1
|
Jain A, Govindaraj GM, Edavazhippurath A, Faisal N, Bhoyar RC, Gupta V, Uppuluri R, Manakkad SP, Kashyap A, Kumar A, Divakar MK, Imran M, Sawant S, Dalvi A, Chakyar K, Madkaikar M, Raj R, Sivasubbu S, Scaria V. Whole genome sequencing identifies novel structural variant in a large Indian family affected with X-linked agammaglobulinemia. PLoS One 2021; 16:e0254407. [PMID: 34252140 PMCID: PMC8274882 DOI: 10.1371/journal.pone.0254407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/25/2021] [Indexed: 12/30/2022] Open
Abstract
X-linked agammaglobulinemia (XLA, OMIM #300755) is a primary immunodeficiency disorder caused by pathogenic variations in the BTK gene, characterized by failure of development and maturation of B lymphocytes. The estimated prevalence worldwide is 1 in 190,000 male births. Recently, genome sequencing has been widely used in difficult to diagnose and familial cases. We report a large Indian family suffering from XLA with five affected individuals. We performed complete blood count, immunoglobulin assay, and lymphocyte subset analysis for all patients and analyzed Btk expression for one patient and his mother. Whole exome sequencing (WES) for four patients, and whole genome sequencing (WGS) for two patients have been performed. Carrier screening was done for 17 family members using Multiplex Ligation-dependent Probe Amplification (MLPA) and haplotype ancestry mapping using fineSTRUCTURE was performed. All patients had hypogammaglobulinemia and low CD19+ B cells. One patient who underwent Btk estimation had low expression and his mother showed a mosaic pattern. We could not identify any single nucleotide variants or small insertion/ deletions from the WES dataset that correlates with the clinical feature of the patient. Structural variant analysis through WGS data identifies a novel large deletion of 5,296 bp at loci chrX:100,624,323-100,629,619 encompassing exons 3-5 of the BTK gene. Family screening revealed seven carriers for the deletion. Two patients had a successful HSCT. Haplotype mapping revealed a South Asian ancestry. WGS led to identification of the accurate genetic mutation which could help in early diagnosis leading to improved outcomes, prevention of permanent organ damage and improved quality of life, as well as enabling genetic counselling and prenatal diagnosis in the family.
Collapse
Affiliation(s)
- Abhinav Jain
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Geeta Madathil Govindaraj
- Department of Pediatrics, Government Medical College Kozhikode, Kozhikode, Kerala, India
- Department of Pediatrics, FPID Regional Diagnostic Centre, Government Medical College Kozhikode, Kozhikode, Kerala, India
| | - Athulya Edavazhippurath
- Department of Pediatrics, Government Medical College Kozhikode, Kozhikode, Kerala, India
- Multidisciplinary Research Unit, Government College Kozhikode, Kozhikode, Kerala, India
| | - Nabeel Faisal
- Department of Pediatrics, Government Medical College Kozhikode, Kozhikode, Kerala, India
| | - Rahul C Bhoyar
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi, India
| | - Vishu Gupta
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Ramya Uppuluri
- Department of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Apollo Hospitals, Chennai, Tamil Nadu, India
| | | | - Atul Kashyap
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi, India
| | - Anoop Kumar
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi, India
| | - Mohit Kumar Divakar
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Mohamed Imran
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Sneha Sawant
- Department of Pediatric Immunology and Leukocyte Biology, ICMR-National Institute of Immunohaematology, KEM Hospital, Mumbai, Maharashtra, India
| | - Aparna Dalvi
- Department of Pediatric Immunology and Leukocyte Biology, ICMR-National Institute of Immunohaematology, KEM Hospital, Mumbai, Maharashtra, India
| | - Krishnan Chakyar
- Department of Pediatrics, Government Medical College Kozhikode, Kozhikode, Kerala, India
| | - Manisha Madkaikar
- Department of Pediatric Immunology and Leukocyte Biology, ICMR-National Institute of Immunohaematology, KEM Hospital, Mumbai, Maharashtra, India
| | - Revathi Raj
- Department of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Apollo Hospitals, Chennai, Tamil Nadu, India
| | - Sridhar Sivasubbu
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Vinod Scaria
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
2
|
Piton A, Redin C, Mandel JL. XLID-causing mutations and associated genes challenged in light of data from large-scale human exome sequencing. Am J Hum Genet 2013; 93:368-83. [PMID: 23871722 DOI: 10.1016/j.ajhg.2013.06.013] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/29/2013] [Accepted: 06/08/2013] [Indexed: 12/30/2022] Open
Abstract
Because of the unbalanced sex ratio (1.3-1.4 to 1) observed in intellectual disability (ID) and the identification of large ID-affected families showing X-linked segregation, much attention has been focused on the genetics of X-linked ID (XLID). Mutations causing monogenic XLID have now been reported in over 100 genes, most of which are commonly included in XLID diagnostic gene panels. Nonetheless, the boundary between true mutations and rare non-disease-causing variants often remains elusive. The sequencing of a large number of control X chromosomes, required for avoiding false-positive results, was not systematically possible in the past. Such information is now available thanks to large-scale sequencing projects such as the National Heart, Lung, and Blood (NHLBI) Exome Sequencing Project, which provides variation information on 10,563 X chromosomes from the general population. We used this NHLBI cohort to systematically reassess the implication of 106 genes proposed to be involved in monogenic forms of XLID. We particularly question the implication in XLID of ten of them (AGTR2, MAGT1, ZNF674, SRPX2, ATP6AP2, ARHGEF6, NXF5, ZCCHC12, ZNF41, and ZNF81), in which truncating variants or previously published mutations are observed at a relatively high frequency within this cohort. We also highlight 15 other genes (CCDC22, CLIC2, CNKSR2, FRMPD4, HCFC1, IGBP1, KIAA2022, KLF8, MAOA, NAA10, NLGN3, RPL10, SHROOM4, ZDHHC15, and ZNF261) for which replication studies are warranted. We propose that similar reassessment of reported mutations (and genes) with the use of data from large-scale human exome sequencing would be relevant for a wide range of other genetic diseases.
Collapse
Affiliation(s)
- Amélie Piton
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7104, Institut National de la Santé et de la Recherche Médicale Unité 964, University of Strasbourg, 67404 Illkirch Cedex, France; Chaire de Génétique Humaine, Collège de France, 75231 Paris Cedex 05, France.
| | | | | |
Collapse
|
3
|
Neira VA, Romero-Espinoza P, Rojas-Martínez A, Ortiz-López R, Córdova-Fletes C, Plaja A, Barros-Núñez P. De novo MECP2 disomy in a Mexican male carrying a supernumerary marker chromosome and no typical Lubs syndrome features. Gene 2013; 524:381-5. [PMID: 23639959 DOI: 10.1016/j.gene.2013.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 10/26/2022]
Abstract
Xq28 duplication, including the MECP2 gene, is among the most frequently identified Xq subtelomeric rearrangements. The resulting clinical phenotype is named Lubs syndrome and mainly consists of intellectual disability, congenital hypotonia, absent speech, recurrent infections, and seizures. Here we report a Mexican male patient carrying a supernumerary marker chromosome with de novo Xq28 gain. By MLPA, duplication of MECP2, GDI1, and SLC6A8 was found and a subsequent a-CGH analysis demonstrated that the gain spanned ~2.1Mb. Despite gain of the MECP2 gene, the features of this patient do not evoke Lubs syndrome. Probably the mosaicism of the supernumerary marker chromosome is modifying the phenotype in this patient.
Collapse
Affiliation(s)
- Vivian Alejandra Neira
- División de Genética, Centro de Investigación Biomédica de Occidente, CMNO-IMSS, Guadalajara, Jalisco, Mexico
| | | | | | | | | | | | | |
Collapse
|
4
|
Anasagasti A, Irigoyen C, Barandika O, López de Munain A, Ruiz-Ederra J. Current mutation discovery approaches in Retinitis Pigmentosa. Vision Res 2012; 75:117-29. [PMID: 23022136 DOI: 10.1016/j.visres.2012.09.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/08/2012] [Accepted: 09/13/2012] [Indexed: 12/22/2022]
Abstract
With a worldwide prevalence of about 1 in 3500-5000 individuals, Retinitis Pigmentosa (RP) is the most common form of hereditary retinal degeneration. It is an extremely heterogeneous group of genetically determined retinal diseases leading to progressive loss of vision due to impairment of rod and cone photoreceptors. RP can be inherited as an autosomal-recessive, autosomal-dominant, or X-linked trait. Non-Mendelian inheritance patterns such as digenic, maternal (mitochondrial) or compound heterozygosity have also been reported. To date, more than 65 genes have been implicated in syndromic and non-syndromic forms of RP, which account for only about 60% of all RP cases. Due to this high heterogeneity and diversity of inheritance patterns, the molecular diagnosis of syndromic and non-syndromic RP is very challenging, and the heritability of 40% of total RP cases worldwide remains unknown. However new sequencing methodologies, boosted by the human genome project, have contributed to exponential plummeting in sequencing costs, thereby making it feasible to include molecular testing for RP patients in routine clinical practice within the coming years. Here, we summarize the most widely used state-of-the-art technologies currently applied for the molecular diagnosis of RP, and address their strengths and weaknesses for the molecular diagnosis of such a complex genetic disease.
Collapse
Affiliation(s)
- Ander Anasagasti
- Division of Neurosciences, Instituto Biodonostia, San Sebastián, Gipuzkoa, Spain
| | | | | | | | | |
Collapse
|
5
|
Shin GW, Jung SH, Yim SH, Chung B, Yeol Jung G, Chung YJ. Stuffer-free multiplex ligation-dependent probe amplification based on conformation-sensitive capillary electrophoresis: a novel technology for robust multiplex determination of copy number variation. Electrophoresis 2012; 33:3052-61. [PMID: 22965760 DOI: 10.1002/elps.201200334] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 07/18/2012] [Accepted: 07/23/2012] [Indexed: 01/12/2023]
Abstract
Developing diagnostic tools based on the application of known disease/phenotype-associated copy number variations (CNVs) requires the capacity to measure CNVs in a multiplex format with sufficient reliability and methodological simplicity. In this study, we developed a reliable and user-friendly multiplex CNV detection method, termed stuffer-free MLPA-CE-SSCP, that combines a variation of multiplex ligation-dependent probe amplification (MLPA) with CE-SSCP. In this variation, MLPA probes were designed without the conventionally required stuffer sequences. To separate the similar-sized stuffer-free MLPA products, we adopted CE-SSCP rather than length-dependent conventional CE analysis. An examination of the genomic DNA from five cell lines known to vary in X-chromosome copy number (1-5) revealed that copy number determinations using stuffer-free MLPA-CE-SSCP were more accurate than those of conventional MLPA, and the CV of the measured copy numbers was significantly lower. Applying our system to measure the CNVs on autosomes between two HapMap individuals, we found that all peaks for CNV targets showed the expected copy number changes. Taken together, our results indicate that this new strategy can overcome the limitations of conventional MLPA, which are mainly related to long probe length and difficulties of probe preparation.
Collapse
Affiliation(s)
- Gi Won Shin
- Institute of Environmental and Energy Technology, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | | | | | | | | | | |
Collapse
|
6
|
De Gottardi A, Seijo S, Milá M, Alvarez MI, Bruguera M, Abraldes JG, Bosch J, García-Pagán JC. Bone morphogenetic protein receptor 2 in patients with idiopathic portal hypertension. J Cell Mol Med 2011; 16:2017-21. [PMID: 22129439 PMCID: PMC3822972 DOI: 10.1111/j.1582-4934.2011.01496.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In idiopathic portal hypertension (IPH) typical vascular lesions are present in the branches of the portal vein or in the perisinusoidal area of the liver. Similar histological alterations have been reported in the pulmonary vasculature of patients with idiopathic pulmonary artery hypertension (IPAH). As IPAH is associated with mutations of the bone morphogenetic protein receptor 2 (BMPR2) gene, the aim of this study was to investigate whether this association might also be found in patients with IPH. Twenty-three samples belonging to 21 unrelated caucasian patients with IPH followed in the hepatic haemodynamic laboratory of the Hospital Clinic in Barcelona were included in the study. All patients were studied for the entire open reading frame and splice site of the BMPR2 gene by direct sequencing and multiple ligation probe amplification (MLPA) in order to detect large deletions/duplications. None of the 23 patients had pulmonary artery hypertension. Four patients presented one single nucleotide polymorphism (SNP) in intron 5, four patients had a SNP in exon 12 and a SNP in exon 1 was found in two cases. Two patients had both intron 5 and exon 12 polymorphisms. All SNPs were previously described. Except for these three SNPs, neither mutations nor rearrangements have been identified in the BMPR2 gene in this population. We did not detect mutations or rearrangements in the coding region of the BMPR2 gene in our patients with IPH. These findings suggest that, in contrast to IPAH, mutations in BMPR2 are not involved in the pathogenesis of IPH.
Collapse
Affiliation(s)
- Andrea De Gottardi
- Hepatic Hemodynamic Laboratory, Liver Unit, Institut d'Investigacions Biomédiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Utine GE, Kiper PÖ, Alanay Y, Haliloğlu G, Aktaş D, Boduroğlu K, Tunçbilek E, Alikaşifoğlu M. Searching for Copy Number Changes in Nonsyndromic X-Linked Intellectual Disability. Mol Syndromol 2011; 2:64-71. [PMID: 22511893 DOI: 10.1159/000334289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2011] [Indexed: 11/19/2022] Open
Abstract
Intellectual disability (ID) has a prevalence of 2-3% with 0.3% of the population being severely retarded. Etiology is heterogeneous, owing to numerous genetic and environmental factors. Underlying etiology remains undetermined in 75-80% of mildly disabled patients and 20-50% of those severely disabled. Twelve percent of all ID is thought to be X-linked (XLID). This study covers copy number analysis of some of the known XLID genes, using multiplex ligation-dependent probe amplification (MLPA) in 100 nonsyndromic patients. One of the patients was found to have duplication in all exons of MECP2 gene, and another had duplication in the fifth exon of TM4SF2/TSPAN7 gene. Affymetrix® 6.0 whole-genome SNP microarray confirmed the duplication in MECP2 and showed duplication of exons 2-7 in TM4SF2/TSPAN7, respectively. MECP2 duplication has recently been recognized as a syndromic cause of XLID in males, whereas duplications in TM4SF2/TSPAN7 are yet to be determined as a cause of XLID. Being an efficient, rapid, easy-to-perform, easy-to-interpret, and cost-effective method of copy number analysis of specific DNA sequences, MLPA presents wide clinical utility and may be included in diagnostic workup of ID, particularly when microarrays are unavailable as a first-line approach.
Collapse
Affiliation(s)
- G E Utine
- Clinical Genetics Unit, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Tejada MI, Martínez-Bouzas C, García-Ribes A, Larrucea S, Acquadro F, Cigudosa JC, Belet S, Froyen G, López-Aríztegui MA. A child with mild X-linked intellectual disability and a microduplication at Xp22.12 including RPS6KA3. Pediatrics 2011; 128:e1029-33. [PMID: 21930553 DOI: 10.1542/peds.2010-0388] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Multiplex ligation-dependent probe amplification (MLPA) and array- comparative genomic hybridization analysis have been proven to be useful in the identification of submicroscopic copy-number imbalances in families with nonsyndromic X-linked intellectual disability (NS-XLID). Here we report the first description of a child with mild intellectual disability and a submicroscopic duplication at Xp22.12 identified by MLPA with a P106 MRX kit (MRC-Holland, Amsterdam, Netherlands) and further confirmed and characterized with a custom 244-k oligo-array, fluorescence in situ hybridization, quantitative polymerase chain reaction (qPCR), and immunoblotting. This 1.05-megabase duplication encompasses 7 genes, RPS6KA3 being the only of these genes known to be related to ID. The proband was an 8-year-old boy referred to the genetics unit for psychomotor retardation and learning disabilities. Both maternal brothers also showed learning difficulties and delayed language during childhood in a similar way to the proband. These boys also carried the duplication, as did the healthy mother and grandmother of the proband. The same duplication was also observed in the 5-year-old younger brother who presented with features of developmental delay and learning disabilities during the previous year. Increased RPS6KA3/RSK2 levels were demonstrated in the proband by qPCR and immunoblotting. To our knowledge, this is the first family identified with a submicroscopic duplication including the entire RPS6KA3/RSK2 gene, and our findings suggest that an increased dose of this gene is responsible for a mild form of NS-XLID.
Collapse
Affiliation(s)
- María-Isabel Tejada
- Molecular Genetics Laboratory, Department of Biochemistry, Cruces Hospital, 48903 Barakaldo, Bizkaia, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Jezela-Stanek A, Ciara E, Juszczak M, Pelc M, Materna-Kiryluk A, Krajewska-Walasek M. Cryptic x; autosome translocation in a boy--delineation of the phenotype. Pediatr Neurol 2011; 44:221-4. [PMID: 21310340 DOI: 10.1016/j.pediatrneurol.2010.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 08/19/2010] [Accepted: 10/01/2010] [Indexed: 11/25/2022]
Abstract
Chromosome X-to-autosome translocations [t(X;A)] are rare rearrangements with an estimated occurrence of 1 to 3 per 10,000 live births. Occurrences of Xq duplications have been observed in male and female subjects in whom the X chromosome segment escapes inactivation and results in functional disomy. We report a case of X;6 translocation in a 7-year-old boy with severe mental retardation, hypotonia, and recurrent respiratory tract infections. High-resolution chromosome analyses (fluorescence in situ hybridization, multiplex ligation probe-dependent amplification, and whole-genome array) revealed a terminal duplication of chromosome X at q28-qter (approximately 3.246 Mb in size) involving gene MECP2 and a terminal deletion (approximately 1.89 Mb) with the breakpoint at 6q27. This is the second report of a boy with a cryptic unbalanced Xq-autosome translocation. This case increases our understanding of mental disability caused by terminal Xq duplication.
Collapse
Affiliation(s)
- Aleksandra Jezela-Stanek
- Department of Medical Genetics, The Children's Memorial Health Institute, Aleja Dzieci Polskich 20, 04-736 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Suicide completion rates are significantly higher in males than females in most societies. Although gender differences in suicide rates have been partially explained by environmental and behavioral factors, it is possible that genetic factors, through differential expression between genders, may also help explain gender moderation of suicide risk. This study investigated X-linked genes in suicide completers using a two-step strategy. We first took advantage of the genetic structure of the French-Canadian population and genotyped 722 unrelated French-Canadian male subjects, of whom 333 were suicide completers and 389 were non-suicide controls, using a panel of 37 microsatellite markers spanning the entire X chromosome. Nine haplotype windows and several individual markers were associated with suicide. Significant results aggregated primarily in two regions, one in the long arm and another in the short arm of chromosome X, limited by markers DXS8051 and DXS8102, and DXS1001 and DXS8106, respectively. The second stage of the study investigated differential brain expression of genes mapping to associated regions in Brodmann areas 8/9, 11, 44 and 46, in an independent sample of suicide completers and controls. Six genes within these regions, Rho GTPase-activating protein 6, adaptor-related protein complex 1 sigma 2 subunit, glycoprotein M6B, ribosomal protein S6 kinase 90 kDa polypeptide 3, spermidine/spermine N(1)-acetyltransferase 1 and THO complex 2, were found to be differentially expressed in suicide completers.
Collapse
|
11
|
Cali F, Ragalmuto A, Chiavetta V, Calabrese G, Fichera M, Vinci M, Ruggeri G, Schinocca P, Sturnio M, Romano S, Romano V, Elia M. Novel deletion of the E3A ubiquitin protein ligase gene detected by multiplex ligation-dependent probe amplification in a patient with Angelman syndrome. Exp Mol Med 2010; 42:842-8. [PMID: 21072004 DOI: 10.3858/emm.2010.42.12.087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Angelman syndrome (AS) is a severe neurobehavioural disorder caused by failure of expression of the maternal copy of the imprinted domain located on 15q11-q13. There are different mechanisms leading to AS: maternal microdeletion, uniparental disomy, defects in a putative imprinting centre, mutations of the E3 ubiquitin protein ligase (UBE3A) gene. However, some of suspected cases of AS are still scored negative to all the latter mutations. Recently, it has been shown that a proportion of negative cases bear large deletions overlapping one or more exons of the UBE3A gene. These deletions are difficult to detect by conventional gene-scanning methods due to the masking effect by the non-deleted allele. In this study, we have used for the first time multiplex ligation-dependent probe amplification (MLPA) and comparative multiplex dosage analysis (CMDA) to search for large deletions affecting the UBE3A gene. Using this approach, we identified a novel causative deletion involving exon 8 in an affected sibling. Based on our results, we propose the use of MLPA as a fast, accurate and inexpensive test to detect large deletions in the UBE3A gene in a small but significant percentage of AS patients.
Collapse
Affiliation(s)
- Francesco Cali
- Laboratorio di Genetica Molecolare, IRCCS Oasi Maria SS, Troina (EN), Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Christofolini DM, de Paula Ramos MA, Kulikowski LD, da Silva Bellucco FT, Belangero SIN, Brunoni D, Melaragno MI. Subtelomeric rearrangements and copy number variations in people with intellectual disabilities. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2010; 54:938-942. [PMID: 20807304 DOI: 10.1111/j.1365-2788.2010.01325.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
BACKGROUND The most prevalent type of structural variation in the human genome is represented by copy number variations that can affect transcription levels, sequence, structure and function of genes. METHOD In the present study, we used the multiplex ligation-dependent probe amplification (MLPA) technique and quantitative PCR for the detection of copy number variation in 132 intellectually disabled male patients with normal karyotypes and negative fragile-X-testing. RESULTS Ten of these patients (7.6%) showed copy number variation in the subtelomeric regions, including deletions and duplications. DISCUSSION Duplications of the SECTM1 gene, located at 17q25.3, and of the FLJ22115 gene, located at 20p13, could be associated with phenotype alterations. This study highlights the relevance in the aetiology of intellectual disability of subtelomeric rearrangements that can be screened by MLPA and other molecular techniques.
Collapse
Affiliation(s)
- D M Christofolini
- Morphology and Genetics Department, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
13
|
Madrigal I, Fernández-Burriel M, Rodriguez-Revenga L, Cabrera JC, Martí M, Mur A, Milà M. Xq26.2-q26.3 microduplication in two brothers with intellectual disabilities: clinical and molecular characterization. J Hum Genet 2010; 55:822-6. [PMID: 20861843 DOI: 10.1038/jhg.2010.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Partial duplications involving the long arm of the X chromosome are associated with mental retardation, short stature, microcephaly, hypopituitarism and a wide range of physical findings. We identified an inherited Xq26.2-Xq26.3 duplication in two brothers with severe mental retardation, hypotonia, growth delay, craniofacial disproportion and dental malocclusion. Chromosome analysis was normal and multiplex ligation-dependent probe amplification analysis detected duplication on Xq26. Further characterization by array comparative genomic hybridization and quantitative PCR helped to determine proximal and distal duplication breakpoints giving a size of approximately 2.8 Mb. The duplication encompasses 24 known genes, including the X-linked mental retardation genes ARHGEF6, PHF6, HPRT1 and SLC9A6. Clinical and molecular characterization of Xq duplications will shed more light into the phenotypic implication of functional disomy of X-chromosome genes.
Collapse
|
14
|
Abstract
Fragile X syndrome, the most prevalent inherited cause of mental retardation, is related to hyperexpansion of a polymorphic CGG repeat of the FMR1 gene. Expansion of 55-200 repeats are called premutations and characterize carriers who usually have no mental impairment. The disease causing full mutations exceed 200 CGG repeats, are hypermethylated and lead to transcriptional silencing of the gene and absence of the Fragile X mental retardation protein (FMRP). Diagnostic approaches involve molecular and immunocytochemical techniques. Southern blot, which allows mutations to be detected and methylation status to be determined in a single test, remains the procedure of choice for most laboratories. Modifications of PCR methods, including methylation specific PCR, are also proposed but their implementation is still in question because of inherent difficulties to amplify CGG repeats, distinguish between mosaic patterns and interpret results in female individuals. The FMRP antibody test is also suitable for large population screening and elucidation of Fragile X syndrome cases with no CGG expansion, but it is not widely applied. In search for novel diagnostic approaches, use of PCR as a first prescreening test followed by Southern blot is considered the most reliable procedure.
Collapse
|
15
|
Structural variation in Xq28: MECP2 duplications in 1% of patients with unexplained XLMR and in 2% of male patients with severe encephalopathy. Eur J Hum Genet 2008; 17:444-53. [PMID: 18985075 DOI: 10.1038/ejhg.2008.208] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Duplications in Xq28 involving MECP2 have been described in patients with severe mental retardation, infantile hypotonia, progressive spasticity, and recurrent infections. However, it is not yet clear to what extent these and accompanying symptoms may vary. In addition, the frequency of Xq28 duplications including MECP2 has yet to be determined in patients with unexplained X-linked mental retardation and (fe)males with severe encephalopathy. In this study, we used multiplex ligation-dependent probe amplification to screen Xq28 including MECP2 for deletions and duplications in these patient cohorts. In the group of 283 patients with X-linked mental retardation, we identified three Xq28 duplications including MECP2, which suggests that approximately 1% of unexplained X-linked mental retardation may be caused by MECP2 duplications. In addition, we found three additional MECP2 duplications in 134 male patients with mental retardation and severe, mostly progressive, neurological symptoms, indicating that the mutation frequency could be as high as 2% in this group of patients. In 329 female patients, no Xq28 duplications were detected. In total, we assessed 13 male patients with a MECP2 duplication from six unrelated families. Moderate to severe mental retardation and childhood hypotonia was noted in all patients. The majority of the patients also presented with absent speech, seizures, and progressive spasticity as well as ataxia or an ataxic gait and cerebral atrophy, two previously unreported symptoms. We propose to implement DNA copy number testing for MECP2 in the current diagnostic testing in all males with moderate to severe mental retardation accompanied by (progressive) neurological symptoms.
Collapse
|
16
|
Smyk M, Obersztyn E, Nowakowska B, Nawara M, Cheung SW, Mazurczak T, Stankiewicz P, Bocian E. Different-sized duplications of Xq28, including MECP2, in three males with mental retardation, absent or delayed speech, and recurrent infections. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:799-806. [PMID: 18165974 DOI: 10.1002/ajmg.b.30683] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In XY males, duplication of any part of the X chromosome except the pseudoautosomal region leads to functional disomy of the corresponding genes. We describe three unrelated male patients with mental retardation (MR), absent or delayed speech, and recurrent infections. Using high-resolution comparative genomic hybridization (HR-CGH), whole genome array comparative genomic hybridization (array CGH), fluorescent in situ hybridization (FISH), and multiplex ligation probe amplification (MLPA), we have identified and characterized two different unbalanced Xq27.3-qter translocations on the Y chromosome (approx. 9 and 12 Mb in size) and one submicroscopic interstitial duplication (approx. 0.3-1.3 Mb) involving the MECP2 gene. Despite the differences in size of the duplicated segments, the patients share a clinical phenotype that overlaps with the features described in patients with MECP2 duplication. Our data confirm previous observations that MECP2 is the most important dosage-sensitive gene responsible for neurologic development in patients with duplications on the distal part of chromosome Xq.
Collapse
Affiliation(s)
- M Smyk
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Wong LJC, Dimmock D, Geraghty MT, Quan R, Lichter-Konecki U, Wang J, Brundage EK, Scaglia F, Chinault AC. Utility of oligonucleotide array-based comparative genomic hybridization for detection of target gene deletions. Clin Chem 2008; 54:1141-8. [PMID: 18487280 DOI: 10.1373/clinchem.2008.103721] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND direct DNA sequencing is the primary clinical technique for identifying mutations in human disease, but sequencing often does not detect intragenic or whole-gene deletions. Oligonucleotide array-based comparative genomic hybridization (CGH) is currently in clinical use to detect major changes in chromosomal copy number. METHODS a custom oligonucleotide-based microarray was constructed to provide high-density coverage of an initial set of 130 nuclear genes involved in the pathogenesis of metabolic and mitochondrial disorders. Standard array CGH procedures were used to test patient DNA samples for regions of copy number change. Sequencing of regions of predicted breakpoints in genomic DNA and PCR analysis were used to confirm oligonucleotide array CGH data. RESULTS oligonucleotide array CGH identified intragenic exonic deletions in 2 cases: a heterozygous single-exon deletion of 4.5 kb in the SLC25A13 gene [solute carrier family 25, member 13 (citrin)] in an individual with citrin deficiency and a homozygous 10.5-kb deletion of exons 13-17 in the ABCB11 gene [PFIC2, ATP-binding cassette, sub-family B (MDR/TAP), member 11] in a patient with progressive familial intrahepatic cholestasis. In 2 females with OTC deficiency, we also found 2 large heterozygous deletions of approximately 7.4 Mb and 9 Mb on the short arm of the X chromosome extending from sequences telomeric to the DMD gene [dystrophin (muscular dystrophy, Duchenne and Becker types)] to sequences within or centromeric to the OTC gene (ornithine carbamoyltransferase). CONCLUSIONS these examples illustrate the successful use of custom oligonucleotide arrays to detect either whole-gene deletions or intragenic exonic deletions. This technology may be particularly useful as a complementary diagnostic test in the context of a recessive disease when only one mutant allele is found by sequencing.
Collapse
Affiliation(s)
- Lee-Jun C Wong
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Genetik in der Pädiatrie als Interaktion zwischen Klinik und Labor. Monatsschr Kinderheilkd 2008. [DOI: 10.1007/s00112-008-1681-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Madrigal I, Rodríguez-Revenga L, Badenas C, Sánchez A, Milà M. Deletion of the OPHN1 gene detected by aCGH. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2008; 52:190-194. [PMID: 18261018 DOI: 10.1111/j.1365-2788.2007.00997.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
BACKGROUND The oligophrenin 1 gene (OPHN1) is an Rho-GTPase-activating protein involved in the regulation of the G-protein cycle required for dendritic spine morphogenesis. Mutations in this gene are implicated in X-linked mental retardation (XLMR). METHODS We report a deletion spanning exons 21 and 22 of the OPHN1 gene identified by a tiling path X-chromosome array comparative genomic hybridization (CGH) and multiplex ligation-dependent probe amplification, confirmed by polymerase chain reaction (PCR), in a family with four males with intellectual disabilities. RESULTS Patients harbouring mutations in this gene share the same clinical manifestations reinforcing the idea of a syndromic XLMR. The most important neurological findings are cerebellar hypoplasia and ventriculomegaly. CONCLUSIONS We recommend screening of the OPHN1 gene in male patients with XLMR and cerebellar anomalies. This case highlights the value of high-resolution techniques as Multiplex Ligation Probe Amplification (MLPA) and CGH array for a better characterization of copy number changes and suggests that MLPA technology may be very useful for an initial screening of small deletions and duplications in XLMR patients.
Collapse
Affiliation(s)
- I Madrigal
- Biochemistry and Molecular Genetics Department Hospital Clínic and IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | | | | | | | | |
Collapse
|
20
|
X-chromosome tiling path array detection of copy number variants in patients with chromosome X-linked mental retardation. BMC Genomics 2007; 8:443. [PMID: 18047645 PMCID: PMC2234261 DOI: 10.1186/1471-2164-8-443] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 11/29/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aproximately 5-10% of cases of mental retardation in males are due to copy number variations (CNV) on the X chromosome. Novel technologies, such as array comparative genomic hybridization (aCGH), may help to uncover cryptic rearrangements in X-linked mental retardation (XLMR) patients. We have constructed an X-chromosome tiling path array using bacterial artificial chromosomes (BACs) and validated it using samples with cytogenetically defined copy number changes. We have studied 54 patients with idiopathic mental retardation and 20 controls subjects. RESULTS Known genomic aberrations were reliably detected on the array and eight novel submicroscopic imbalances, likely causative for the mental retardation (MR) phenotype, were detected. Putatively pathogenic rearrangements included three deletions and five duplications (ranging between 82 kb to one Mb), all but two affecting genes previously known to be responsible for XLMR. Additionally, we describe different CNV regions with significant different frequencies in XLMR and control subjects (44% vs. 20%). CONCLUSION This tiling path array of the human X chromosome has proven successful for the detection and characterization of known rearrangements and novel CNVs in XLMR patients.
Collapse
|
21
|
Wieland I, Weidner C, Ciccone R, Lapi E, McDonald-McGinn D, Kress W, Jakubiczka S, Collmann H, Zuffardi O, Zackai E, Wieacker P. Contiguous gene deletions involving EFNB1, OPHN1, PJA1 and EDA in patients with craniofrontonasal syndrome. Clin Genet 2007; 72:506-16. [PMID: 17941886 DOI: 10.1111/j.1399-0004.2007.00905.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Craniofrontonasal syndrome (CFNS [MIM 304110]) is an X-linked malformation syndrome characterized by craniofrontonasal dysplasia and extracranial manifestations in heterozygous females. In the majority of patients CFNS is caused by mutations in the EFNB1 gene (MIM 300035). We identified three girls with classical CFNS and mild developmental delay harboring de novo deletions of the EFNB1 gene. Applying haplotype analysis, Southern blot hybridization and array-comparative genomic hybridization, deletion of EFNB1 was found to be part of contiguous gene deletions in the patients. In one patient the deletion interval includes the genes for oligophrenin-1 (OPHN1 [MIM 300127]) and praja 1 (PJA1 [MIM 300420]). In the second patient the deletion includes OPHN1, PJA1 and the gene for ectodysplasin A (EDA [MIM 300451]). In the third patient EFNB1 gene deletion may include deletion of regulatory regions 5' of OPHN1. Previously, the OPHN1 gene has been shown to be responsible for recessive X-linked mental retardation. Although it is too early to predict the future cognitive performance of the two infant patients with contiguous gene deletions of OPHN1-EFNB1-PJA1, mild learning disabilities have been recognized in the older, third patient. It is important for genetic counseling to be aware that their male offspring may not only be carriers of CFNS but may also be affected by mental retardation and anhidrotic ectodermal dysplasia.
Collapse
Affiliation(s)
- I Wieland
- Institut für Humangenetik, Otto-von-Guericke-Universität, Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|