1
|
Hung SH, Kan HL, Tung CW, Lin YC, Chen TT, Tian C, Chang WCW. Probing the hair detectability of prohibited substances in sports: an in vivo-in silico-clinical approach and analytical implications compared with plasma, urine, and faeces. Arch Toxicol 2024; 98:779-790. [PMID: 38224356 PMCID: PMC10861659 DOI: 10.1007/s00204-023-03667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
Hair analysis is a crucial method in forensic toxicology with potential applications in revealing doping histories in sports. Despite its widespread use, knowledge about detectable substances in hair is limited. This study systematically assessed the detectability of prohibited substances in sports using a multifaceted approach. Initially, an animal model received a subset of 17 model drugs to compare dose dependencies and detection windows across different matrices. Subsequently, hair incorporation data from the animal experiment were extrapolated to all substances on the World Anti-Doping Agency's List through in-silico prediction. The detectability of substances in hair was further validated in a proof-of-concept human study involving the consumption of diuretics and masking agents. Semi-quantitative analysis of substances in specimens was performed using ultra-performance liquid chromatography-tandem mass spectrometry. Results showed plasma had optimal dose dependencies with limited detection windows, while urine, faeces, and hair exhibited a reasonable relationship with the administered dose. Notably, hair displayed the highest detection probability (14 out of 17) for compounds, including anabolic agents, hormones, and diuretics, with beta-2 agonists undetected. Diuretics such as furosemide, canrenone, and hydrochlorothiazide showed the highest hair incorporation. Authentic human hair confirmed diuretic detectability, and their use duration was determined via segmental analysis. Noteworthy is the first-time reporting of canrenone in human hair. Anabolic agents were expected in hair, whereas undetectable compounds, such as peptide hormones and beta-2 agonists, were likely due to large molecular mass or high polarity. This study enhances understanding of hair analysis in doping investigations, providing insights into substance detectability.
Collapse
Affiliation(s)
- Shao-Hsin Hung
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hung-Lin Kan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 350, Taiwan
| | - Chun-Wei Tung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 350, Taiwan
| | - Yi-Ching Lin
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Laboratory Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Ting-Ting Chen
- Department of Leisure Industry and Health Promotion, College of Humanities and Management, National Ilan University, Yilan County, 260, Taiwan
| | - Ciao Tian
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - William Chih-Wei Chang
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
2
|
Zijp TR, Izzah Z, Åberg C, Gan CT, Bakker SJL, Touw DJ, van Boven JFM. Clinical Value of Emerging Bioanalytical Methods for Drug Measurements: A Scoping Review of Their Applicability for Medication Adherence and Therapeutic Drug Monitoring. Drugs 2021; 81:1983-2002. [PMID: 34724175 PMCID: PMC8559140 DOI: 10.1007/s40265-021-01618-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2021] [Indexed: 12/05/2022]
Abstract
INTRODUCTION Direct quantification of drug concentrations allows for medication adherence monitoring (MAM) and therapeutic drug monitoring (TDM). Multiple less invasive methods have been developed in recent years: dried blood spots (DBS), saliva, and hair analyses. AIM To provide an overview of emerging drug quantification methods for MAM and TDM, focusing on the clinical validation of methods in patients prescribed chronic drug therapies. METHODS A scoping review was performed using a systematic search in three electronic databases covering the period 2000-2020. Screening and inclusion were performed by two independent reviewers in Rayyan. Data from the articles were aggregated in a REDCap database. The main outcome was clinical validity of methods based on study sample size, means of cross-validation, and method description. Outcomes were reported by matrix, therapeutic area and application (MAM and/or TDM). RESULTS A total of 4590 studies were identified and 175 articles were finally included; 57 on DBS, 66 on saliva and 55 on hair analyses. Most reports were in the fields of neurological diseases (37%), infectious diseases (31%), and transplantation (14%). An overview of clinical validation was generated of all measured drugs. A total of 62 drugs assays were applied for MAM and 131 for TDM. CONCLUSION MAM and TDM are increasingly possible without traditional invasive blood sampling: the strengths and limitations of DBS, saliva, and hair differ, but all have potential for valid and more convenient drug monitoring. To strengthen the quality and comparability of future evidence, standardisation of the clinical validation of the methods is recommended.
Collapse
Affiliation(s)
- Tanja R Zijp
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Zamrotul Izzah
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Analysis, Groningen, The Netherlands
| | - Christoffer Åberg
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Analysis, Groningen, The Netherlands
| | - C Tji Gan
- University of Groningen, University Medical Center Groningen, Respiratory Diseases and Lung Transplantation, Groningen, The Netherlands
| | - Stephan J L Bakker
- University of Groningen, University Medical Center Groningen, Department of Internal Medicine, Division of Nephrology, Groningen, The Netherlands
| | - Daan J Touw
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands.
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Analysis, Groningen, The Netherlands.
- Medication Adherence Expertise Center of the Northern Netherlands (MAECON), Groningen, The Netherlands.
| | - Job F M van Boven
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
- Medication Adherence Expertise Center of the Northern Netherlands (MAECON), Groningen, The Netherlands
| |
Collapse
|
3
|
Seyfinejad B, Jouyban A. Overview of therapeutic drug monitoring of immunosuppressive drugs: Analytical and clinical practices. J Pharm Biomed Anal 2021; 205:114315. [PMID: 34399192 DOI: 10.1016/j.jpba.2021.114315] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/16/2021] [Accepted: 08/05/2021] [Indexed: 01/04/2023]
Abstract
Immunosuppressant drugs (ISDs) play a key role in short-term patient survival together with very low acute allograft rejection rates in transplant recipients. Due to the narrow therapeutic index and large inter-patient pharmacokinetic variability of ISDs, therapeutic drug monitoring (TDM) is needed to dose adjustment for each patient (personalized medicine approach) to avoid treatment failure or side effects of the therapy. To achieve this, TDM needs to be done effectively. However, it would not be possible without the proper clinical practice and analytical tools. The purpose of this review is to provide a guide to establish reliable TDM, followed by a critical overview of the current analytical methods and clinical practices for the TDM of ISDs, and to discuss some of the main practical aspects of the TDM.
Collapse
Affiliation(s)
- Behrouz Seyfinejad
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Near East University, PO BOX: 99138 Nicosia, North Cyprus, Mersin 10, Turkey.
| |
Collapse
|
4
|
Kintz P. Negative hair test result after long-term drug use. About a case involving morphine and literature review. Clin Chem Lab Med 2020; 59:267-273. [PMID: 32692696 DOI: 10.1515/cclm-2020-0950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/10/2020] [Indexed: 01/03/2023]
Abstract
Although it has been accepted by most scientists that drugs circulating in blood are eligible to hair incorporation, this cannot be considered as a general statement. A 42-year old man was found dead in his swimming pool. He was living alone, and seen alive 2 days before by a neighbour. Femoral blood, cardiac blood and hair were collected during body examination. Free morphine was identified in femoral blood at 28 ng/mL, corresponding to his treatment for chronic pain (3 × 5 mg daily for 4 months). However, with a limit of quantitation (LOQ) at 10 pg/mg, segmental hair testing (3 × 1 cm) for morphine was negative. In this paper, the author has reviewed the different factors which can be responsible of this discrepancy. Several variables can influence the detection of a drug in hair and the author has listed reasons that can account for the absence of analytical response in hair after drug administration. The drug may not be incorporated in hair. That is the case for large bio-molecules, such as hormones, which cannot be transferred from the blood capillaries to growing cells of hair. Cosmetic treatments (perming, colouring, bleaching) or environmental aggressions (ultraviolet radiation, thermal application) will always reduce the concentrations. In this case, the lack of morphine detection was attributed to the effects of chlorinated water from the swimming pool. A negative hair result is also a result. However, this can be interpreted in three different ways: 1. the owner of the hair did not take or was not exposed to the specific drug, 2. the procedure is not sensitive enough to detect the drug, or 3. something happened after drug incorporation (cosmetic treatment, environmental influence).
Collapse
Affiliation(s)
- Pascal Kintz
- X-Pertise Consulting, 42 rue principale, 67206, Mittelhausbergen, France.,Institut de médecine légale, 11 rue Humann, 67000, Strasbourg, France
| |
Collapse
|
5
|
Kintz P, Gheddar L, Ameline A, Arbouche N, Raul J. Hair testing for doping agents. What is known and what remains to do. Drug Test Anal 2020; 12:316-322. [DOI: 10.1002/dta.2766] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Pascal Kintz
- X‐Pertise Consulting 42 rue principale F‐67206 Mittelhausbergen France
- Institut de médecine légale 11 rue Humann F‐67000 Strasbourg France
| | - Laurie Gheddar
- Institut de médecine légale 11 rue Humann F‐67000 Strasbourg France
| | - Alice Ameline
- Institut de médecine légale 11 rue Humann F‐67000 Strasbourg France
| | - Nadia Arbouche
- Institut de médecine légale 11 rue Humann F‐67000 Strasbourg France
| | | |
Collapse
|
6
|
Jia J, Tian X, Jiang J, Ren Z, Lu H, He N, Xie H, Zhou L, Zheng S. Structural shifts in the intestinal microbiota of rats treated with cyclosporine A after orthotropic liver transplantation. Front Med 2019; 13:451-460. [PMID: 31020543 DOI: 10.1007/s11684-018-0675-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 10/27/2018] [Indexed: 02/07/2023]
Abstract
Understanding the effect of immunosuppressive agents on intestinal microbiota is important to reduce the mortality and morbidity from orthotopic liver transplantation (OLT). We investigated the relationship between the commonly used immunosuppressive agent cyclosporine A (CSA) and the intestinal microbial variation in an OLT model. The rat samples were divided as follows: (1) N group (normal control); (2) I group (isograft LT, Brown Norway [BN] rat to BN); (3) R group (allograft LT, Lewis to BN rat); and (4) CSA group (R group treated with CSA). The intestinal microbiota was assayed by denaturing gradient gel electrophoresis profiles and by using real-time polymerase chain reaction. The liver histopathology and the alanine/aspartate aminotransferase ratio after LT were both ameliorated by CSA. In the CSA group, the numbers of rDNA gene copies of Clostridium cluster I, Clostridium cluster XIV, and Enterobacteriaceae decreased, whereas those of Faecalibacterium prausnitzii increased compared with the R group. Cluster analysis indicated that the samples from the N, I, and CSA groups were clustered, whereas the other clusters contained the samples from the R group. Hence, CSA ameliorates hepatic graft injury and partially restores gut microbiota following LT, and these may benefit hepatic graft rejection.
Collapse
Affiliation(s)
- Junjun Jia
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xinyao Tian
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jianwen Jiang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhigang Ren
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Haifeng Lu
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Ning He
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Haiyang Xie
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
7
|
Zhang Y, Zhang R. Recent advances in analytical methods for the therapeutic drug monitoring of immunosuppressive drugs. Drug Test Anal 2017; 10:81-94. [DOI: 10.1002/dta.2290] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/12/2017] [Accepted: 08/16/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Yu Zhang
- Department of Chemistry and Biochemistry; Texas Tech University; Lubbock TX, 79409, USA
| | - Rui Zhang
- Department of Chemistry and Biochemistry; Texas Tech University; Lubbock TX, 79409, USA
| |
Collapse
|
8
|
Sirc J, Hampejsova Z, Trnovska J, Kozlik P, Hrib J, Hobzova R, Zajicova A, Holan V, Bosakova Z. Cyclosporine A Loaded Electrospun Poly(D,L-Lactic Acid)/Poly(Ethylene Glycol) Nanofibers: Drug Carriers Utilizable in Local Immunosuppression. Pharm Res 2017; 34:1391-1401. [PMID: 28405914 DOI: 10.1007/s11095-017-2155-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/31/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE The present study aims to prepare poly(D,L-lactic acid) (PLA) nanofibers loaded by the immunosuppressant cyclosporine A (CsA, 10 wt%). Amphiphilic poly(ethylene glycol)s (PEG) additives were used to modify the hydrophobic drug release kinetics. METHODS Four types of CsA-loaded PLA nanofibrous carriers varying in the presence and molecular weight (MW) of PEG (6, 20 and 35 kDa) were prepared by needleless electrospinning. The samples were extracted for 144 h in phosphate buffer saline or tissue culture medium. A newly developed and validated LC-MS/MS method was utilized to quantify the amount of released CsA from the carriers. In vitro cell experiments were used to evaluate biological activity. RESULTS Nanofibers containing 15 wt% of PEG showed improved drug release characteristics; significantly higher release rates were achieved in initial part of experiment (24 h). The highest released doses of CsA were obtained from the nanofibers with PEG of the lowest MW (6 kDa). In vitro experiments on ConA-stimulated spleen cells revealed the biological activity of the released CsA for the whole study period of 144 h and nanofibers containing PEG with the lowest MW exhibited the highest impact (inhibition). CONCLUSIONS The addition of PEG of a particular MW enables to control CsA release from PLA nanofibrous carriers. The biological activity of CsA-loaded PLA nanofibers with PEG persists even after 144 h of previous extraction. Prepared materials are promising for local immunosuppression in various medical applications.
Collapse
Affiliation(s)
- Jakub Sirc
- Department of Polymer Networks and Gels, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Sq. 2, 162 06, Prague 6, Czech Republic
| | - Zuzana Hampejsova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Jana Trnovska
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Petr Kozlik
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Jakub Hrib
- Department of Polymer Networks and Gels, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Sq. 2, 162 06, Prague 6, Czech Republic
| | - Radka Hobzova
- Department of Polymer Networks and Gels, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Sq. 2, 162 06, Prague 6, Czech Republic
| | - Alena Zajicova
- Department of Transplantation Immunology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Vladimir Holan
- Department of Transplantation Immunology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Zuzana Bosakova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic.
| |
Collapse
|
9
|
Shipkova M, Valbuena H. Liquid chromatography tandem mass spectrometry for therapeutic drug monitoring of immunosuppressive drugs: Achievements, lessons and open issues. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.01.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Freudenberger K, Hilbig U, Gauglitz G. Recent advances in therapeutic drug monitoring of immunosuppressive drugs. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Abstract
The use of alternative matrices such as oral fluid and hair has increased in the past decades because of advances in analytical technology. However, there are still many issues that need to be resolved. Standardized protocols of sample pretreatment are needed to link the detected concentrations to final conclusions. The development of suitable proficiency testing schemes is required. Finally, interpretation issues such as link to effect, adulteration, detection markers and thresholds will hamper the vast use of these matrices. Today, several niche areas apply these matrices with success, such as drugs and driving for oral fluid and drug-facilitated crimes for hair. Once those issues are resolved, the number of applications will markedly grow in the future.
Collapse
|
12
|
Chang K, Wang F, Ding Y, Pan F, Li F, Jia S, Lu W, Deng S, Shi J, Chen M. Development and validation of a novel leaky surface acoustic wave immunosensor array for label-free and high-sensitive detection of cyclosporin A in whole-blood samples. Biosens Bioelectron 2014; 54:151-7. [DOI: 10.1016/j.bios.2013.10.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/23/2013] [Accepted: 10/23/2013] [Indexed: 11/30/2022]
|