in body-surface area based dosing of chemotherapy. CONCLUSION Sex differences in cancer biology and treatment deserve more attention and systematic investigation. Interventional clinical trials evaluating sex-specific dosing regimens are necessary to improve the balance between efficacy and toxicity for drugs with significant pharmacokinetic differences. Especially in diseases or disease subgroups with significant differences in epidemiology or outcomes, men and women with non-sex-related cancers should be considered as biologically distinct groups of patients, for whom specific treatment approaches merit consideration.
Collapse
Affiliation(s)
- A D Wagner
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - S Oertelt-Prigione
- Department of Primary and Community Care, Radboud Institute of Health Sciences (RIHS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - A Adjei
- Department of Oncology, Mayo Clinic, Rochester, USA
| | - T Buclin
- Service of Clinical Pharmacology, Lausanne University, Lausanne
| | - V Cristina
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - C Csajka
- Service of Clinical Pharmacology, Lausanne University, Lausanne; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Lausanne
| | - G Coukos
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Ludwig Lausanne Branch and Swiss Cancer Center, Lausanne, Switzerland
| | - U Dafni
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; National and Kapodistrian University of Athens, Athens, Greece
| | - G-P Dotto
- Department of Biochemistry, Lausanne University, Lausanne, Switzerland; Massachusetts General Hospital, Boston, USA; International Cancer Prevention Institute, Epalinges, Switzerland
| | - M Ducreux
- Gastrointestinal Cancer Unit, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - J Fellay
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne; EPFL School of Life Sciences, Lausanne, Switzerland
| | - J Haanen
- Division of Medical Oncology and Immunology, Department of Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - A Hocquelet
- Department of Radiodiagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - I Klinge
- Dutch Society for Gender and Health
| | - V Lemmens
- Department of Research and Development, Comprehensive Cancer Organisation the Netherlands, Utrecht; Department of Public Health, Erasmus Medical Centre University, Rotterdam, The Netherlands
| | - A Letsch
- Department of Hematology and Oncology, Charity CBF, Berlin; Charity Comprehensive Cancer Center CCCC, Berlin; Palliative Care Unit, Campus Benjamin Franklin, Berlin, Germany
| | | | - M Moehler
- Department of Internal Medicine 1/Gastrointestinal Oncology, Johannes-Gutenberg-University Clinic, Mainz, Germany
| | - S Peters
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - B C Özdemir
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; International Cancer Prevention Institute, Epalinges, Switzerland
| |
Collapse
|
16
|
Glomerular Filtration Rate Is a Major Predictor of Clearance of Oxcarbazepine Active Metabolite in Adult Chinese Epileptic Patients: A Population Pharmacokinetic Analysis. Ther Drug Monit 2019; 41:665-673. [DOI: 10.1097/ftd.0000000000000644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Wang Q, Jiang ZP, Yu EQ, Zeng J, Zhu Y, Cai HL, Yan M, Xiang DX, Zhao XL, Xu P, Jiao Z, Banh HL. Population pharmacokinetic and pharmacogenetics of imatinib in Chinese patients with chronic myeloid leukemia. Pharmacogenomics 2019; 20:251-260. [PMID: 30767712 DOI: 10.2217/pgs-2018-0139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study aimed to establish a population pharmacokinetic (PPK) model in Chinese patients with chronic myeloid leukemia, and to quantify the effects of pharmacogenetics on pharmacokinetic parameters of imatinib. Methods: A total of 229 plasma concentrations from 170 patients were analyzed. Nonlinear mixed effect model was used to establish the PPK model. Results: A one-compartment model with first-order absorption and first-order elimination adequately describes imatinib pharmacokinetics. Actual bodyweight shows slight effect on the estimated apparent clearance (CL/F) of imatinib in this study population. The final PPK model is: Ka (1/h) = 0.329; CL/F (l/h) = 9.25 × (actual bodyweight/70)0.228; V/F(l) = 222. Conclusion: Actual bodyweight has a slight effect on CL/F. Demographics, physiopathology and pharmacogenetics covariates have no significant effects on imatinib pharmacokinetics.
Collapse
Affiliation(s)
- Qing Wang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, PR China
| | - Zhi-Ping Jiang
- Laboratory of Clinical Pharmacology, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Er-Qian Yu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, PR China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Jing Zeng
- Department of Education & Research, Ningbo Medical Center, Li Huili Eastern Hospital, Ningbo, Zhejiang 315000, PR China
| | - Yan Zhu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, PR China
| | - Hua-Lin Cai
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, PR China
| | - Miao Yan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, PR China
| | - Da-Xiong Xiang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, PR China
| | - Xie-Lan Zhao
- Laboratory of Clinical Pharmacology, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Ping Xu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, PR China
| | - Zheng Jiao
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Hoan Linh Banh
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, PR China
- Faculty of Medicine & Dentistry/Department of Family Medicine, University of Alberta, 6-10 University Terrace, Edmonton, AB T6G 2T4, Canada
| |
Collapse
|
18
|
Population pharmacokinetics of oxcarbazepine active metabolite in Chinese paediatric epilepsy patients and its application in individualised dosage regimens. Eur J Clin Pharmacol 2018; 75:381-392. [DOI: 10.1007/s00228-018-2600-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022]
|
19
|
Mäder P, Rennar GA, Ventura AMP, Grevelding CG, Schlitzer M. Chemotherapy for Fighting Schistosomiasis: Past, Present and Future. ChemMedChem 2018; 13:2374-2389. [DOI: 10.1002/cmdc.201800572] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Patrick Mäder
- Department of Pharmaceutical Chemistry; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Germany
| | - Georg A. Rennar
- Department of Pharmaceutical Chemistry; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Germany
| | - Alejandra M. Peter Ventura
- Department of Pharmaceutical Chemistry; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Germany
| | - Christoph G. Grevelding
- Institute of Parasitology, BFS; Justus-Liebig-Universität Gießen; Schubertstraße 81 35392 Gießen Germany
| | - Martin Schlitzer
- Department of Pharmaceutical Chemistry; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Germany
| |
Collapse
|
20
|
Natarajan H, Kumar L, Bakhshi S, Sharma A, Velpandian T, Kabra M, Gogia A, Ranjan Biswas N, Gupta YK. Imatinib trough levels: a potential biomarker to predict cytogenetic and molecular response in newly diagnosed patients with chronic myeloid leukemia. Leuk Lymphoma 2018; 60:418-425. [PMID: 30124353 DOI: 10.1080/10428194.2018.1485907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Therapeutic drug monitoring of imatinib in patients with chronic myeloid leukemia (CML) is an ongoing debate. We studied the influence of imatinib trough levels on therapeutic response in 206 newly diagnosed patients with CML. We also compared the drug levels in patients taking branded and generic imatinib. Imatinib levels were measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Marked inter-individual variability was seen in imatinib levels (coefficient of variation = 69%). Trough levels were significantly higher in patients who attained complete cytogenetic response than those who did not (2213.9 ± 1101 vs. 1648.6 ± 1403.4ng/mL; p < .001). Patients with major molecular response (MMR) had higher trough levels than those without MMR (2333.4 ± 1112 vs. 1643.4 ± 1383.9ng/mL; p = .001). Patients with trough levels ≤1000ng/mL were at high risk for failure of imatinib therapy [RR =1.926; 95%CI (1.562, 2.374); p < .001]. Trough levels emerged as an independent predictor of imatinib response in multivariate analysis. To conclude, imatinib trough levels significantly influence cytogenetic and molecular response and might emerge as a potential biomarker for therapeutic response in CML.
Collapse
Affiliation(s)
- Harivenkatesh Natarajan
- a Department of Pharmacology , Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER) , Puducherry , India
| | - Lalit Kumar
- b Department of Medical Oncology , All India Institute of Medical Sciences , New Delhi , India
| | - Sameer Bakhshi
- b Department of Medical Oncology , All India Institute of Medical Sciences , New Delhi , India
| | - Atul Sharma
- b Department of Medical Oncology , All India Institute of Medical Sciences , New Delhi , India
| | - Thirumurthy Velpandian
- d Department of Pharmacology , All India Institute of Medical Sciences , New Delhi , India
| | - Madhulika Kabra
- c Department of Pediatrics , All India Institute of Medical Sciences , New Delhi , India
| | - Ajay Gogia
- b Department of Medical Oncology , All India Institute of Medical Sciences , New Delhi , India
| | - Nihar Ranjan Biswas
- d Department of Pharmacology , All India Institute of Medical Sciences , New Delhi , India
| | - Yogendra Kumar Gupta
- d Department of Pharmacology , All India Institute of Medical Sciences , New Delhi , India
| |
Collapse
|
21
|
Imatinib treatment of poor prognosis mesenchymal-type primary colon cancer: a proof-of-concept study in the preoperative window period (ImPACCT). BMC Cancer 2017; 17:282. [PMID: 28424071 PMCID: PMC5395860 DOI: 10.1186/s12885-017-3264-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/05/2017] [Indexed: 12/18/2022] Open
Abstract
Background The identification of four Consensus Molecular Subtypes (CMS1–4) of colorectal cancer forms a new paradigm for the design and evaluation of subtype-directed therapeutic strategies. The most aggressive subtype - CMS4 - has the highest chance of disease recurrence. Novel adjuvant therapies for patients with CMS4 tumours are therefore urgently needed. CMS4 tumours are characterized by expression of mesenchymal and stem-like genes. Previous pre-clinical work has shown that targeting Platelet-Derived Growth Factor Receptors (PDGFRs) and the related KIT receptor with imatinib is potentially effective against mesenchymal-type colon cancer. In the present study we aim to provide proof for the concept that imatinib can reduce the aggressive phenotype of primary CMS4 colon cancer. Methods Tumour biopsies from patients with newly diagnosed stage I-III colon cancer will be analysed with a novel RT-qPCR test to pre-select patients with CMS4 tumours. Selected patients (n = 27) will receive treatment with imatinib (400 mg per day) starting two weeks prior to planned tumour resection. To assess treatment-induced changes in the aggressive CMS4 phenotype, RNA sequencing will be performed on pre- and post-treatment tissue samples. Discussion The development of effective adjuvant therapy for primary colon cancer is hindered by multiple factors. First, new drugs that may have value in the prevention of (early) distant recurrence are almost always first tested in patients with heavily pre-treated metastatic disease. Second, measuring on-target drug effects and biological consequences in tumour tissue is not commonly a part of the study design. Third, due to the lack of patient selection tools, clinical trials in the adjuvant setting require large patient populations. Finally, the evaluation of recurrence-prevention requires a long-term follow-up. In the ImPACCT trial these issues are addressed by including newly diagnosed pre-selected patients with CMS4 tumours prior to primary tumour resection, rather than non-selected patients with late-stage disease. By making use of the pre-operative window period, the biological effect of imatinib treatment on CMS4 tumours can be rapidly assessed. Delivering proof-of-concept for drug action in early stage disease should form the basis for the design of future trials with subtype-targeted therapies in colon cancer patients. Trial registration ClinicalTrials.gov: NCT02685046. Registration date: February 9, 2016.
Collapse
|
22
|
Jiang ZP, Zhao XL, Takahashi N, Angelini S, Dubashi B, Sun L, Xu P. Trough concentration and ABCG2 polymorphism are better to predict imatinib response in chronic myeloid leukemia: a meta-analysis. Pharmacogenomics 2016; 18:35-56. [PMID: 27991849 DOI: 10.2217/pgs-2016-0103] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM The present study aimed to conduct a series of meta-analyses to investigate the influence of imatinib trough concentration (C0), as well as ABCB1 and ABCG2 polymorphisms, on the clinical response in patients with chronic myeloid leukemia (CML). METHODS A literature search was conducted using the PubMed and Cochrane electronic databases to locate relevant papers from 2003 onward. Then, an initial meta-analysis of 14 studies involving 2184 patients was conducted to understand the effect of imatinib mesylate (IM) C0 on clinical outcome in CML patients. Subsequently, a series of meta-analyses were performed, including up to 23 studies with 2577 patients, on the effect of genetic polymorphisms of ABCB1 and ABCG2 on the clinical response to IM. RESULTS Meta-analysis revealed that patients who achieved a major molecular response (MMR) have a significantly higher IM C0 than those who failed to achieve an MMR. We also found that the patients who achieved a complete cytogenic response (CCyR) have a significantly higher IM C0 than those who did not achieve a CCyR. However, no significant difference in IM C0 was found between the complete molecular response and non-complete molecular response groups. Additional analysis showed that ABCG2 421 variant A allele was significantly associated with a higher rate of MMR and overall response, especially in Asian patients. Meta-analysis did not reveal a correlation between ABCB1 C3435T and C1236T polymorphisms with any clinical response to IM. However, the G2677T/A polymorphism could play a role in IM response in the recessive model. CONCLUSION This meta-analysis demonstrates that there was a significant correlation between the IM trough concentration and clinical responses, especially MMR and CCyR, in CML patients. Furthermore, we found that the probability of successful treatment was correlated with the ABCG2 C421A polymorphism, at least within the Asian population. We failed to determine an association between ABCB1 polymorphisms and IM response, although the G2677T/A polymorphism might be involved. However, further large-scale investigations using more sensitive genotyping methods would be required to confirm this.
Collapse
Affiliation(s)
- Zhi-Ping Jiang
- Laboratory of Clinical Pharmacology, Department of Hematology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, People's Republic of China
| | - Xie-Lan Zhao
- Laboratory of Clinical Pharmacology, Department of Hematology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, People's Republic of China
| | - Naoto Takahashi
- Department of Hematology, Nephrology, & Rheumatology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita city, Akita 010-8543, Japan
| | - Sabrina Angelini
- Department of Pharmacology, University of Bologna, Bologna 40126, Italy
| | - Biswajit Dubashi
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry 605 006, India
| | - Li Sun
- Clinical Pharmacy & Pharmacology Research Institute, the Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, Hunan Province 410011, People's Republic of China
| | - Ping Xu
- Clinical Pharmacy & Pharmacology Research Institute, the Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, Hunan Province 410011, People's Republic of China
| |
Collapse
|
23
|
Sibertin-Blanc C, Ciccolini J, Norguet E, Lacarelle B, Dahan L, Seitz JF. Monoclonal antibodies for treating gastric cancer: promises and pitfalls. Expert Opin Biol Ther 2016; 16:759-69. [PMID: 26971395 DOI: 10.1517/14712598.2016.1164137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Gastric cancer (GC) presents dismal prognosis when diagnosed at advanced stages, standard chemotherapy having shown little efficacy. Introduction of biotherapies interfering with novel targets and signaling pathways is currently an emerging strategy. AREAS COVERED Only two monoclonal antibodies (trastuzumab and ramucirumab) have been approved, mostly in association with cytotoxics. Conversely, testing other promising biotherapies (panitumumab, cetuximab, bevacizumab, rilotumumab) have yielded conflicting results, since encouraging early clinical trials have failed to be confirmed in larger phase-III studies. Empirical and underpowered strategies when designing combinational studies, lack of comprehensive knowledge of pharmacokinetics/pharmacodynamics (PK/PD) relationships, and underestimation of the large inter-patient variability in drug exposure levels with monoclonal antibodies, could explain the failures in developing biotherapies in gastric cancer. This review covers the achievements and limits of monoclonal antibodies in gastric cancer and proposes clues to overcome current failures. EXPERT OPINION Trastuzumab efficacy could be improved thanks to its combination with triplet chemotherapy or with another anti-HER2 agents or in continuation during second-line chemotherapy. Concerning ramucirumab, further studies are necessary to prove its interest in first line treatment of advanced GC, to use the optimal dose in each patient-given the large inter-patients variability, and to find predictive biomarkers of efficacy.
Collapse
Affiliation(s)
- Camille Sibertin-Blanc
- a Department of Digestive Oncology , Aix-Marseille University - Assistance Publique Hôpitaux de Marseille , Marseille , France
| | - Joseph Ciccolini
- b Laboratoire de Pharmacocinétique , SMARTc Inserm S_911 CRO2 Aix Marseille University , Marseille , France
| | - Emmanuelle Norguet
- a Department of Digestive Oncology , Aix-Marseille University - Assistance Publique Hôpitaux de Marseille , Marseille , France
| | - Bruno Lacarelle
- b Laboratoire de Pharmacocinétique , SMARTc Inserm S_911 CRO2 Aix Marseille University , Marseille , France
| | - Laetitia Dahan
- a Department of Digestive Oncology , Aix-Marseille University - Assistance Publique Hôpitaux de Marseille , Marseille , France
| | - Jean-François Seitz
- a Department of Digestive Oncology , Aix-Marseille University - Assistance Publique Hôpitaux de Marseille , Marseille , France
| |
Collapse
|
24
|
Garrido-Cano I, García-García A, Peris-Vicente J, Ochoa-Aranda E, Esteve-Romero J. A method to quantify several tyrosine kinase inhibitors in plasma by micellar liquid chromatography and validation according to the European Medicines Agency guidelines. Talanta 2015; 144:1287-95. [DOI: 10.1016/j.talanta.2015.07.078] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/20/2015] [Accepted: 07/28/2015] [Indexed: 12/18/2022]
|
25
|
Beumer JH, Pillai VC, Parise RA, Christner SM, Kiesel BF, Rudek MA, Venkataramanan R. Human hepatocyte assessment of imatinib drug-drug interactions - complexities in clinical translation. Br J Clin Pharmacol 2015; 80:1097-108. [PMID: 26178713 DOI: 10.1111/bcp.12723] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 06/24/2015] [Accepted: 07/09/2015] [Indexed: 01/09/2023] Open
Abstract
AIM Inducers and inhibitors of CYP3A, such as ritonavir and efavirenz, may be used as part of the highly active antiretroviral therapy (HAART) to treat HIV patients. HIV patients with chronic myeloid leukemia or gastrointestinal stromal tumour may need imatinib, a CYP3A4 substrate with known exposure response-relationships. Administration of imatinib to patients on ritonavir or efavirenz may result in altered imatinib exposure leading to increased toxicity or failure of therapy, respectively. We used primary human hepatocyte cultures to evaluate the magnitude of interaction between imatinib and ritonavir/efavirenz. METHODS Hepatocytes were pre-treated with vehicle, ritonavir, ketoconazole, efavirenz or rifampicin, and the metabolism of imatinib was characterized over time. Concentrations of imatinib and metabolite were quantitated in combined lysate and medium, using LC-MS. RESULTS The predicted changes in imatinib CLoral (95% CI) with ketoconazole, ritonavir, rifampicin and efavirenz were 4.0-fold (0, 9.2) lower, 2.8-fold (0.04, 5.5) lower, 2.9-fold (2.2, 3.5) higher and 2.0-fold (0.42, 3.5) higher, respectively. These predictions were in good agreement with clinical single dose drug-drug interaction studies, but not with reports of imatinib interactions at steady-state. Alterations in metabolism were similar after acute or chronic imatinib exposure. CONCLUSIONS In vitro human hepatocytes predicted increased clearance of imatinib with inducers and decreased clearance with inhibitors of CYP enzymes. The impact of HAART on imatinib may depend on whether it is being initiated or has already been dosed chronically in patients. Therapeutic drug monitoring may have a role in optimizing imatinib therapy in this patient population.
Collapse
Affiliation(s)
- Jan H Beumer
- Department of Pharmaceutical Sciences, School of Pharmacy, Pittsburgh, PA.,Cancer Therapeutics program, University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | | | - Robert A Parise
- Cancer Therapeutics program, University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | - Susan M Christner
- Cancer Therapeutics program, University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | - Brian F Kiesel
- Cancer Therapeutics program, University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | | | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy, Pittsburgh, PA.,Cancer Therapeutics program, University of Pittsburgh Cancer Institute, Pittsburgh, PA.,Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
26
|
Decosterd LA, Widmer N, Zaman K, Cardoso E, Buclin T, Csajka C. Therapeutic drug monitoring of targeted anticancer therapy. Biomark Med 2015; 9:887-93. [PMID: 26333311 DOI: 10.2217/bmm.15.78] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
New oral targeted anticancer therapies are revolutionizing cancer treatment by transforming previously deadly malignancies into chronically manageable conditions. Nevertheless, drug resistance, persistence of cancer stem cells, and adverse drug effects still limit their ability to stabilize or cure malignant diseases in the long term. Response to targeted anticancer therapy is influenced by tumor genetics and by variability in drug concentrations. However, despite a significant inter-patient pharmacokinetic variability, targeted anticancer drugs are essentially licensed at fixed doses. Their therapeutic use could however be optimized by individualization of their dosage, based on blood concentration measurements via the therapeutic drug monitoring (TDM). TDM can increase the probability of therapeutic responses to targeted anticancer therapies, and would help minimize the risk of major adverse reactions.
Collapse
Affiliation(s)
- Laurent A Decosterd
- Laboratory of Clinical Pharmacology, Service of Biomedicine, Lausanne University Hospital & University of Lausanne, Switzerland
| | - Nicolas Widmer
- Division of Clinical Pharmacology, Service of Biomedicine, Lausanne University Hospital & University of Lausanne, Switzerland.,Pharmacy of Eastern Vaud Hospitals, Vevey, Switzerland
| | - Khalil Zaman
- Service of Medical Oncology, Department of Oncology, Lausanne University Hospital & University of Lausanne, Switzerland
| | - Evelina Cardoso
- Division of Clinical Pharmacology, Service of Biomedicine, Lausanne University Hospital & University of Lausanne, Switzerland
| | - Thierry Buclin
- Division of Clinical Pharmacology, Service of Biomedicine, Lausanne University Hospital & University of Lausanne, Switzerland
| | - Chantal Csajka
- Division of Clinical Pharmacology, Service of Biomedicine, Lausanne University Hospital & University of Lausanne, Switzerland
| |
Collapse
|
27
|
|
28
|
Ding J, Wang Y, Lin W, Wang C, Zhao L, Li X, Zhao Z, Miao L, Jiao Z. A Population Pharmacokinetic Model of Valproic Acid in Pediatric Patients with Epilepsy: A Non-Linear Pharmacokinetic Model Based on Protein-Binding Saturation. Clin Pharmacokinet 2014; 54:305-17. [DOI: 10.1007/s40262-014-0212-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Gotta V, Widmer N, Decosterd LA, Chalandon Y, Heim D, Gregor M, Benz R, Leoncini-Franscini L, Baerlocher GM, Duchosal MA, Csajka C, Buclin T. Clinical usefulness of therapeutic concentration monitoring for imatinib dosage individualization: results from a randomized controlled trial. Cancer Chemother Pharmacol 2014; 74:1307-19. [PMID: 25297989 DOI: 10.1007/s00280-014-2599-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/22/2014] [Indexed: 11/29/2022]
Abstract
PURPOSE This study assessed whether a cycle of "routine" therapeutic drug monitoring (TDM) for imatinib dosage individualization, targeting an imatinib trough plasma concentration (C min) of 1,000 ng/ml (tolerance: 750-1,500 ng/ml), could improve clinical outcomes in chronic myelogenous leukemia (CML) patients, compared with TDM use only in case of problems ("rescue" TDM). METHODS Imatinib concentration monitoring evaluation was a multicenter randomized controlled trial including adult patients in chronic or accelerated phase CML receiving imatinib since less than 5 years. Patients were allocated 1:1 to "routine TDM" or "rescue TDM." The primary endpoint was a combined outcome (failure- and toxicity-free survival with continuation on imatinib) over 1-year follow-up, analyzed in intention-to-treat (ISRCTN31181395). RESULTS Among 56 patients (55 evaluable), 14/27 (52 %) receiving "routine TDM" remained event-free versus 16/28 (57 %) "rescue TDM" controls (P = 0.69). In the "routine TDM" arm, dosage recommendations were correctly adopted in 14 patients (median C min: 895 ng/ml), who had fewer unfavorable events (28 %) than the 13 not receiving the advised dosage (77 %; P = 0.03; median C min: 648 ng/ml). CONCLUSIONS This first target concentration intervention trial could not formally demonstrate a benefit of "routine TDM" because of small patient number and surprisingly limited prescriber's adherence to dosage recommendations. Favorable outcomes were, however, found in patients actually elected for target dosing. This study thus shows first prospective indication for TDM being a useful tool to guide drug dosage and shift decisions. The study design and analysis provide an interesting paradigm for future randomized TDM trials on targeted anticancer agents.
Collapse
Affiliation(s)
- V Gotta
- Division of Clinical Pharmacology, Service of Biomedicine, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Bugnon 17-1, 1011, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gotta V, Bouchet S, Widmer N, Schuld P, Decosterd LA, Buclin T, Mahon FX, Csajka C, Molimard M. Large-scale imatinib dose–concentration–effect study in CML patients under routine care conditions. Leuk Res 2014; 38:764-72. [DOI: 10.1016/j.leukres.2014.03.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 03/10/2014] [Accepted: 03/30/2014] [Indexed: 10/25/2022]
|
31
|
Alsobhi E, Abrar MB, Abdelaal M, Alsaeed A, Absi A, Alzahrani Z, El-Hemaidi I, Alshehri MA, Warsi A, Bayashoot S, Hashem H, Merdad A, Radi S, Shiekhi H, Al-Amri A. Response to imatinib therapy in adult patients with chronic myeloid leukemia in Saudi population: a single-center study. Leuk Lymphoma 2014; 56:882-6. [PMID: 24956142 DOI: 10.3109/10428194.2014.935365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
No study has been published yet in the Arab world regarding response and outcome of imatinib in patients with chronic myeloid leukemia (CML). This study evaluated a total of 122 patients with CML treated with imatinib between 2001 and 2012. Survival, hematologic, cytogenetic and molecular responses and adverse events were assessed. The 5-year overall survival (OS), event free survival (EFS) and progression-free survival (PFS) rates were: 95.4 ± 2.3%, 81.4 ± 4.6% and 90.8 ± 3.2%, respectively. Significant differences in OS (p = 0.001), EFS (p = 0.001) and PFS (p = 0.001) were noted when patients were stratified by cytogenetic response. Survival by Sokal risk groups was not significant (p = 0.293). Complete hematologic response was achieved in 94 patients (93.1%), cytogenetic response in 84 (83.2%), major molecular response in 62 (61.4%) and complete molecular response in 34 (33.7%). This article presents the first evidence on the effectiveness of imatinib in patients with CML from Saudi Arabia and highlights similarities and differences in response patterns in published studies.
Collapse
|
32
|
Bardin C, Veal G, Paci A, Chatelut E, Astier A, Levêque D, Widmer N, Beijnen J. Therapeutic drug monitoring in cancer--are we missing a trick? Eur J Cancer 2014; 50:2005-9. [PMID: 24878063 DOI: 10.1016/j.ejca.2014.04.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 04/11/2014] [Indexed: 02/08/2023]
Abstract
Therapeutic drug monitoring (TDM) can be defined as the measurement of drug in biological samples to individualise treatment by adapting drug dose to improve efficacy and/or reduce toxicity. The cytotoxic drugs are characterised by steep dose-response relationships and narrow therapeutic windows. Inter-individual pharmacokinetic (PK) variability is often substantial. There are, however, a multitude of reasons why TDM has never been fully implemented in daily oncology practice. These include difficulties in establishing appropriate concentration target, common use of combination chemotherapies and the paucity of published data from pharmacological trials. The situation is different with targeted therapies. The large interindividual PK variability is influenced by the pharmacogenetic background of the patient (e.g. cytochrome P450 and ABC transporters polymorphisms), patient characteristics such as adherence to treatment and environmental factors (drug-drug interactions). Retrospective studies have shown that targeted drug exposure correlates with treatment response in various cancers. Evidence for imatinib currently exists, others are emerging for compounds including nilotinib, dasatinib, erlotinib, sunitinib, sorafenib and mammalian target of rapamycin (mTOR) inhibitors. Applications for TDM during oral targeted therapies may best be reserved for particular situations including lack of therapeutic response, severe or unexpected toxicities, anticipated drug-drug interactions and concerns over adherence treatment. There are still few data with monoclonal antibodies (mAbs) in favour of TDM approaches, even if data showed encouraging results with rituximab and cetuximab. TDM of mAbs is not yet supported by scientific evidence. Considerable effort should be made for targeted therapies to better define concentration-effect relationships and to perform comparative randomised trials of classic dosing versus pharmacokinetically-guided adaptive dosing.
Collapse
Affiliation(s)
- Christophe Bardin
- Unité fonctionnelle de Pharmacocinétique et Pharmacochimie, Hôpital Cochin, Paris, France; Service de Pharmacie clinique, Hôpital Cochin, Paris, France.
| | - Gareth Veal
- Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Angelo Paci
- Department of Pharmacology and Drug Analysis, Gustave Roussy Cancer Campus Grand Paris, Université Paris-Sud, Villejuif, France
| | - Etienne Chatelut
- EA4553 Institut Claudius-Regaud, Université Paul-Sabatier, Toulouse, France
| | - Alain Astier
- Department of Pharmacy, CNRS-UMR 7054, School of Medicine Paris 12, Henri Mondor University Hospitals, Créteil, France
| | | | - Nicolas Widmer
- Division of Clinical Pharmacology, University Hospital Center and University of Lausanne, Lausanne, Switzerland; Pharmacie des Hôpitaux de l'Est Lémanique, Vevey, Switzerland
| | - Jos Beijnen
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute/Stotervaart Hospital, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Lion T, Webersinke G, Kastner U, Seger C, Mitterbauer-Hohendanner G, Gastl G. [Current diagnostic requirements in chronic myeloid leukemia]. Wien Med Wochenschr 2013; 163:477-94. [PMID: 24081749 DOI: 10.1007/s10354-013-0239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
Abstract
In patients with chronic myeloid leukemia, high-quality diagnostics is of paramount importance for the surveillance of treatment efficacy. The availability of new tyrosine kinase inhibitors providing more rapid and deeper responses requires the employment of standardized and highly sensitive diagnostic methods to ensure optimal monitoring of the patients. This review presents the current international diagnostic standards and the certified laboratories in Austria.
Collapse
Affiliation(s)
- Thomas Lion
- LabDia Labordiagnostik/St.Anna Kinderkrebsforschung, Zimmermannplatz 8, 1090, Wien, Österreich,
| | | | | | | | | | | |
Collapse
|
34
|
Livshits LA, Kravchenko SA, Nechyporenko MV, Pampukha VM, Hryshchenko NV, Livshyts GB, Soloviov OO, Tatarskyy PF, Fesai OA, Chernushyn SY, Kucherenko AM, Gulkovskyy RV. Human genome mutation and rearrangement studies – the way to investigate monogenic and complex disease pathogenesis. ACTA ACUST UNITED AC 2013. [DOI: 10.7124/bc.000827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- L. A. Livshits
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - S. A. Kravchenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - M. V. Nechyporenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - V. M. Pampukha
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - N. V. Hryshchenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - G. B. Livshyts
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - O. O. Soloviov
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - P. F. Tatarskyy
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - O. A. Fesai
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - S. Yu. Chernushyn
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - A. M. Kucherenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
- "Institute of Biology", Taras Shevchenko National University of Kyiv
| | - R. V. Gulkovskyy
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
- "Institute of Biology", Taras Shevchenko National University of Kyiv
| |
Collapse
|