1
|
Dean DD, Agarwal S, Muthuswamy S. Fragile X molecular investigation and genetic counseling of intellectual disability/developmental delay patients in an Indian scenario. Expert Rev Mol Diagn 2019; 19:641-649. [PMID: 31159589 DOI: 10.1080/14737159.2019.1622416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Fragile X Syndrome (FXS), the most common cause of inherited intellectual disability (ID), is caused by a CGG repeat expansion (full mutation (FM), >200 CGG) at the Fragile X Mental Retardation 1 (FMR1) gene. Early identification of FXS has prognostic significance for affected individuals due to early initiation of interventions. Genetic counseling and family screening can aid parents and at-risk asymptomatic carriers (premutation (PM), 55-200 CGG) in taking proper reproductive decisions. Methodology: The present study utilizes Triplet Primed-Polymerase Chain Reaction (TP-PCR) methodology for detecting the repeat expansion at FMR1 gene in 233 Indian intellectual disability/developmental delay (ID/DD) patients. Results: We have identified 18/233 (7.7%) FXS positive cases. Early diagnosis was made in 66.7% cases (<10 years). Extended family screening in 14 affected individuals identified 9 additional FM cases (7 males and 2 females) and 23 carrier PM females, which otherwise could have been missed. Four prenatal diagnoses were also performed, leading to the identification of 1 PM and 1 FM carrier fetus. Conclusion: A high frequency (7.7%) of FXS among Indian ID/DD subjects obtained in this study depicted the need for more professional recommendations concerning prompt referral for genetic testing, and increased exposure to information about FXS to pediatricians.
Collapse
Affiliation(s)
- Deepika Delsa Dean
- a Department of Medical Genetics , Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS) , Lucknow , UP , India
| | - Sarita Agarwal
- a Department of Medical Genetics , Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS) , Lucknow , UP , India
| | - Srinivasan Muthuswamy
- a Department of Medical Genetics , Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS) , Lucknow , UP , India
| |
Collapse
|
2
|
Abstract
Individuals carrying an FMR1 expansion between 55 and 200 CGG repeats, are at risk of developing the Fragile X-associated tremor/ataxia syndrome (FXTAS), a late onset neurodegenerative disorder characterized by cerebellar gait ataxia, intentional tremor, neuropathy, parkinsonism, cognitive decline, and psychological disorders, such as anxiety and depression. In addition, brain atrophy, white matter disease, and hyperintensities of the middle cerebellar peduncles can also be present. The neuropathological distinct feature of FXTAS is represented by the presence of eosinophilic intranuclear inclusions in neurons and astrocytes throughout the brain and in other tissues. In this chapter, protocols for available diagnostic tools, in both humans and mice, the clinical features and the basic molecular mechanisms leading to FXTAS and the animal models proposed to study this disorder are discussed.
Collapse
|
3
|
Chowdhury MR, Chauhan S, Dabral A, Thelma BK, Gupta N, Kabra M. Validation of Polymerase Chain Reaction-Based Assay to Detect Actual Number of CGG Repeats in FMR1 Gene in Indian Fragile X Syndrome Patients. J Child Neurol 2017; 32:371-378. [PMID: 28193118 DOI: 10.1177/0883073816683075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Molecular genetic testing for fragile X (FX) is complicated due to the large variation in the size of CGG expansion. The aim of this study was to apply this new technique using AmplideX FMR1 PCR assay, which is considered a better diagnostic tool for detecting expanded alleles in Indian population. The primary objective was to identify the carrier status of females and to correlate the instability of premutation alleles in females with the repeat sizes. 24 children with FX based on rapid PCR and 29 female relatives of these patients were included. Out of the 29 females screened, those whose child (or children) was affected by FX, were all premutation carriers confirming their role in transmission. The smallest PM allele that expanded into FM in the next generation was 78 repeats and the smallest PM allele detected was 63 repeats, and when transmitted from mother to offspring remained in the premutation range. In 4 families, the repeat size of the allele reduced from PM to normal repeat numbers in their daughters and in 1 case to borderline PM range. Thus, apart from the reduced turnaround time, this PCR based assay offers advantage by its sensitivity to detect CGG repeats in the intermediate region and lower range of premutation alleles. It also provides added information of AGG interruptions, which may have an impact on the counseling of women with intermediate and PM alleles.
Collapse
Affiliation(s)
- Madhumita Roy Chowdhury
- 1 Genetics Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeepa Chauhan
- 1 Genetics Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Anjali Dabral
- 2 Department of Genetics, University of Delhi, South Campus, New Delhi, India
| | - B K Thelma
- 2 Department of Genetics, University of Delhi, South Campus, New Delhi, India
| | - Neerja Gupta
- 1 Genetics Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Madhulika Kabra
- 1 Genetics Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
4
|
Abstract
Fragile X syndrome (FXS), a trinucleotide repeat disorder, is the most common heritable form of cognitive impairment. Since the discovery of the FMR1 gene in 1991, great strides have been made in the field of molecular diagnosis for FXS. Cytogenetic analysis, which was the method of diagnosis in the early 1990, was replaced by Southern blot and PCR analysis albeit with some limitations. In the past few years many PCR-based methodologies, able to amplify large full mutation expanded alleles, with or without methylation, have been proposed. Reviewed here are the advantages, disadvantages and limitations of the most recent developments in the field of FXS diagnosis.
Collapse
Affiliation(s)
- Flora Tassone
- a Department of Biochemistry and Molecular Medicine , University of California, Davis, School of Medicine , Davis , CA 95616 , USA.,b MIND Institute , University of California Davis Medical Center , Sacramento , CA 95817 , USA
| |
Collapse
|
5
|
Extra alleles in FMR1 triple-primed PCR: artifact, aneuploidy, or somatic mosaicism? J Mol Diagn 2015; 16:689-96. [PMID: 25307758 DOI: 10.1016/j.jmoldx.2014.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/06/2014] [Accepted: 06/06/2014] [Indexed: 12/13/2022] Open
Abstract
Triple-primed PCR assays have become the preferred fragile X syndrome testing method. Using a commercially available assay, we detected a reproducible extra peak(s) in 0.5% of 13,161 clinical samples. The objectives of this study were to determine the cause of these extra peaks; to identify whether these peaks represent an assay specific artifact, an underlying chromosome aneuploidy, or somatic mosaicism; and to ascertain their clinical relevance. The presence of an extra allele(s) was confirmed by a laboratory-developed PCR, with sequencing of the FMR1 5' UTR or Southern blot for some samples. The laboratory-developed procedure detected the extra allele(s) in 57 of 64 samples. Thus, we confirmed an extra peak, typically of lower abundance, in approximately 0.4% of all samples. Of these samples, 5 were from males and 52 were from heterozygous or homozygous females. Six patients likely had X chromosome aneuploidies. In 82.3% of samples, the extra allele had fewer repeats than the predominant allele(s). Additional alleles detected by FMR1 triple-primed PCR are not an assay-specific artifact and are likely due to X chromosome aneuploidies or somatic repeat instability. Additional normal alleles likely have no clinical significance for fragile X syndrome carrier or affected status. Extra alleles in individuals with normal karyotypes probably represent FMR1 somatic variation.
Collapse
|
6
|
Chaudhary AG, Hussein IR, Abuzenadah A, Gari M, Bassiouni R, Sogaty S, Lary S, Al-Quaiti M, Al Balwi M, Al Qahtani M. Molecular diagnosis of fragile X syndrome using methylation sensitive techniques in a cohort of patients with intellectual disability. Pediatr Neurol 2014; 50:368-76. [PMID: 24630283 DOI: 10.1016/j.pediatrneurol.2013.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/04/2013] [Accepted: 11/23/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Fragile X syndrome, the most common form of inherited intellectual disability, is caused by expansion of CGG trinucleotide repeat at the 5' untranslated region of the FMR1 gene at Xq27. In affected individuals, the CGG repeat expansion leads to hypermethylation and the gene is transcriptionally inactive. Our aim was to identify fragile X syndrome among children with intellectual disability in Saudi Arabia. PATIENTS AND METHODS The study included 63 patients (53 males, 10 females) presented with intellectual disability, 29 normal subjects, and 23 other family members. DNA samples from six patients previously diagnosed with fragile X syndrome by Southern blot technique were used as positive controls. The method was based on bisulfite treatment of DNA followed by two different techniques. The first technique applied polymerase chain reaction amplification using one set of primers specific for amplifying methylated CpG dinucleotide region; another set designed to amplify the unmethylated CGG repeats. The second technique used the methylation-specific melting curve analysis for detection of methylation status of the FMR1 promoter region. RESULTS Molecular testing using methylation sensitive polymerase chain reaction had shown amplified products in all normal subjects using unmethylated but not methylated primers indicating normal alleles, whereas amplified products were obtained using methylated polymerase chain reaction primers in fragile X syndrome-positive samples and in 9 of 53 males, indicating affected individuals. Molecular testing using melting curve analysis has shown a single low melting peak in all normal males and in (44/53) patients indicating unmethylated FMR1 gene, whereas high melting peak indicating methylated gene was observed in the fragile X syndrome-positive samples and in 9 of 53 patients. We found 100% concordance between results of both techniques and the results of Southern blot analysis. Three samples have shown both methylated and unmethylated alleles, indicating possible mosaicism. No female patients or carriers could be detected by both techniques. CONCLUSION The technique can be applied for the rapid screening for fragile X syndrome among patients with intellectual disability. The impact of mosaicism on clinical severity needs further investigation.
Collapse
Affiliation(s)
- Adeel G Chaudhary
- Faculty of Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ibtessam R Hussein
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| | - Adel Abuzenadah
- Faculty of Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mamdouh Gari
- Faculty of Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Randa Bassiouni
- Pediatric Hospital, Ministry of Health, Al Taif, Kingdom of Saudi Arabia
| | | | - Sahira Lary
- Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Maha Al-Quaiti
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mohammed Al Balwi
- King Abdulaziz Medical City for National Guard Health Affairs, and King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Al Qahtani
- Faculty of Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Acharya K, Schindler A. Developmental and behavioral pediatricians' attitudes toward screening for fragile X. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2013; 118:284-93. [PMID: 23937370 PMCID: PMC3744113 DOI: 10.1352/1944-7558-188.4.284] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Developmental and behavioral pediatricians (DBP) diagnose and care for children with fragile X syndrome. Their attitudes toward FMR1 newborn screening (NBS) and FMR1 carrier testing in childhood could highlight potential pitfalls with FMR1 NBS. We conducted a cross-sectional survey with an adjusted response rate of 61%. Among DBP, 74% supported universal FMR1 NBS, preferring to identify both full mutations and premutations. DBP also support FMR1 testing of asymptomatic siblings. Although DBP support testing for premutations at various points in the lifespan, DBP are not familiar with the array of fragile X-associated disorders (FXAD). Targeted educational interventions are needed to ensure that all health care providers have the knowledge and competence to consent and to counsel families on FXAD.
Collapse
|
8
|
Tassone F, Iong KP, Tong TH, Lo J, Gane LW, Berry-Kravis E, Nguyen D, Mu LY, Laffin J, Bailey DB, Hagerman RJ. FMR1 CGG allele size and prevalence ascertained through newborn screening in the United States. Genome Med 2012; 4:100. [PMID: 23259642 PMCID: PMC4064316 DOI: 10.1186/gm401] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/19/2012] [Accepted: 12/21/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Population screening for FMR1 mutations has been a topic of considerable discussion since the FMR1 gene was identified in 1991. Advances in understanding the molecular basis of fragile X syndrome (FXS) and in genetic testing methods have led to new, less expensive methodology to use for large screening endeavors. A core criterion for newborn screening is an accurate understanding of the public health burden of a disease, considering both disease severity and prevalence rate. This article addresses this need by reporting prevalence rates observed in a pilot newborn screening study for FXS in the US. METHODS Blood spot screening of 14,207 newborns (7,312 males and 6,895 females) was conducted in three birthing hospitals across the United States beginning in November 2008, using a PCR-based approach. RESULTS The prevalence of gray zone alleles was 1:66 females and 1:112 males, while the prevalence of a premutation was 1:209 females and 1:430 males. Differences in prevalence rates were observed among the various ethnic groups; specifically higher frequency for gray zone alleles in males was observed in the White group compared to the Hispanic and African-American groups. One full mutation male was identified (>200 CGG repeats). CONCLUSIONS The presented pilot study shows that newborn screening in fragile X is technically feasible and provides overall prevalence of the premutation and gray zone alleles in the USA, suggesting that the prevalence of the premutation, particularly in males, is higher than has been previously reported.
Collapse
Affiliation(s)
- Flora Tassone
- Department of Biochemistry and Molecular Medicine, UC Davis, Sacramento, CA 95817, USA
- MIND Institute, UC Davis Medical Center, Sacramento, CA 95817, USA
| | - Ka Pou Iong
- Department of Biochemistry and Molecular Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Tzu-Han Tong
- Department of Biochemistry and Molecular Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Joyce Lo
- Department of Biochemistry and Molecular Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Louise W Gane
- MIND Institute, UC Davis Medical Center, Sacramento, CA 95817, USA
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Danh Nguyen
- Division of Biostatistics, UC Davis, Davis, CA 95616, USA
| | - Lisa Y Mu
- Division of Biostatistics, UC Davis, Davis, CA 95616, USA
| | - Jennifer Laffin
- Department of Pediatrics, University of Wisconsin, Madison, WI 53706, USA
| | - Don B Bailey
- RTI International, Research Triangle Park, NC 27709, USA
| | - Randi J Hagerman
- MIND Institute, UC Davis Medical Center, Sacramento, CA 95817, USA
- Department of Pediatrics, UC Davis, Sacramento, CA 95817, USA
| |
Collapse
|
9
|
Nahhas FA, Monroe TJ, Prior TW, Botma PI, Fang J, Snyder PJ, Talbott SL, Feldman GL. Evaluation of the Human Fragile X Mental Retardation 1 Polymerase Chain Reaction Reagents to Amplify theFMR1Gene: Testing in a Clinical Diagnostic Laboratory. Genet Test Mol Biomarkers 2012; 16:187-92. [DOI: 10.1089/gtmb.2011.0128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Fatimah A. Nahhas
- University Laboratories—Molecular Genetics Diagnostic Laboratory, Detroit Medical Center, Detroit, Michigan
| | - Thomas J. Monroe
- Molecular Diagnostics Laboratory, Spectrum Health, Grand Rapids, Michigan
| | - Thomas W. Prior
- Molecular Pathology Laboratory, Ohio State University, Columbus, Ohio
| | - Patricia I. Botma
- Molecular Diagnostics Laboratory, Spectrum Health, Grand Rapids, Michigan
| | - Jin Fang
- Molecular Pathology Laboratory, Ohio State University, Columbus, Ohio
| | - Pamela J. Snyder
- Molecular Pathology Laboratory, Ohio State University, Columbus, Ohio
| | - Sandi L. Talbott
- Molecular Diagnostics Laboratory, Spectrum Health, Grand Rapids, Michigan
| | - Gerald L. Feldman
- University Laboratories—Molecular Genetics Diagnostic Laboratory, Detroit Medical Center, Detroit, Michigan
- Departments of Pediatrics and Pathology, Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan
| |
Collapse
|
10
|
Weck KE, Zehnbauer B, Datto M, Schrijver I. Molecular genetic testing for fragile X syndrome: laboratory performance on the College of American Pathologists proficiency surveys (2001-2009). Genet Med 2012; 14:306-12. [PMID: 22241100 DOI: 10.1038/gim.2011.11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The College of American Pathologists offers biannual proficiency testing for molecular analysis of fragile X syndrome. The purpose of this study was to analyze laboratory performance on the fragile X proficiency surveys from 2001 to 2009. METHODS Individual laboratory responses were analyzed for accuracy of genotype determination (normal, gray zone, premutation, or full mutation) and size analysis of the FMR1 trinucleotide repeat region. The analytical sensitivity and specificity of testing for fragile X were calculated, and laboratory performance for trinucleotide repeat sizing was evaluated. RESULTS Overall, laboratories demonstrated analytical sensitivity of 99% and 96% for detection of full mutations associated with fragile X syndrome in males and females, respectively; analytical sensitivity of 98% for detection of premutations; and analytical specificity of 99.9%. Size measurements of the CGG repeat region were acceptable from most laboratories, with an increase in the range of reported sizes observed for larger repeat expansions. CONCLUSIONS Molecular genetic testing for fragile X syndrome demonstrated excellent sensitivity and specificity by laboratories participating in the College of American Pathologists (CAP) surveys. Allele sizing demonstrated good performance overall with improved accuracy over the study period. Participation in proficiency testing can aid laboratories in assessing individual performance and need for calibration of assays.
Collapse
Affiliation(s)
- Karen E Weck
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | | | | | | | | |
Collapse
|
11
|
FMR1 premutation carrier frequency in patients undergoing routine population-based carrier screening: insights into the prevalence of fragile X syndrome, fragile X-associated tremor/ataxia syndrome, and fragile X-associated primary ovarian insufficiency in the United States. Genet Med 2011; 13:39-45. [PMID: 21116185 DOI: 10.1097/gim.0b013e3181fa9fad] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Fragile X syndrome is caused by expansion and methylation of a CGG tract in the 5' untranslated region of the FMR1 gene. The estimated frequency of expanded alleles (≥55 repeats) in the United States is 1:257-1:382, but these estimates were not calculated from unbiased populations. We sought to determine the frequency of fragile X syndrome premutation (55-200 repeats) and full mutation (>200 repeats) alleles in nonselected, unbiased populations undergoing routine carrier screening for other diseases. METHODS A previously validated laboratory-developed test using triplet-primed polymerase chain reaction was used to detect premutation and full mutation alleles in an unselected series of 11,759 consecutive cystic fibrosis carrier screening samples and 2011 samples submitted for screening for genetic diseases prevalent among the Ashkenazi Jewish population. RESULTS Premutations were identified in 48 cystic fibrosis screening samples (1:245) and 15 samples (1:134) from the Ashkenazi Jewish population. Adjusted for the ethnic mix of the US population and self-reported ethnicity in our screening population, the estimated female premutation carrier frequency in the United States was 1:178. The calculated frequency of full mutation alleles was 1:3335 overall, and the calculated premutation frequency in males was 1:400. Based on frequency of larger, ≥70 repeat alleles, and reported penetrance, the calculated fragile X-associated tremor and ataxia syndrome, and fragile X-associated primary ovarian insufficiency frequencies is 1:4848 and 1:3560, respectively. CONCLUSION Our calculated fragile X syndrome carrier rate is higher than previous estimates for the US population and warrants further consideration of population-based carrier screening.
Collapse
|
12
|
Hantash FM, Goos DG, Tsao D, Quan F, Buller-Burckle A, Peng M, Jarvis M, Sun W, Strom CM. Qualitative assessment of FMR1 (CGG)n triplet repeat status in normal, intermediate, premutation, full mutation, and mosaic carriers in both sexes: implications for fragile X syndrome carrier and newborn screening. Genet Med 2011; 12:162-73. [PMID: 20168238 DOI: 10.1097/gim.0b013e3181d0d40e] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
PURPOSE Fragile X syndrome is caused by expansion and subsequent methylation of a CGG trinucleotide repeat in the FMR1 5'-untranslated region. Southern blot analysis is typically required to determine expansion size for triplet repeat lengths >200. We describe a triplet-primed polymerase chain reaction-based method using automated capillary electrophoresis detection for qualitative assessment of expanded CGG repeats. METHODS The assay uses triplet-primed polymerase chain reaction in combination with GC-melting reagents and substitution of 7-deaza-2-deoxyGTP for dGTP. Amplicons are resolved by capillary electrophoresis. RESULTS A distinctive pattern of tapering or "stutter" polymerase chain reaction amplification was evident on capillary electrophoresis in male and female patients harboring all expanded allele lengths examined (up to 2000 CGG repeats) and could be used to differentiate normal, intermediate, premutation, and full mutation alleles. Full mutation alleles exhibited an additional late-migrating amplicon on capillary electrophoresis. Mixing experiments demonstrated sensitivity as low as 1% for detection of the full mutation allele. In a 1275-sample concordance study against our existing polymerase chain reaction platform (with Southern blot analysis for repeat lengths ≥55), the triplet-primed polymerase chain reaction method exhibited 100% concordance for normal, intermediate, expanded, and full mutation alleles. This method also detected the full mutation alleles in DNA isolated from blood spots. CONCLUSION This assay provides an accurate assessment of FMR1 repeat status and holds promise for use in carrier and newborn screening. The method distinguishes normal homozygous females from full mutation carrying females. Although the method is not useful for accurate sizing, it supplements the classic polymerase chain reaction method and results in significant reduction in the number of Southern blot analyses required to be performed in the laboratory to accurately assess the FMR1 genotype in all individuals.
Collapse
Affiliation(s)
- Feras M Hantash
- Department of Molecular Genetics, Nichols Institute, Quest Diagnostics, San Juan Capistrano, California 92690, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hill MK, Archibald AD, Cohen J, Metcalfe SA. A systematic review of population screening for fragile X syndrome. Genet Med 2010; 12:396-410. [PMID: 20548240 DOI: 10.1097/gim.0b013e3181e38fb6] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To conduct a systematic review of literature regarding population-based screening for fragile X syndrome in newborns and women of reproductive age, either before or during pregnancy. METHODS Seven electronic databases were searched for English language studies published between January 1991 and November 2009. Data extraction was performed for all included studies. Results were synthesized using a narrative approach. RESULTS One article that examined offering newborn screening for fragile X syndrome and 10 that examined the offer of fragile X syndrome screening to women of reproductive age were identified. Two of these articles also addressed psychosocial aspects of population screening for fragile X syndrome such as attitudes to screening and experiences of screening, and a further nine addressed these issues alone. Studies exploring psychosocial issues demonstrated challenges for counseling arising from a lack of awareness or personal experience with fragile X syndrome in the general population. CONCLUSIONS Targeted counseling and educational strategies will be essential to support women from the general population. It is crucial that future studies offering screening for fragile X syndrome explore a range of psychosocial aspects in addition to looking at uptake of testing and mutation frequency.
Collapse
Affiliation(s)
- Melissa K Hill
- Genetics Education and Health Research, Murdoch Childrens Research Institute, Melbourne, Australia
| | | | | | | |
Collapse
|
14
|
Musci TJ, Moyer K. Prenatal Carrier Testing for Fragile X: Counseling Issues and Challenges. Obstet Gynecol Clin North Am 2010; 37:61-70, Table of Contents. [DOI: 10.1016/j.ogc.2010.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Methyl-CpG-binding PCR of bloodspots for confirmation of fragile X syndrome in males. J Biomed Biotechnol 2009; 2009:643692. [PMID: 19893637 PMCID: PMC2773378 DOI: 10.1155/2009/643692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 06/30/2009] [Accepted: 08/10/2009] [Indexed: 11/18/2022] Open
Abstract
This study demonstrates that methyl-CpG-binding PCR (MB-PCR) is a rapid and simple method for detecting fragile X syndrome (FXS) in males, which is performed by verifying the methylation status of the FMR1 promoter in bloodspots. Proteins containing methyl-CpG-binding (MB) domains can be freeze-stored and used as stocks, and the entire test requires only a few hours. The minimum amount of DNA required for the test is 0.5 ng. At this amount, detection sensitivity is not hampered, even mixing with excess unmethylated alleles up to 320 folds. We examined bloodspots from 100 males, including 24 with FXS, in a blinded manner. The results revealed that the ability of MB-PCR to detect FMR1 promoter methylation was the same as that of Southern blot hybridization. Since individuals with 2 or more X chromosomes generally have methylated FMR1 alleles, MB-PCR cannot be used to detect FXS in females.
Collapse
|
16
|
Coffee B, Keith K, Albizua I, Malone T, Mowrey J, Sherman SL, Warren ST. Incidence of fragile X syndrome by newborn screening for methylated FMR1 DNA. Am J Hum Genet 2009; 85:503-14. [PMID: 19804849 PMCID: PMC2756550 DOI: 10.1016/j.ajhg.2009.09.007] [Citation(s) in RCA: 279] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 09/14/2009] [Accepted: 09/15/2009] [Indexed: 01/20/2023] Open
Abstract
Fragile X syndrome (FXS) results from a CGG-repeat expansion that triggers hypermethylation and silencing of the FMR1 gene. FXS is referred to as the most common form of inherited intellectual disability, yet its true incidence has never been measured directly by large population screening. Here, we developed an inexpensive and high-throughput assay to quantitatively assess FMR1 methylation in DNA isolated from the dried blood spots of 36,124 deidentified newborn males. This assay displays 100% specificity and 100% sensitivity for detecting FMR1 methylation, successfully distinguishing normal males from males with full-mutation FXS. Furthermore, the assay can detect excess FMR1 methylation in 82% of females with full mutations, although the methylation did not correlate with intellectual disability. With amelogenin PCR used for detecting the presence of a Y chromosome, this assay can also detect males with Klinefelter syndrome (KS) (47, XXY). We identified 64 males with FMR1 methylation and, after confirmatory testing, found seven to have full-mutation FXS and 57 to have KS. Because the precise incidence of KS is known, we used our observed KS incidence as a sentinel to assess ascertainment quality and showed that our KS incidence of 1 in 633 newborn males was not significantly different from the literature incidence of 1 in 576 (p = 0.79). The seven FXS males revealed an FXS incidence in males of 1 in 5161 (95% confidence interval of 1 in 10,653-1 in 2500), consistent with some earlier indirect estimates. Given the trials now underway for possible FXS treatments, this method could be used in newborn or infant screening as a way of ensuring early interventions for FXS.
Collapse
Affiliation(s)
- Bradford Coffee
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Krayton Keith
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Igor Albizua
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tamika Malone
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Julie Mowrey
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stephanie L. Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stephen T. Warren
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Departments of Pediatrics and Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
17
|
Acharya K, Ross LF. Fragile X screening: attitudes of genetic health professionals. Am J Med Genet A 2009; 149A:626-32. [PMID: 19291766 DOI: 10.1002/ajmg.a.32725] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although genetic health professionals (GHP) are major stakeholders in developing and implementing fragile X (FrX) testing and screening guidelines, their attitudes about FrX testing and population screening are virtually absent in the literature. A survey was conducted of physician geneticists (geneticists) and genetic counselors (GC). The survey addressed GHP's attitudes towards (1) prenatal FrX carrier screening; (2) pre- and full mutation screening of male and female newborns; (3) the single best time for FrX screening over the lifespan; and (4) their willingness to test a normally developing child with a positive family history. Surveys were completed by 30% (273/894) of eligible GHP. Attitudes of geneticists and GC were mostly indistinguishable. The single most favored screening approaches were (1) preconception screening targeted at women with a positive family history (43%); and (2) universal preconception screening (29%). While only 6% and 11% declared universal prenatal and universal newborn screening (NBS) as the ideal time respectively, 73% and 60% respectively would support such programs. GHP would design a NBS program to test male and female infants and to identify both pre- and full mutations. Over half would agree to order FrX testing on some normally developing children with a positive family history. In expanding FrX testing and screening to low risk individuals, GHP prefer preconception screening as the single best time. The majority also support prenatal screening and NBS. If NBS were to be introduced, GHP prefer screening to identify boys and girls with both pre- and full mutations.
Collapse
Affiliation(s)
- Kruti Acharya
- Department of Pediatrics, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
18
|
Abstract
Fragile X syndrome, the most prevalent inherited cause of mental retardation, is related to hyperexpansion of a polymorphic CGG repeat of the FMR1 gene. Expansion of 55-200 repeats are called premutations and characterize carriers who usually have no mental impairment. The disease causing full mutations exceed 200 CGG repeats, are hypermethylated and lead to transcriptional silencing of the gene and absence of the Fragile X mental retardation protein (FMRP). Diagnostic approaches involve molecular and immunocytochemical techniques. Southern blot, which allows mutations to be detected and methylation status to be determined in a single test, remains the procedure of choice for most laboratories. Modifications of PCR methods, including methylation specific PCR, are also proposed but their implementation is still in question because of inherent difficulties to amplify CGG repeats, distinguish between mosaic patterns and interpret results in female individuals. The FMRP antibody test is also suitable for large population screening and elucidation of Fragile X syndrome cases with no CGG expansion, but it is not widely applied. In search for novel diagnostic approaches, use of PCR as a first prescreening test followed by Southern blot is considered the most reliable procedure.
Collapse
|
19
|
|
20
|
Hagerman RJ, Berry-Kravis E, Kaufmann WE, Ono MY, Tartaglia N, Lachiewicz A, Kronk R, Delahunty C, Hessl D, Visootsak J, Picker J, Gane L, Tranfaglia M. Advances in the treatment of fragile X syndrome. Pediatrics 2009; 123:378-90. [PMID: 19117905 PMCID: PMC2888470 DOI: 10.1542/peds.2008-0317] [Citation(s) in RCA: 393] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The FMR1 mutations can cause a variety of disabilities, including cognitive deficits, attention-deficit/hyperactivity disorder, autism, and other socioemotional problems, in individuals with the full mutation form (fragile X syndrome) and distinct difficulties, including primary ovarian insufficiency, neuropathy and the fragile X-associated tremor/ataxia syndrome, in some older premutation carriers. Therefore, multigenerational family involvement is commonly encountered when a proband is identified with a FMR1 mutation. Studies of metabotropic glutamate receptor 5 pathway antagonists in animal models of fragile X syndrome have demonstrated benefits in reducing seizures, improving behavior, and enhancing cognition. Trials of metabotropic glutamate receptor 5 antagonists are beginning with individuals with fragile X syndrome. Targeted treatments, medical and behavioral interventions, genetic counseling, and family supports are reviewed here.
Collapse
Affiliation(s)
- Randi J Hagerman
- MIND. Institute, University of California Davis, School of Medicine, Sacramento, CA 95817, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pindolia KR, Wolf B. Candidate Disorders for Gene Therapy: Newborn Screening Facilitates Ascertainment of Presymptomatic Individuals. Hum Gene Ther 2008; 19:213-6. [DOI: 10.1089/hum.2007.1211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kirit R. Pindolia
- Department of Medical Genetics, Henry Ford Hospital and Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48202
| | - Barry Wolf
- Department of Medical Genetics, Henry Ford Hospital and Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48202
| |
Collapse
|
22
|
Amos Wilson J, Pratt VM, Phansalkar A, Muralidharan K, Highsmith WE, Beck JC, Bridgeman S, Courtney EM, Epp L, Ferreira-Gonzalez A, Hjelm NL, Holtegaard LM, Jama MA, Jakupciak JP, Johnson MA, Labrousse P, Lyon E, Prior TW, Richards CS, Richie KL, Roa BB, Rohlfs EM, Sellers T, Sherman SL, Siegrist KA, Silverman LM, Wiszniewska J, Kalman LV. Consensus characterization of 16 FMR1 reference materials: a consortium study. J Mol Diagn 2007; 10:2-12. [PMID: 18165276 DOI: 10.2353/jmoldx.2008.070105] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fragile X syndrome, which is caused by expansion of a (CGG)(n) repeat in the FMR1 gene, occurs in approximately 1:3500 males and causes mental retardation/behavioral problems. Smaller (CGG)(n) repeat expansions in FMR1, premutations, are associated with premature ovarian failure and fragile X-associated tremor/ataxia syndrome. An FMR1-sizing assay is technically challenging because of high GC content of the (CGG)(n) repeat, the size limitations of conventional PCR, and a lack of reference materials available for test development/validation and routine quality control. The Centers for Disease Control and Prevention and the Association for Molecular Pathology, together with the genetic testing community, have addressed the need for characterized fragile X mutation reference materials by developing characterized DNA samples from 16 cell lines with repeat lengths representing important phenotypic classes and diagnostic cutoffs. The alleles in these materials were characterized by consensus analysis in nine clinical laboratories. The information generated from this study is available on the Centers for Disease Control and Prevention and Coriell Cell Repositories websites. DNA purified from these cell lines is available to the genetics community through the Coriell Cell Repositories. The public availability of these reference materials should help support accurate clinical fragile X syndrome testing.
Collapse
|
23
|
Tassone F, Pan R, Amiri K, Taylor AK, Hagerman PJ. A rapid polymerase chain reaction-based screening method for identification of all expanded alleles of the fragile X (FMR1) gene in newborn and high-risk populations. J Mol Diagn 2007; 10:43-9. [PMID: 18165273 DOI: 10.2353/jmoldx.2008.070073] [Citation(s) in RCA: 281] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fragile X syndrome, the most common inherited cause of intellectual impairment and the most common single gene associated with autism, generally occurs for fragile X mental retardation 1 (FMR1) alleles that exceed 200 CGG repeats (full-mutation range). Currently, there are no unbiased estimates of the number of full-mutation FMR1 alleles in the general population; a major obstacle is the lack of an effective screening tool for expanded FMR1 alleles in large populations. We have developed a rapid polymerase chain reaction (PCR)-based screening tool for expanded FMR1 alleles. The method utilizes a chimeric PCR primer that targets randomly within the expanded CGG region, such that the presence of a broad distribution of PCR products represents a positive result for an expanded allele. The method is applicable for screening both males and females and for allele sizes throughout the premutation (55 to 200 CGG repeats) and full-mutation ranges. Furthermore, the method is capable of rapid detection of expanded alleles using as little as 1% of the DNA from a single dried blood spot. The methodology presented in this work is suitable for screening large populations of newborn or those at high risk (eg, autism, premature ovarian failure, ataxia, dementia) for expanded FMR1 alleles. The test described herein costs less than $5 per sample for materials; with suitable scale-up and automation, the cost should approach $1 per sample.
Collapse
Affiliation(s)
- Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California 95616, USA.
| | | | | | | | | |
Collapse
|