1
|
Kaya M, Post CCB, Tops CM, Nielsen M, Crosbie EJ, Leary A, Mileshkin LR, Han K, Bessette P, de Boer SM, Jürgenliemk-Schulz IM, Lutgens L, Jobsen JJ, Haverkort MAD, Nout RA, Kroep J, Creutzberg CL, Smit VTHBM, Horeweg N, van Wezel T, Bosse T. Molecular and Clinicopathologic Characterization of Mismatch Repair-Deficient Endometrial Carcinoma Not Related to MLH1 Promoter Hypermethylation. Mod Pathol 2024; 37:100423. [PMID: 38191122 DOI: 10.1016/j.modpat.2024.100423] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/08/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
Universal tumor screening in endometrial carcinoma (EC) is increasingly adopted to identify individuals at risk of Lynch syndrome (LS). These cases involve mismatch repair-deficient (MMRd) EC without MLH1 promoter hypermethylation (PHM). LS is confirmed through the identification of germline MMR pathogenic variants (PV). In cases where these are not detected, emerging evidence highlights the significance of double-somatic MMR gene alterations as a sporadic cause of MMRd, alongside POLE/POLD1 exonuclease domain (EDM) PV leading to secondary MMR PV. Our understanding of the incidence of different MMRd EC origins not related to MLH1-PHM, their associations with clinicopathologic characteristics, and the prognostic implications remains limited. In a combined analysis of the PORTEC-1, -2, and -3 trials (n = 1254), 84 MMRd EC not related to MLH1-PHM were identified that successfully underwent paired tumor-normal tissue next-generation sequencing of the MMR and POLE/POLD1 genes. Among these, 37% were LS associated (LS-MMRd EC), 38% were due to double-somatic hits (DS-MMRd EC), and 25% remained unexplained. LS-MMRd EC exhibited higher rates of MSH6 (52% vs 19%) or PMS2 loss (29% vs 3%) than DS-MMRd EC, and exclusively showed MMR-deficient gland foci. DS-MMRd EC had higher rates of combined MSH2/MSH6 loss (47% vs 16%), loss of >2 MMR proteins (16% vs 3%), and somatic POLE-EDM PV (25% vs 3%) than LS-MMRd EC. Clinicopathologic characteristics, including age at tumor onset and prognosis, did not differ among the various groups. Our study validates the use of paired tumor-normal next-generation sequencing to identify definitive sporadic causes in MMRd EC unrelated to MLH1-PHM. MMR immunohistochemistry and POLE-EDM mutation status can aid in the differentiation between LS-MMRd EC and DS-MMRd EC. These findings emphasize the need for integrating tumor sequencing into LS diagnostics, along with clear interpretation guidelines, to improve clinical management. Although not impacting prognosis, confirmation of DS-MMRd EC may release patients and relatives from burdensome LS surveillance.
Collapse
Affiliation(s)
- Merve Kaya
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cathalijne C B Post
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Carli M Tops
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Emma J Crosbie
- Department of Gynaecology, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alexandra Leary
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Linda R Mileshkin
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Kathy Han
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Paul Bessette
- Department of Obstetrics and Gynaecology, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Stephanie M de Boer
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ludy Lutgens
- Department of Radiation Oncology, MAASTRO Clinic, Maastricht, The Netherlands
| | - Jan J Jobsen
- Department of Radiation Oncology, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Marie A D Haverkort
- Department of Radiation Oncology, Radiotherapiegroep, Arnhem, The Netherlands
| | - Remi A Nout
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Judith Kroep
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Carien L Creutzberg
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vincent T H B M Smit
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nanda Horeweg
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tjalling Bosse
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
2
|
Scarfì F, Magnaterra E, Magliulo M, Garavello G, Biancalani M, Taviti F. Proliferating pilomatricoma in a woman with Lynch Syndrome: a manifestation of mismatch repair genes alterations. Ital J Dermatol Venerol 2023; 158:75-76. [PMID: 36939513 DOI: 10.23736/s2784-8671.22.07417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Affiliation(s)
- Federica Scarfì
- UOSD Dermatology, USL Toscana Centro-Prato Hospital, Prato, Italy
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Elisabetta Magnaterra
- UOSD Dermatology, USL Toscana Centro-Prato Hospital, Prato, Italy -
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Manfredi Magliulo
- UOSD Dermatology, USL Toscana Centro-Prato Hospital, Prato, Italy
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | | | | | - Franca Taviti
- UOSD Dermatology, USL Toscana Centro-Prato Hospital, Prato, Italy
| |
Collapse
|
3
|
Ryan N, Nobes M, Sedgewick D, Teoh SN, Evans DG, Crosbie EJ. A mismatch in care: results of a United Kingdom-wide patient and clinician survey of gynaecological services for women with Lynch syndrome. BJOG 2020; 128:728-736. [PMID: 32725920 DOI: 10.1111/1471-0528.16432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To describe the current testing practice, referral pathways and gynaecological services available to women with Lynch syndrome (LS) in the UK. DESIGN Cross-sectional nationwide survey of gynaecological oncologists and women with LS. SETTING United Kingdom. METHODS Gynaecological oncologists were contacted directly. Women with LS were identified from national and regional clinical databases and the patient support group, Lynch syndrome UK. MAIN OUTCOME MEASURES Gynaecological oncologists were asked to report rates of LS testing and current practice regarding risk-reducing strategies and gynaecological surveillance for women with LS. Women with LS were asked to describe their experiences of gynaecological care. RESULTS In total, 41 gynaecological oncologists and 298 women with LS responded to the survey. Of the gynaecological oncologists surveyed, 37% were unfamiliar with any clinical guidelines for the management of LS. Only 29% of gynaecological oncologists supported universal testing of endometrial cancer for LS; one centre routinely performed such testing. In all, 83% said they perform risk-reducing gynaecological surgery and 43% were aware of a local gynaecological surveillance service for women with LS. Of women with LS, most had undergone a hysterectomy (n = 191/64.1%), most frequently to reduce their gynaecological cancer risk (n = 86/45%). A total of 10% were initially referred for LS testing by their gynaecologist and 55% of those eligible regularly attended gynaecological surveillance; however, 62% wanted more regular surveillance. Regional variation was evident across all standards of care. CONCLUSIONS There is widespread variation in the services offered to women with LS in the UK. As a community, gynaecological oncologists should move towards a nationally agreed provision of services. TWEETABLE ABSTRACT A mismatch in care for mismatch repair. Survey finds significant variation in gynaecological care for #Lynchsyndrome in the UK.
Collapse
Affiliation(s)
- Naj Ryan
- Division of Evolution and Genomic Medicine, St Mary's Hospital, University of Manchester, Manchester, UK.,Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK
| | - M Nobes
- Severn Post Graduate Medical Education Foundation School, Bristol, UK
| | | | - S-N Teoh
- University of Manchester Medical School, Manchester, UK
| | - D G Evans
- Division of Evolution and Genomic Medicine, St Mary's Hospital, University of Manchester, Manchester, UK.,Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - E J Crosbie
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK.,Division of Gynaecology, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
4
|
Rath A, Mishra A, Ferreira VD, Hu C, Omerza G, Kelly K, Hesse A, Reddi HV, Grady JP, Heinen CD. Functional interrogation of Lynch syndrome-associated MSH2 missense variants via CRISPR-Cas9 gene editing in human embryonic stem cells. Hum Mutat 2019; 40:2044-2056. [PMID: 31237724 DOI: 10.1002/humu.23848] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/08/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022]
Abstract
Lynch syndrome (LS) predisposes patients to cancer and is caused by germline mutations in the DNA mismatch repair (MMR) genes. Identifying the deleterious mutation, such as a frameshift or nonsense mutation, is important for confirming an LS diagnosis. However, discovery of a missense variant is often inconclusive. The effects of these variants of uncertain significance (VUS) on disease pathogenesis are unclear, though understanding their impact on protein function can help determine their significance. Laboratory functional studies performed to date have been limited by their artificial nature. We report here an in-cellulo functional assay in which we engineered site-specific MSH2 VUS using clustered regularly interspaced short palindromic repeats-Cas9 gene editing in human embryonic stem cells. This approach introduces the variant into the endogenous MSH2 loci, while simultaneously eliminating the wild-type gene. We characterized the impact of the variants on cellular MMR functions including DNA damage response signaling and the repair of DNA microsatellites. We classified the MMR functional capability of eight of 10 VUS providing valuable information for determining their likelihood of being bona fide pathogenic LS variants. This human cell-based assay system for functional testing of MMR gene VUS will facilitate the identification of high-risk LS patients.
Collapse
Affiliation(s)
- Abhijit Rath
- Center for Molecular Oncology and Institute for Systems Genomics, UConn Health, Farmington, Connecticut
| | - Akriti Mishra
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | | | - Chaoran Hu
- Department of Statistics, University of Connecticut, Storrs, Connecticut.,Connecticut Institute for Clinical and Translational Science, UConn Health, Farmington, Connecticut
| | - Gregory Omerza
- Clinical Genomics Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Kevin Kelly
- Clinical Genomics Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Andrew Hesse
- Clinical Genomics Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Honey V Reddi
- Clinical Genomics Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - James P Grady
- Connecticut Institute for Clinical and Translational Science, UConn Health, Farmington, Connecticut
| | - Christopher D Heinen
- Center for Molecular Oncology and Institute for Systems Genomics, UConn Health, Farmington, Connecticut
| |
Collapse
|
5
|
Kiyozumi Y, Matsubayashi H, Horiuchi Y, Higashigawa S, Oishi T, Abe M, Ohnami S, Urakami K, Nagashima T, Kusuhara M, Miyake H, Yamaguchi K. Germline mismatch repair gene variants analyzed by universal sequencing in Japanese cancer patients. Cancer Med 2019; 8:5534-5543. [PMID: 31386297 PMCID: PMC6745857 DOI: 10.1002/cam4.2432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/25/2019] [Accepted: 07/04/2019] [Indexed: 12/16/2022] Open
Abstract
Background Lynch syndrome (LS) is the commonest inherited cancer syndrome caused by pathogenic variants of germline DNA mismatch repair (g.MMR) genes. Genome‐wide sequencing is now increasingly applied for tumor characterization, but not for g.MMR. The aim of this study was to evaluate the incidence and pathogenicity of g.MMR variants in Japanese cancer patients. Methods Four g.MMR genes (MLH1, MSH2, MSH6, and PMS2) were analyzed by next generation sequencing in 1058 cancer patients (614 male, 444 female; mean age 65.6 years) without past diagnosis of LS. The g.MMR variant pathogenicity was classified based on the ClinVar 2015 database. Tumor MMR immunohistochemistry, microsatellite instability (MSI), and BRAF sequencing were also investigated in specific cases. Results Overall, 46 g.MMR variants were detected in 167 (15.8%) patients, 17 likely benign variants in 119 patients, 24 variants of uncertain significance (VUSs) in 68 patients, two likely pathogenic variants in two patients, and three pathogenic variants in three (0.3%) patients. The three pathogenic variants included two colorectal cancers with MLH1 loss and high MSI and one endometrial cancer with MSH6 loss and microsatellite stability. Two likely pathogenic variants were shifted to VUSs by ClinVar (2018). One colon cancer with a likely benign variant demonstrated MLH1 loss and BRAF mutation, but other nonpathogenic variants showed sustained MMR and microsatellite stability. Conclusions Universal sequencing of g.MMR genes demonstrated sundry benign variants, but only a small proportion of cancer patients had pathogenic variants. Pathogenicity evaluation using the ClinVar database agreed with MSI, MMR immunohistochemistry, and BRAF sequencing.
Collapse
Affiliation(s)
- Yoshimi Kiyozumi
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center, Shizuoka, Japan
| | - Hiroyuki Matsubayashi
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center, Shizuoka, Japan.,Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | - Yasue Horiuchi
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center, Shizuoka, Japan.,Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Satomi Higashigawa
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center, Shizuoka, Japan
| | - Takuma Oishi
- Division of Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Masato Abe
- Division of Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Sumiko Ohnami
- Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | | | - Takeshi Nagashima
- Shizuoka Cancer Center Research Institute, Shizuoka, Japan.,SRL Inc., Tokyo, Japan
| | | | - Hidehiko Miyake
- Department of Genetic Counseling, Graduate School of Ochanomizu University, Tokyo, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| |
Collapse
|
6
|
Wright M, Menon V, Taylor L, Shashidharan M, Westercamp T, Ternent CA. Factors predicting reclassification of variants of unknown significance. Am J Surg 2018; 216:1148-1154. [PMID: 30217367 DOI: 10.1016/j.amjsurg.2018.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 08/16/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022]
Abstract
Genetic variants of unknown significance (VUS) are an increasingly common result of genetic testing. VUS present dilemmas for treatment and surveillance. Family history may play a role in VUS reclassification over time. METHODS All genetic tests performed at a tertiary referral center 2006-2015 were evaluated for the presence of VUS. Patients with VUS were evaluated for demographics, clinical characteristics, family history, and gene characteristics. RESULTS In total, 2291 individuals were tested from 1639 families; 150 VUS were identified. Twenty-eight VUS reclassified, 21 to benign and 7 to pathogenic. Logistic regression demonstrated the number of family members with associated phenotypic disease was a significant predictor of reclassification. CONCLUSION The likelihood of VUS reclassification can be predicted by increased positive family history of disease. Most VUS reclassify to benign, but one-fourth reclassify to pathogenic. The actual risk of a VUS should be assessed based on family history and routinely checked for reclassification.
Collapse
Affiliation(s)
- Moriah Wright
- Section of Colon and Rectal Surgery, Creighton University School of Medicine/CHI Medical Center, Omaha, NE, United States.
| | - Vijay Menon
- Section of Colon and Rectal Surgery, Creighton University School of Medicine/CHI Medical Center, Omaha, NE, United States
| | - Lindsay Taylor
- Section of Colon and Rectal Surgery, Creighton University School of Medicine/CHI Medical Center, Omaha, NE, United States
| | - Maniamparampil Shashidharan
- Section of Colon and Rectal Surgery, Creighton University School of Medicine/CHI Medical Center, Omaha, NE, United States
| | - Twilla Westercamp
- Henry Lynch Cancer Center, Creighton University School of Medicine/CHI Medical Center, Omaha, NE, United States
| | - Charles A Ternent
- Section of Colon and Rectal Surgery, Creighton University School of Medicine/CHI Medical Center, Omaha, NE, United States
| |
Collapse
|
7
|
Ponz de Leon M, Pedroni M, Pezzi A, Sulce B, Roncucci L, Domati F, Rossi G, Reggiani Bonetti L. Risk of colorectal polyps and of malignancies in asymptomatic carriers of mutations in the main DNA mismatch repair genes. Scand J Gastroenterol 2018; 53:31-37. [PMID: 29025352 DOI: 10.1080/00365521.2017.1386794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Mutation carriers (Mut+) in DNA mismatch repair genes are predisposed to cancer of various organs and to adenomatous polyps; however, they may remain asymptomatic and cancer or polyp-free for several years. We purposed to analyse the clinical follow-up of individuals carrying constitutional mutations in the MLH1, MSH2 or MSH6 genes who were unaffected by benign polyps or malignant tumours at diagnosis. MATERIAL AND METHODS Mut + subjects (n.81) were members of Lynch syndromes in whom mutations were detected between 1993 and 2015; all were asymptomatic at diagnosis. They were informed of the cancer risk and surveillance was suggested. As controls, 113 nongene carriers (Mut-) in the same Lynch families were identified. RESULTS About one-fourth of the mutation carriers developed polyps, mostly adenomas; polyps were less (12%, p < .05) in Mut - subjects, and hyperplastic lesions were the prevalent histology. More polyps were detected in MLH1 vs. MSH2 mutation carriers. In Mut+, 21 malignant tumours developed in 14 carriers vs. 4 tumours in 3 patients among Mut- (p < .001). Tumours were mostly of the Lynch spectrum; however, three glioblastomas were developed, together with neoplasms of various organs (duodenum, thyroid, skin, lung and cervix). Mean age of tumour occurrence was 43.0 years in Mut + vs. 53.0 among Mut-. CONCLUSIONS Cancer developed more often in Mut+, with no consistent difference between MLH1 and MSH2 carriers. More polyps (mostly adenomas) were detected in MLH1 carriers. The majority (13 of 21) of malignant tumours occurred in organs for which there is no recommended surveillance, and were lethal in three patients.
Collapse
Affiliation(s)
- Maurizio Ponz de Leon
- a Medicina 1, Dipartimento di Medicina Diagnostica , Clinica e Sanità Pubblica, Università di Modena e Reggio Emilia , Modena , Italy
| | - Monica Pedroni
- a Medicina 1, Dipartimento di Medicina Diagnostica , Clinica e Sanità Pubblica, Università di Modena e Reggio Emilia , Modena , Italy
| | - Annalisa Pezzi
- a Medicina 1, Dipartimento di Medicina Diagnostica , Clinica e Sanità Pubblica, Università di Modena e Reggio Emilia , Modena , Italy
| | - Blerta Sulce
- a Medicina 1, Dipartimento di Medicina Diagnostica , Clinica e Sanità Pubblica, Università di Modena e Reggio Emilia , Modena , Italy
| | - Luca Roncucci
- a Medicina 1, Dipartimento di Medicina Diagnostica , Clinica e Sanità Pubblica, Università di Modena e Reggio Emilia , Modena , Italy
| | - Federica Domati
- a Medicina 1, Dipartimento di Medicina Diagnostica , Clinica e Sanità Pubblica, Università di Modena e Reggio Emilia , Modena , Italy
| | - Giuseppina Rossi
- a Medicina 1, Dipartimento di Medicina Diagnostica , Clinica e Sanità Pubblica, Università di Modena e Reggio Emilia , Modena , Italy
| | - Luca Reggiani Bonetti
- b Anatomia Patologica, Dipartimento di Medicina Diagnostica , Clinica e Sanità Pubblica, Università di Modena e Reggio Emilia , Modena , Italy
| |
Collapse
|
8
|
Tricarico R, Kasela M, Mareni C, Thompson BA, Drouet A, Staderini L, Gorelli G, Crucianelli F, Ingrosso V, Kantelinen J, Papi L, De Angioletti M, Berardi M, Gaildrat P, Soukarieh O, Turchetti D, Martins A, Spurdle AB, Nyström M, Genuardi M. Assessment of the InSiGHT Interpretation Criteria for the Clinical Classification of 24 MLH1 and MSH2 Gene Variants. Hum Mutat 2016; 38:64-77. [PMID: 27629256 DOI: 10.1002/humu.23117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/04/2016] [Accepted: 09/09/2016] [Indexed: 01/15/2023]
Abstract
Pathogenicity assessment of DNA variants in disease genes to explain their clinical consequences is an integral component of diagnostic molecular testing. The International Society for Gastrointestinal Hereditary Tumors (InSiGHT) has developed specific criteria for the interpretation of mismatch repair (MMR) gene variants. Here, we performed a systematic investigation of 24 MLH1 and MSH2 variants. The assessments were done by analyzing population frequency, segregation, tumor molecular characteristics, RNA effects, protein expression levels, and in vitro MMR activity. Classifications were confirmed for 15 variants and changed for three, and for the first time determined for six novel variants. Overall, based on our results, we propose the introduction of some refinements to the InSiGHT classification rules. The proposed changes have the advantage of homogenizing the InSIGHT interpretation criteria with those set out by the Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortium for the BRCA1/BRCA2 genes. We also observed that the addition of only few clinical data was sufficient to obtain a more stable classification for variants considered as "likely pathogenic" or "likely nonpathogenic." This shows the importance of obtaining as many as possible points of evidence for variant interpretation, especially from the clinical setting.
Collapse
Affiliation(s)
- Rossella Tricarico
- Department of Biomedical, Experimental and Clinical Sciences, Medical Genetics Unit, University of Florence, Florence, Italy.,Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mariann Kasela
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| | | | - Bryony A Thompson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
| | - Aurélie Drouet
- Inserm-U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France
| | - Lucia Staderini
- Department of Biomedical, Experimental and Clinical Sciences, Medical Genetics Unit, University of Florence, Florence, Italy.,Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Greta Gorelli
- Department of Biomedical, Experimental and Clinical Sciences, Medical Genetics Unit, University of Florence, Florence, Italy
| | - Francesca Crucianelli
- Department of Biomedical, Experimental and Clinical Sciences, Medical Genetics Unit, University of Florence, Florence, Italy
| | - Valentina Ingrosso
- Department of Biomedical, Experimental and Clinical Sciences, Medical Genetics Unit, University of Florence, Florence, Italy
| | - Jukka Kantelinen
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| | - Laura Papi
- Department of Biomedical, Experimental and Clinical Sciences, Medical Genetics Unit, University of Florence, Florence, Italy
| | - Maria De Angioletti
- Cancer Genetics and Gene Transfer - Core Research Laboratory, Istituto Toscano Tumori, Florence, Italy.,ICCOM-CNR, Sesto Fiorentino, Italy
| | - Margherita Berardi
- Cancer Genetics and Gene Transfer - Core Research Laboratory, Istituto Toscano Tumori, Florence, Italy
| | - Pascaline Gaildrat
- Inserm-U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France
| | - Omar Soukarieh
- Inserm-U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France
| | - Daniela Turchetti
- Medical Genetics, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Alexandra Martins
- Inserm-U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France
| | - Amanda B Spurdle
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Minna Nyström
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| | - Maurizio Genuardi
- Department of Biomedical, Experimental and Clinical Sciences, Medical Genetics Unit, University of Florence, Florence, Italy.,Institute of Genomic Medicine, A. Gemelli School of Medicine, Medical Genetics Unit, Catholic University of the Sacred Heart, Rome, Italy
| | | |
Collapse
|
9
|
Oligonucleotide-directed mutagenesis screen to identify pathogenic Lynch syndrome-associated MSH2 DNA mismatch repair gene variants. Proc Natl Acad Sci U S A 2016; 113:4128-33. [PMID: 26951660 DOI: 10.1073/pnas.1520813113] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Single-stranded DNA oligonucleotides can achieve targeted base-pair substitution with modest efficiency but high precision. We show that "oligo targeting" can be used effectively to study missense mutations in DNA mismatch repair (MMR) genes. Inherited inactivating mutations in DNA MMR genes are causative for the cancer predisposition Lynch syndrome (LS). Although overtly deleterious mutations in MMR genes can clearly be ascribed as the cause of LS, the functional implications of missense mutations are often unclear. We developed a genetic screen to determine the pathogenicity of these variants of uncertain significance (VUS), focusing on mutator S homolog 2 (MSH2). VUS were introduced into the endogenous Msh2 gene of mouse embryonic stem cells by oligo targeting. Subsequent selection for MMR-deficient cells using the guanine analog 6-thioguanine allowed the detection of MMR-abrogating VUS. The screen was able to distinguish weak and strong pathogenic variants from polymorphisms and was used to investigate 59 Msh2 VUS. Nineteen of the 59 VUS were identified as pathogenic. Functional assays revealed that 14 of the 19 detected variants fully abrogated MMR activity and that five of the detected variants attenuated MMR activity. Implementation of the screen in clinical practice allows proper counseling of mutation carriers and treatment of their tumors.
Collapse
|
10
|
Moghadasi S, Eccles DM, Devilee P, Vreeswijk MPG, van Asperen CJ. Classification and Clinical Management of Variants of Uncertain Significance in High Penetrance Cancer Predisposition Genes. Hum Mutat 2016; 37:331-6. [PMID: 26777316 DOI: 10.1002/humu.22956] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/13/2015] [Indexed: 11/12/2022]
Abstract
In 2008, the International Agency for Research on Cancer (IARC) proposed a system for classifying sequence variants in highly penetrant breast and colon cancer susceptibility genes, linked to clinical actions. This system uses a multifactorial likelihood model to calculate the posterior probability that an altered DNA sequence is pathogenic. Variants between 5%-94.9% (class 3) are categorized as variants of uncertain significance (VUS). This interval is wide and might include variants with a substantial difference in pathogenicity at either end of the spectrum. We think that carriers of class 3 variants would benefit from a fine-tuning of this classification. Classification of VUS to a category with a defined clinical significance is very important because for carriers of a pathogenic mutation full surveillance and risk-reducing surgery can reduce cancer incidence. Counselees who are not carriers of a pathogenic mutation can be discharged from intensive follow-up and avoid unnecessary risk-reducing surgery. By means of examples, we show how, in selected cases, additional data can lead to reclassification of some variants to a different class with different recommendations for surveillance and therapy. To improve the clinical utility of this classification system, we suggest a pragmatic adaptation to clinical practice.
Collapse
Affiliation(s)
- Setareh Moghadasi
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, 2333 ZA, The Netherlands
| | - Diana M Eccles
- Faculty of Medicine, University of Southampton, Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, SO16 5YA, United Kingdom
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Centre, Leiden, 2333 ZC, The Netherlands
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Centre, Leiden, 2333 ZC, The Netherlands
| | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, 2333 ZA, The Netherlands
| |
Collapse
|
11
|
Karbassi I, Maston GA, Love A, DiVincenzo C, Braastad CD, Elzinga CD, Bright AR, Previte D, Zhang K, Rowland CM, McCarthy M, Lapierre JL, Dubois F, Medeiros KA, Batish SD, Jones J, Liaquat K, Hoffman CA, Jaremko M, Wang Z, Sun W, Buller-Burckle A, Strom CM, Keiles SB, Higgins JJ. A Standardized DNA Variant Scoring System for Pathogenicity Assessments in Mendelian Disorders. Hum Mutat 2015; 37:127-34. [PMID: 26467025 PMCID: PMC4737317 DOI: 10.1002/humu.22918] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/07/2015] [Indexed: 11/08/2022]
Abstract
We developed a rules‐based scoring system to classify DNA variants into five categories including pathogenic, likely pathogenic, variant of uncertain significance (VUS), likely benign, and benign. Over 16,500 pathogenicity assessments on 11,894 variants from 338 genes were analyzed for pathogenicity based on prediction tools, population frequency, co‐occurrence, segregation, and functional studies collected from internal and external sources. Scores were calculated by trained scientists using a quantitative framework that assigned differential weighting to these five types of data. We performed descriptive and comparative statistics on the dataset and tested interobserver concordance among the trained scientists. Private variants defined as variants found within single families (n = 5,182), were either VUS (80.5%; n = 4,169) or likely pathogenic (19.5%; n = 1,013). The remaining variants (n = 6,712) were VUS (38.4%; n = 2,577) or likely benign/benign (34.7%; n = 2,327) or likely pathogenic/pathogenic (26.9%, n = 1,808). Exact agreement between the trained scientists on the final variant score was 98.5% [95% confidence interval (CI) (98.0, 98.9)] with an interobserver consistency of 97% [95% CI (91.5, 99.4)]. Variant scores were stable and showed increasing odds of being in agreement with new data when re‐evaluated periodically. This carefully curated, standardized variant pathogenicity scoring system provides reliable pathogenicity scores for DNA variants encountered in a clinical laboratory setting.
Collapse
Affiliation(s)
- Izabela Karbassi
- Quest Diagnostics, Athena Diagnostics, Marlborough, Massachusetts
| | - Glenn A Maston
- Quest Diagnostics, Athena Diagnostics, Marlborough, Massachusetts
| | - Angela Love
- Quest Diagnostics, Athena Diagnostics, Marlborough, Massachusetts
| | | | - Corey D Braastad
- Quest Diagnostics, Athena Diagnostics, Marlborough, Massachusetts
| | | | - Alison R Bright
- Quest Diagnostics, Athena Diagnostics, Marlborough, Massachusetts
| | - Domenic Previte
- Quest Diagnostics, Athena Diagnostics, Marlborough, Massachusetts
| | - Ke Zhang
- Quest Diagnostics, Nichols Institute, San Juan Capistrano, California
| | | | - Michele McCarthy
- Quest Diagnostics, Athena Diagnostics, Marlborough, Massachusetts
| | | | - Felicita Dubois
- Quest Diagnostics, Athena Diagnostics, Marlborough, Massachusetts
| | | | - Sat Dev Batish
- Quest Diagnostics, Athena Diagnostics, Marlborough, Massachusetts
| | - Jeffrey Jones
- Quest Diagnostics, Athena Diagnostics, Marlborough, Massachusetts
| | - Khalida Liaquat
- Quest Diagnostics, Athena Diagnostics, Marlborough, Massachusetts
| | - Carol A Hoffman
- Quest Diagnostics, Athena Diagnostics, Marlborough, Massachusetts
| | | | - Zhenyuan Wang
- Quest Diagnostics, Athena Diagnostics, Marlborough, Massachusetts
| | - Weimin Sun
- Quest Diagnostics, Nichols Institute, San Juan Capistrano, California
| | | | - Charles M Strom
- Quest Diagnostics, Nichols Institute, San Juan Capistrano, California
| | - Steven B Keiles
- Quest Diagnostics, Nichols Institute, San Juan Capistrano, California
| | - Joseph J Higgins
- Quest Diagnostics, Athena Diagnostics, Marlborough, Massachusetts
| |
Collapse
|
12
|
Maresca L, Spugnesi L, Lodovichi S, Cozzani C, Naccarato AG, Tancredi M, Collavoli A, Falaschi E, Rossetti E, Aretini P, Cervelli T, Galli A, Caligo MA. MSH2 role in BRCA1-driven tumorigenesis: A preliminary study in yeast and in human tumors from BRCA1-VUS carriers. Eur J Med Genet 2015; 58:531-9. [PMID: 26381082 DOI: 10.1016/j.ejmg.2015.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 09/02/2015] [Accepted: 09/11/2015] [Indexed: 01/18/2023]
Abstract
BRCA1 interacts with several proteins implicated in homologous and non homologous recombination and in mismatch repair. The aim of this study is to determine if MSH2, a well known partner of BRCA1 involved in DNA repair, may contribute to breast and ovarian cancer development and progression. To better understand the functional interaction between BRCA1 and MSH2, we studied the effect of the deletion of MSH2 gene on BRCA1-induced genome instability in yeast. Preliminary results in yeast indicated that MSH2 and BRCA1 may interact to modulate homologous recombination (HR). We also carried out a genetic and epigenetic profiling of MSH2 gene by mutational analysis and promoter methylation evaluation in 9 breast and 2 ovarian tumors from carriers of BRCA1 unknown significance variants (VUS). 2/2 ovarian and 2/9 breast tumors carried MSH2 somatic mutations possible pathogenics (4/11, 36%): a missense mutation in exon 3 (p.G162R), a duplication of exon 1 and a deletion of exon 2. In addition, two germline synonymous variants in exon 11 were identified. None of the tumors showed promoter methylation. In conclusion, a surprisingly high frequency of MSH2 gene mutations has been found in tumor tissues from BRCA1 VUS carrier patients. This result supports the indication deriving from the yeast model that BRCA1 driven tumorigenesis may be modulated by MSH2.
Collapse
Affiliation(s)
- Luisa Maresca
- Section of Genetic Oncology, University of Pisa, Pisa, Italy
| | - Laura Spugnesi
- Section of Genetic Oncology, University of Pisa, Pisa, Italy
| | | | | | | | | | - Anita Collavoli
- Section of Genetic Oncology, University of Pisa, Pisa, Italy
| | | | | | | | | | - Alvaro Galli
- Institute of Clinical Physiology, CNR, Pisa, Italy.
| | | |
Collapse
|
13
|
Microsatellite instability use in mismatch repair gene sequence variant classification. Genes (Basel) 2015; 6:150-62. [PMID: 25831438 PMCID: PMC4488658 DOI: 10.3390/genes6020150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/04/2015] [Accepted: 03/23/2015] [Indexed: 01/05/2023] Open
Abstract
Inherited mutations in the DNA mismatch repair genes (MMR) can cause MMR deficiency and increased susceptibility to colorectal and endometrial cancer. Microsatellite instability (MSI) is the defining molecular signature of MMR deficiency. The clinical classification of identified MMR gene sequence variants has a direct impact on the management of patients and their families. For a significant proportion of cases sequence variants of uncertain clinical significance (also known as unclassified variants) are identified, constituting a challenge for genetic counselling and clinical management of families. The effect on protein function of these variants is difficult to interpret. The presence or absence of MSI in tumours can aid in determining the pathogenicity of associated unclassified MMR gene variants. However, there are some considerations that need to be taken into account when using MSI for variant interpretation. The use of MSI and other tumour characteristics in MMR gene sequence variant classification will be explored in this review.
Collapse
|
14
|
Cini G, Carnevali I, Quaia M, Chiaravalli AM, Sala P, Giacomini E, Maestro R, Tibiletti MG, Viel A. Concomitant mutation and epimutation of the MLH1 gene in a Lynch syndrome family. Carcinogenesis 2015; 36:452-8. [DOI: 10.1093/carcin/bgv015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/24/2015] [Indexed: 12/30/2022] Open
|
15
|
Pineda M, González-Acosta M, Thompson BA, Sánchez R, Gómez C, Martínez-López J, Perea J, Caldés T, Rodríguez Y, Landolfi S, Balmaña J, Lázaro C, Robles L, Capellá G, Rueda D. Detailed characterization of MLH1 p.D41H and p.N710D variants coexisting in a Lynch syndrome family with conserved MLH1 expression tumors. Clin Genet 2014; 87:543-8. [PMID: 25060679 DOI: 10.1111/cge.12467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 12/26/2022]
Abstract
Lynch syndrome (LS) is an autosomal dominant cancer-susceptibility disease caused by inactivating germline mutations in mismatch repair (MMR) genes. Variants of unknown significance (VUS) are often detected in mutational analysis of MMR genes. Here we describe a large family fulfilling Amsterdam I criteria carrying two rare VUS in the MLH1 gene: c.121G > C (p.D41H) and c.2128A > G (p.N710D). Collection of clinico-pathological data, multifactorial analysis, in silico predictions, and functional analyses were used to elucidate the clinical significance of the identified MLH1 VUS. Only the c.121G > C variant cosegregated with LS-associated tumors in the family. Diagnosed colorectal tumors were microsatellite unstable although immunohistochemical staining revealed no loss of MMR proteins expression. Multifactorial likelihood analysis classified c.2128A > G as a non-pathogenic variant and c.121G > C as pathogenic. In vitro functional tests revealed impaired MMR activity and diminished expression of c.121G > C. Accordingly, the N710 residue is located in the unconserved MLH1 C-terminal domain, whereas D41 is highly conserved and located in the ATPase domain. The obtained results will enable adequate genetic counseling of c.121G > C and c.2128A > G variant carriers and their families. Furthermore, they exemplify how cumulative data and comprehensive analyses are mandatory to refine the classification of MMR variants.
Collapse
Affiliation(s)
- M Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology, ICO-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Domati F, Maffei S, Kaleci S, Di Gregorio C, Pedroni M, Roncucci L, Benatti P, Magnani G, Marcheselli L, Bonetti LR, Mariani F, Alberti AM, Rossi V, Ponz de Leon M. Incidence, clinical features and possible etiology of early onset (≤40 years) colorectal neoplasms. Intern Emerg Med 2014; 9:623-31. [PMID: 23929387 DOI: 10.1007/s11739-013-0981-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/05/2013] [Indexed: 01/13/2023]
Abstract
The aim of the study was to investigate the clinical features, including survival, of patients with colorectal malignancies developed at a very early age (≤40 years), together with possible factors involved in the pathogenesis of these rare neoplasms. The study took advantage of the existence of a specialized colorectal cancer Registry active from 1984. 57 patients met the criteria of early onset cancer; main epidemiological data, morphology, stage, familial aggregation, possible role of inheritance and survival were analyzed. Despite the relevant increase over time of all registered patients, joiningpoint analysis of crude incidence rate of early onset colorectal neoplasms revealed a certain stability of these tumors (EAPC: 2.4, CI 14-22) with a constant prevalence of the male sex. Stage at diagnosis did not show significant variations between early onset and maturity onset colorectal neoplasms. Hereditary as well as familial cases were significantly (P < 0.005 and 0.03) more frequent among patients with early onset tumors, although in the majority of them no specific etiological factor could be identified. Survival was more favorable in patients with early onset tumors, though this had to be attributed to the higher presence of some histological types in early onset cases. Survival was significantly more favorable for patients of all ages registered in the last decade. Incidence of early onset colorectal cancer was relatively stable between 1984 and 2008. A male preponderance was evident through the registration period. Hereditary and familial cases were significantly more frequent among early onset case. A well defined etiology could be observed in 16% of the cases (versus 2-3% in older individuals). Five-year survival showed a significant improvement over time.
Collapse
Affiliation(s)
- Federica Domati
- Dipartimento di Medicina Diagnostica, Clinica e Sanità Pubblica, Università di Modena e Reggio, Emilia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jejunal Cancer with WRN Mutation Identified from Next-Generation Sequencing: A Case Study and Minireview. Case Rep Surg 2014; 2014:126924. [PMID: 25018888 PMCID: PMC4082912 DOI: 10.1155/2014/126924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 05/31/2014] [Indexed: 11/19/2022] Open
Abstract
Small bowel cancer is a rare, gastrointestinal cancer originating from the small intestines. Carcinogenesis in the jejunum, the middle segment of the small intestines, occurs less commonly than in the duodenum and ileum. Despite the increasing incidences globally, the cancer is still poorly understood, which includes lack of pathological understanding and etiological reasoning, as it seems to exhibit both similarities and differences with other types of cancers. A 76-year-old Asian man was presented with abdominal pain, which was later attributed to an adenocarcinoma in the jejunum. Initial immunoreactive staining results found no connections to colorectal cancer. The microsatellite instability test was further examined by immunohistochemistry which revealed them to be wild-type. From our exome-capture sequencing results, mutations of WRN may be important as they represent the only genetic defect in this jejunal cancer. The patient has since undergone surgical resection of his cancer and is currently being treated with chemotherapy. The pathology, genomic markers, and treatments are described along with literature review.
Collapse
|
18
|
An unusual case of familial adenomatous polyposis with very early symptom occurrence. Fam Cancer 2014; 13:375-80. [DOI: 10.1007/s10689-014-9718-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Abulí A, Bujanda L, Muñoz J, Buch S, Schafmayer C, Valeria Maiorana M, Veneroni S, van Wezel T, Liu T, Westers H, Esteban-Jurado C, Ocaña T, Piqué JM, Andreu M, Jover R, Carracedo A, Xicola RM, Llor X, Castells A, Dunlop M, Hofstra R, Lindblom A, Wijnen J, Peterlongo P, Hampe J, Ruiz-Ponte C, Castellví-Bel S. The MLH1 c.1852_1853delinsGC (p.K618A) variant in colorectal cancer: genetic association study in 18,723 individuals. PLoS One 2014; 9:e95022. [PMID: 24743384 PMCID: PMC3990597 DOI: 10.1371/journal.pone.0095022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/21/2014] [Indexed: 12/25/2022] Open
Abstract
Colorectal cancer is one of the most frequent neoplasms and an important cause of mortality in the developed world. Mendelian syndromes account for about 5% of the total burden of CRC, being Lynch syndrome and familial adenomatous polyposis the most common forms. Lynch syndrome tumors develop mainly as a consequence of defective DNA mismatch repair associated with germline mutations in MLH1, MSH2, MSH6 and PMS2. A significant proportion of variants identified by screening these genes correspond to missense or noncoding changes without a clear pathogenic consequence, and they are designated as "variants of uncertain significance", being the c.1852_1853delinsGC (p.K618A) variant in the MLH1 gene a clear example. The implication of this variant as a low-penetrance risk variant for CRC was assessed in the present study by performing a case-control study within a large cohort from the COGENT consortium-COST Action BM1206 including 18,723 individuals (8,055 colorectal cancer cases and 10,668 controls) and a case-only genotype-phenotype correlation with several clinical and pathological characteristics restricted to the Epicolon cohort. Our results showed no involvement of this variant as a low-penetrance variant for colorectal cancer genetic susceptibility and no association with any clinical and pathological characteristics including family history for this neoplasm or Lynch syndrome.
Collapse
Affiliation(s)
- Anna Abulí
- Department of Gastroenterology, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain
- Department of Gastroenterology, Hospital del Mar-IMIM (Hospital del Mar Medical Research Centre), Pompeu Fabra University, Barcelona, Catalonia, Spain
| | - Luis Bujanda
- Gastroenterology Department, Hospital Donostia, Networked Biomedical Research Centre for Hepatic and Digestive Diseases (CIBEREHD), Basque Country University, San Sebastián, Spain
| | - Jenifer Muñoz
- Department of Gastroenterology, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain
| | - Stephan Buch
- Department of Medine I, University Hospital Dresden, Dresden, Germany
| | - Clemens Schafmayer
- Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Silvia Veneroni
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tao Liu
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Helga Westers
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Clara Esteban-Jurado
- Department of Gastroenterology, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain
| | - Teresa Ocaña
- Department of Gastroenterology, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain
| | - Josep M. Piqué
- Department of Gastroenterology, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain
| | - Montserrat Andreu
- Department of Gastroenterology, Hospital del Mar-IMIM (Hospital del Mar Medical Research Centre), Pompeu Fabra University, Barcelona, Catalonia, Spain
| | - Rodrigo Jover
- Department of Gastroenterology, Hospital General d'Alacant, Alicante, Spain
| | - Angel Carracedo
- Galician Public Foundation of Genomic Medicine (FPGMX), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Genomics Medicine Group, Hospital Clínico, Santiago de Compostela, University of Santiago de Compostela, Galicia, Spain
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Rosa M. Xicola
- Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Xavier Llor
- Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Antoni Castells
- Department of Gastroenterology, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain
| | | | - Malcolm Dunlop
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and MRC Human Genetics Unit, Edinburgh, United Kingdom
| | - Robert Hofstra
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Juul Wijnen
- Departments of Human Genetics and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Paolo Peterlongo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Jochen Hampe
- Department of Medine I, University Hospital Dresden, Dresden, Germany
| | - Clara Ruiz-Ponte
- Galician Public Foundation of Genomic Medicine (FPGMX), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Genomics Medicine Group, Hospital Clínico, Santiago de Compostela, University of Santiago de Compostela, Galicia, Spain
| | - Sergi Castellví-Bel
- Department of Gastroenterology, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
20
|
Wielders EAL, Hettinger J, Dekker R, Kets CM, Ligtenberg MJ, Mensenkamp AR, van den Ouweland AMW, Prins J, Wagner A, Dinjens WNM, Dubbink HJ, van Hest LP, Menko F, Hogervorst F, Verhoef S, te Riele H. Functional analysis of MSH2 unclassified variants found in suspected Lynch syndrome patients reveals pathogenicity due to attenuated mismatch repair. J Med Genet 2014; 51:245-53. [PMID: 24501230 DOI: 10.1136/jmedgenet-2013-101987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Lynch syndrome, an autosomal-dominant disorder characterised by high colorectal and endometrial cancer risks, is caused by inherited mutations in DNA mismatch repair (MMR) genes. Mutations fully abrogating gene function are unambiguously disease causing. However, missense mutations often have unknown functional implications, hampering genetic counselling. We have applied a novel approach to study three MSH2 unclassified variants (UVs) found in Dutch families with suspected Lynch syndrome. METHODS The three mutations were recreated in the endogenous Msh2 gene in mouse embryonic stem cells by oligonucleotide-directed gene modification. The effect of the UVs on MMR activity was then tested using a set of functional assays interrogating the main MMR functions. RESULTS We recreated and functionally tested three MSH2 UVs: MSH2-Y165D (c.493T>G), MSH2-Q690E (c.2068C>G) and MSH2-M813V (c.2437A>G). We observed reduced levels of MSH2-Y165D and MSH2-Q690E but not MSH2-M813V proteins. MSH2-M813V was able to support all MMR functions similar to wild-type MSH2, whereas MSH2-Y165D and MSH2-Q690E showed partial defects. CONCLUSIONS Based on the results from our functional assays, we conclude that the MSH2-M813V variant is not disease causing. The MSH2-Y165D and MSH2-Q690E variants affect MMR function and are therefore likely the underlying cause of familial cancer predisposition. Since the MMR defect is partial, these variants may represent low penetrance alleles.
Collapse
Affiliation(s)
- Eva A L Wielders
- Division of Biological Stress Response, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
De Lellis L, Aceto GM, Curia MC, Catalano T, Mammarella S, Veschi S, Fantini F, Battista P, Stigliano V, Messerini L, Mareni C, Sala P, Bertario L, Radice P, Cama A. Integrative analysis of hereditary nonpolyposis colorectal cancer: the contribution of allele-specific expression and other assays to diagnostic algorithms. PLoS One 2013; 8:e81194. [PMID: 24278394 PMCID: PMC3835792 DOI: 10.1371/journal.pone.0081194] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/09/2013] [Indexed: 01/27/2023] Open
Abstract
The identification of germline variants predisposing to hereditary nonpolyposis colorectal cancer (HNPCC) is crucial for clinical management of carriers, but several probands remain negative for such variants or bear variants of uncertain significance (VUS). Here we describe the results of integrative molecular analyses in 132 HNPCC patients providing evidences for improved genetic testing of HNPCC with traditional or next generation methods. Patients were screened for: germline allele-specific expression (ASE), nucleotide variants, rearrangements and promoter methylation of mismatch repair (MMR) genes; germline EPCAM rearrangements; tumor microsatellite instability (MSI) and immunohistochemical (IHC) MMR protein expression. Probands negative for pathogenic variants of MMR genes were screened for germline APC and MUTYH sequence variants. Most germline defects identified were sequence variants and rearrangements of MMR genes. Remarkably, altered germline ASE of MMR genes was detected in 8/22 (36.5%) probands analyzed, including 3 cases negative at other screenings. Moreover, ASE provided evidence for the pathogenic role and guided the characterization of a VUS shared by 2 additional probands. No germline MMR gene promoter methylation was observed and only one EPCAM rearrangement was detected. In several cases, tumor IHC and MSI diverged from germline screening results. Notably, APC or biallelic MUTYH germline defects were identified in 2/19 probands negative for pathogenic variants of MMR genes. Our results show that ASE complements gDNA-based analyses in the identification of MMR defects and in the characterization of VUS affecting gene expression, increasing the number of germline alterations detected. An appreciable fraction of probands negative for MMR gene variants harbors APC or MUTYH variants. These results indicate that germline ASE analysis and screening for APC and MUTYH defects should be included in HNPCC diagnostic algorithms.
Collapse
Affiliation(s)
- Laura De Lellis
- Department of Pharmacy, “G. d’Annunzio” University, Chieti, Italy
| | - Gitana Maria Aceto
- Department of Experimental and Clinical Sciences, “G. d’Annunzio” University, Chieti, Italy
- Unit of Molecular Pathology and Genomics, Aging Research Center, “G. d’Annunzio” University Foundation, Chieti, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University, Chieti, Italy
- Unit of Molecular Pathology and Genomics, Aging Research Center, “G. d’Annunzio” University Foundation, Chieti, Italy
| | - Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Serena Veschi
- Unit of Molecular Pathology and Genomics, Aging Research Center, “G. d’Annunzio” University Foundation, Chieti, Italy
| | - Fabiana Fantini
- Department of Experimental and Clinical Sciences, “G. d’Annunzio” University, Chieti, Italy
| | - Pasquale Battista
- Department of Experimental and Clinical Sciences, “G. d’Annunzio” University, Chieti, Italy
| | - Vittoria Stigliano
- Department of Gastroenterology, Unit of Hereditary Colorectal Cancer, National Cancer Institute, Regina Elena (IRE), Rome, Italy
| | - Luca Messerini
- Section of Pathological Anatomy, Department of Medical and Surgical Critical Care, University of Florence, Florence, Italy
| | - Cristina Mareni
- Department of Internal Medicine, University of Genova, Genova, Italy
| | - Paola Sala
- Unit of Hereditary Digestive Tract Tumors, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lucio Bertario
- Unit of Hereditary Digestive Tract Tumors, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Radice
- Unit of Molecular bases of genetic risk and genetic testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro Cama
- Department of Pharmacy, “G. d’Annunzio” University, Chieti, Italy
- * E-mail:
| |
Collapse
|
22
|
Drost M, Koppejan H, de Wind N. Inactivation of DNA mismatch repair by variants of uncertain significance in the PMS2 gene. Hum Mutat 2013; 34:1477-80. [PMID: 24027009 DOI: 10.1002/humu.22426] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/05/2013] [Indexed: 01/14/2023]
Abstract
Lynch syndrome (LS) is a common cancer predisposition caused by an inactivating mutation in one of four DNA mismatch repair (MMR) genes. Frequently a variant of uncertain significance (VUS), rather than an obviously pathogenic mutation, is identified in one of these genes. The inability to define pathogenicity of such variants precludes targeted healthcare. Here, we have modified a cell-free assay to test VUS in the MMR gene PMS2 for functional activity. We have analyzed nearly all VUS in PMS2 found thus far and describe loss of MMR activity for five, suggesting the applicability of the assay for diagnosis of LS.
Collapse
Affiliation(s)
- Mark Drost
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
23
|
Borràs E, Pineda M, Cadiñanos J, Del Valle J, Brieger A, Hinrichsen I, Cabanillas R, Navarro M, Brunet J, Sanjuan X, Musulen E, van der Klift H, Lázaro C, Plotz G, Blanco I, Capellá G. Refining the role of PMS2 in Lynch syndrome: germline mutational analysis improved by comprehensive assessment of variants. J Med Genet 2013; 50:552-63. [PMID: 23709753 DOI: 10.1136/jmedgenet-2012-101511] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIM The majority of mismatch repair (MMR) gene mutations causing Lynch syndrome (LS) occur either in MLH1 or MSH2. However, the relative contribution of PMS2 is less well defined. The aim of this study was to evaluate the role of PMS2 in LS by assessing the pathogenicity of variants of unknown significance (VUS) detected in the mutational analysis of PMS2 in a series of Spanish patients. METHODS From a cohort of 202 LS suspected patients, 13 patients showing loss of PMS2 expression in tumours were screened for germline mutations in PMS2, using a long range PCR based strategy and multiplex ligation dependent probe amplification (MLPA). Pathogenicity assessment of PMS2 VUS was performed evaluating clinicopathological data, frequency in control population and in silico and in vitro analyses at the RNA and protein level. RESULTS Overall 25 different PMS2 DNA variants were detected. Fourteen were classified as polymorphisms. Nine variants were classified as pathogenic: seven alterations based on their molecular nature and two after demonstrating a functional defect (c.538-3C>G affected mRNA processing and c.137G>T impaired MMR activity). The c.1569C>G variant was classified as likely neutral while the c.384G>A remained as a VUS. We have also shown that the polymorphic variant c.59G>A is MMR proficient. CONCLUSIONS Pathogenic PMS2 mutations were detected in 69% of patients harbouring LS associated tumours with loss of PMS2 expression. In all, PMS2 mutations account for 6% of the LS cases identified. The comprehensive functional analysis shown here has been useful in the classification of PMS2 VUS and contributes to refining the role of PMS2 in LS.
Collapse
Affiliation(s)
- Ester Borràs
- Hereditary Cancer Program, Catalan Institute of Oncology, ICO-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Terui H, Akagi K, Kawame H, Yura K. CoDP: predicting the impact of unclassified genetic variants in MSH6 by the combination of different properties of the protein. J Biomed Sci 2013; 20:25. [PMID: 23621914 PMCID: PMC3651391 DOI: 10.1186/1423-0127-20-25] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 04/15/2013] [Indexed: 02/06/2023] Open
Abstract
Background Lynch syndrome is a hereditary cancer predisposition syndrome caused by a mutation in one of the DNA mismatch repair (MMR) genes. About 24% of the mutations identified in Lynch syndrome are missense substitutions and the frequency of missense variants in MSH6 is the highest amongst these MMR genes. Because of this high frequency, the genetic testing was not effectively used in MSH6 so far. We, therefore, developed CoDP (Combination of the Different Properties), a bioinformatics tool to predict the impact of missense variants in MSH6. Methods We integrated the prediction results of three methods, namely MAPP, PolyPhen-2 and SIFT. Two other structural properties, namely solvent accessibility and the change in the number of heavy atoms of amino acids in the MSH6 protein, were further combined explicitly. MSH6 germline missense variants classified by their associated clinical and molecular data were used to fit the parameters for the logistic regression model and to assess the prediction. The performance of CoDP was compared with those of other conventional tools, namely MAPP, SIFT, PolyPhen-2 and PON-MMR. Results A total of 294 germline missense variants were collected from the variant databases and literature. Of them, 34 variants were available for the parameter training and the prediction performance test. We integrated the prediction results of MAPP, PolyPhen-2 and SIFT, and two other structural properties, namely solvent accessibility and the change in the number of heavy atoms of amino acids in the MSH6 protein, were further combined explicitly. Variants data classified by their associated clinical and molecular data were used to fit the parameters for the logistic regression model and to assess the prediction. The values of the positive predictive value (PPV), the negative predictive value (NPV), sensitivity, specificity and accuracy of the tools were compared on the whole data set. PPV of CoDP was 93.3% (14/15), NPV was 94.7% (18/19), specificity was 94.7% (18/19), sensitivity was 93.3% (14/15) and accuracy was 94.1% (32/34). Area under the curve of CoDP was 0.954, that of MAPP for MSH6 was 0.919, of SIFT was 0.864 and of PolyPhen-2 HumVar was 0.819. The power to distinguish between pathogenic and non-pathogenic variants of these methods was tested by Wilcoxon rank sum test (p < 8.9 × 10-6 for CoDP, p < 3.3 × 10-5 for MAPP, p < 3.1 × 10-4 for SIFT and p < 1.2 × 10-3 for PolyPhen-2 HumVar), and CoDP was shown to outperform other conventional methods. Conclusion In this paper, we provide a human curated data set for MSH6 missense variants, and CoDP, the prediction tool, which achieved better accuracy for predicting the impact of missense variants in MSH6 than any other known tools. CoDP is available at http://cib.cf.ocha.ac.jp/CoDP/.
Collapse
Affiliation(s)
- Hiroko Terui
- The Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan
| | | | | | | |
Collapse
|
25
|
Pérez-Cabornero L, Infante M, Velasco E, Lastra E, Miner C, Durán M. Evaluating the effect of unclassified variants identified in MMR genes using phenotypic features, bioinformatics prediction, and RNA assays. J Mol Diagn 2013; 15:380-90. [PMID: 23523604 DOI: 10.1016/j.jmoldx.2013.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/29/2013] [Accepted: 02/01/2013] [Indexed: 11/16/2022] Open
Abstract
Lynch syndrome is caused by mutations in one of the mismatch-repair system (MMR) genes. A major difficulty in diagnosis and management of Lynch syndrome is the existence of unclassified genetic variants (UVs) with unknown clinical significance, especially mutations with new descriptions and missense-type nucleotide substitutions. We evaluated the pathogenicity of 20 such mutations (6 in MLH1, 4 in MSH2, and 7 in MSH6) found in Spanish patients suspected of Lynch syndrome. The UVs were tested for evidence of MMR defect in tumor samples and were evaluated for co-occurrence with a pathogenic mutation, the cosegregation of the variant with the disease; where sufficient data were available, in silico resources at the protein level and mRNA analysis were used to assess the putative effect on the splicing mechanism. To evaluate the frequency of these UVs in the general population, a case--control study was also performed. Five variants were identified with similar frequencies in both cases and controls, suggesting a nonpathogenic effect in patients. In contrast, abnormal splicing mutations were detected in a high proportion of patients [3/20 (15%)]. In this study, we classified 15 of the 20 UVs: six variants with strong evidence of pathogenicity and nine variants that should be considered neutral variants. Clinical significance of the other five remains unknown.
Collapse
Affiliation(s)
- Lucia Pérez-Cabornero
- Cancer Genetics Laboratory, Institute of Biology and Molecular Genetics, University of Valladolid, Valladolid, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Thompson BA, Goldgar DE, Paterson C, Clendenning M, Walters R, Arnold S, Parsons MT, Walsh MD, Gallinger S, Haile RW, Hopper JL, Jenkins MA, LeMarchand L, Lindor NM, Newcomb PA, Thibodeau SN, Young JP, Buchanan DD, Tavtigian SV, Spurdle AB. A multifactorial likelihood model for MMR gene variant classification incorporating probabilities based on sequence bioinformatics and tumor characteristics: a report from the Colon Cancer Family Registry. Hum Mutat 2013; 34:200-9. [PMID: 22949379 PMCID: PMC3538359 DOI: 10.1002/humu.22213] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 08/22/2012] [Indexed: 01/04/2023]
Abstract
Mismatch repair (MMR) gene sequence variants of uncertain clinical significance are often identified in suspected Lynch syndrome families, and this constitutes a challenge for both researchers and clinicians. Multifactorial likelihood model approaches provide a quantitative measure of MMR variant pathogenicity, but first require input of likelihood ratios (LRs) for different MMR variation-associated characteristics from appropriate, well-characterized reference datasets. Microsatellite instability (MSI) and somatic BRAF tumor data for unselected colorectal cancer probands of known pathogenic variant status were used to derive LRs for tumor characteristics using the Colon Cancer Family Registry (CFR) resource. These tumor LRs were combined with variant segregation within families, and estimates of prior probability of pathogenicity based on sequence conservation and position, to analyze 44 unclassified variants identified initially in Australasian Colon CFR families. In addition, in vitro splicing analyses were conducted on the subset of variants based on bioinformatic splicing predictions. The LR in favor of pathogenicity was estimated to be ~12-fold for a colorectal tumor with a BRAF mutation-negative MSI-H phenotype. For 31 of the 44 variants, the posterior probabilities of pathogenicity were such that altered clinical management would be indicated. Our findings provide a working multifactorial likelihood model for classification that carefully considers mode of ascertainment for gene testing.
Collapse
Affiliation(s)
- Bryony A. Thompson
- Department of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| | - David E. Goldgar
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Carol Paterson
- Department of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| | - Mark Clendenning
- Department of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| | - Rhiannon Walters
- Department of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| | - Sven Arnold
- Department of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| | - Michael T. Parsons
- Department of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| | - Michael D. Walsh
- Department of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| | - Steven Gallinger
- Cancer Care Ontario, Department of Surgery, Familial Gastrointestinal Cancer Registry, University of Toronto, Toronto, Ontario, Canada
| | - Robert W. Haile
- Department of Preventive Medicine, University of Southern California, Los Angeles, California
| | - John L. Hopper
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, University of Melbourne, Melbourne, Australia
| | - Mark A. Jenkins
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, University of Melbourne, Melbourne, Australia
| | - Loic LeMarchand
- Cancer Research Center of Hawaii, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Noralane M. Lindor
- Department of Health Science Research, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Polly A. Newcomb
- Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | - Joanne P. Young
- Department of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| | - Daniel D. Buchanan
- Department of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| | - Sean V. Tavtigian
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Amanda B. Spurdle
- Department of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| |
Collapse
|
27
|
Duodenal carcinoma in a 37-year-old man with Cowden/Bannayan syndrome. Dig Liver Dis 2013; 45:75-8. [PMID: 23117110 DOI: 10.1016/j.dld.2012.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/04/2012] [Accepted: 09/26/2012] [Indexed: 12/11/2022]
Abstract
A 37-year-old man was hospitalised because of anaemia and fatigue due to an infiltrating adenocarcinoma of the Treitz angle (duodenum), together with gastric, duodenal and colorectal polyps. After the operation, removal of colorectal lesions revealed the presence of ganglioneuromatosis of the large bowel. Further investigations showed lack of MLH1 protein expression and microsatellite instability in the duodenal neoplasm, while the gene was normally expressed in the polyps. MLH1 sequence and Multiple Ligation-dependent Probes Amplification analysis (from constitutional DNA) were normal. Analysis of the PTEN gene revealed the presence of a constitutional mutation (c.510 T>A; p.Ser170Arg) which had been associated with the Cowden phenotype. Further detailed clinical investigations revealed macrocephaly (63 cm), melanotic spots of the penis, small angiomas, millimetric trichilemmomas in the nose and multiple lipomas, which led to the diagnosis of Cowden/Bannayan disease. The unusual appearance of a duodenal carcinoma as the first symptom rendered the identification of the syndrome extremely difficult.
Collapse
|
28
|
Thompson BA, Greenblatt MS, Vallee MP, Herkert JC, Tessereau C, Young EL, Adzhubey IA, Li B, Bell R, Feng B, Mooney SD, Radivojac P, Sunyaev SR, Frebourg T, Hofstra RMW, Sijmons RH, Boucher K, Thomas A, Goldgar DE, Spurdle AB, Tavtigian SV. Calibration of multiple in silico tools for predicting pathogenicity of mismatch repair gene missense substitutions. Hum Mutat 2012; 34:255-65. [PMID: 22949387 DOI: 10.1002/humu.22214] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 08/26/2012] [Indexed: 11/11/2022]
Abstract
Classification of rare missense substitutions observed during genetic testing for patient management is a considerable problem in clinical genetics. The Bayesian integrated evaluation of unclassified variants is a solution originally developed for BRCA1/2. Here, we take a step toward an analogous system for the mismatch repair (MMR) genes (MLH1, MSH2, MSH6, and PMS2) that confer colon cancer susceptibility in Lynch syndrome by calibrating in silico tools to estimate prior probabilities of pathogenicity for MMR gene missense substitutions. A qualitative five-class classification system was developed and applied to 143 MMR missense variants. This identified 74 missense substitutions suitable for calibration. These substitutions were scored using six different in silico tools (Align-Grantham Variation Grantham Deviation, multivariate analysis of protein polymorphisms [MAPP], MutPred, PolyPhen-2.1, Sorting Intolerant From Tolerant, and Xvar), using curated MMR multiple sequence alignments where possible. The output from each tool was calibrated by regression against the classifications of the 74 missense substitutions; these calibrated outputs are interpretable as prior probabilities of pathogenicity. MAPP was the most accurate tool and MAPP + PolyPhen-2.1 provided the best-combined model (R(2) = 0.62 and area under receiver operating characteristic = 0.93). The MAPP + PolyPhen-2.1 output is sufficiently predictive to feed as a continuous variable into the quantitative Bayesian integrated evaluation for clinical classification of MMR gene missense substitutions.
Collapse
Affiliation(s)
- Bryony A Thompson
- Queensland Institute of Medical Research, Herston, Brisbane, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Frequency of mutations in mismatch repair genes in a population-based study of women with ovarian cancer. Br J Cancer 2012; 107:1783-90. [PMID: 23047549 PMCID: PMC3493867 DOI: 10.1038/bjc.2012.452] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: Mutations in genes for hereditary non-polyposis colorectal cancer (HNPCC) in ovarian cancer patients remains poorly defined. We sought to estimate the frequency and characteristics of HNPCC gene mutations in a population-based sample of women with epithelial ovarian cancer. Methods: The analysis included 1893 women with epithelial ovarian cancer ascertained from three population-based studies. Full-germline DNA sequencing of the coding regions was performed on three HNPCC genes, MLH1, MSH2 and MSH6. Collection of demographic, clinical and family history information was attempted in all women. Results: Nine clearly pathogenic mutations were identified, including five in MSH6, two each in MLH1 and MSH2. In addition, 28 unique predicted pathogenic missense variants were identified in 55 patients. Pathogenic mutation carriers had an earlier mean age at diagnosis of ovarian cancer, overrepresentation of cancers with non-serous histologies and a higher number of relatives with HNPCC-related cancers. Conclusions: Our findings suggest that fewer than 1% of women with ovarian cancer harbour a germline mutation in the HNPCC genes, with overrepresentation of MSH6 mutations. This represents a lower-range estimate due to the large number of predicted pathogenic variants in which pathogenicity could not definitively be determined. Identification of mismatch repair gene mutations has the potential to impact screening and treatment decisions in these women.
Collapse
|
30
|
Borràs E, Pineda M, Brieger A, Hinrichsen I, Gómez C, Navarro M, Balmaña J, Ramón y Cajal T, Torres A, Brunet J, Blanco I, Plotz G, Lázaro C, Capellá G. Comprehensive functional assessment of MLH1 variants of unknown significance. Hum Mutat 2012; 33:1576-88. [PMID: 22736432 DOI: 10.1002/humu.22142] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/29/2012] [Indexed: 12/15/2022]
Abstract
Lynch syndrome is associated with germline mutations in DNA mismatch repair (MMR) genes. Up to 30% of DNA changes found are variants of unknown significance (VUS). Our aim was to assess the pathogenicity of eight MLH1 VUS identified in patients suspected of Lynch syndrome. All of them are novel or not previously characterized. For their classification, we followed a strategy that integrates family history, tumor pathology, and control frequency data with a variety of in silico and in vitro analyses at RNA and protein level, such as MMR assay, MLH1 and PMS2 expression, and subcellular localization. Five MLH1 VUS were classified as pathogenic: c.[248G>T(;)306G>C], c.[780C>G;788A>C], and c.791-7T>A affected mRNA processing, whereas c.218T>C (p.L73P) and c.244A>G [corrected] (p.T82A) impaired MMR activity. Two other VUS were considered likely neutral: the silent c.702G>A variant did not affect mRNA processing or stability, and c.974G>A (p.R325Q) did not influence MMR function. In contrast, variant c.25C>T (p.R9W) could not be classified, as it associated with intermediate levels of MMR activity. Comprehensive functional assessment of MLH1 variants was useful in their classification and became relevant in the diagnosis and genetic counseling of carrier families.
Collapse
Affiliation(s)
- Ester Borràs
- Hereditary Cancer Program, Catalan Institute of Oncology, ICO-IDIBELL, Hospitalet de Llobregat, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Clinical and molecular detection of inherited colorectal cancers in northeast Italy: a first prospective study of incidence of Lynch syndrome and MUTYH-related colorectal cancer in Italy. Tumour Biol 2012; 33:857-64. [PMID: 22278153 DOI: 10.1007/s13277-011-0312-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/28/2011] [Indexed: 12/27/2022] Open
Abstract
The reported incidence of hereditary colorectal cancers (CRCs) is widely variable. The principal aim of the study was to prospectively evaluate the incidence of familial CRCs in a region of northern Italy using a standardized method. Consecutive CRC patients were prospectively enrolled from October 2002 to December 2003. Patients underwent a structured family history, the microsatellite instability (MSI) test and a screen for MUTYH mutations. Following family history patients were classified as belonging to high, moderate and mild risk families. Immunohistochemistry for MLH1, MSH2, MSH6 and PMS2 proteins and investigation for MLH1/MSH2 mutations, for MLH1 promoter methylation and for the V600E hotspot BRAF mutation were performed in high MSI (MSI-H) cases. Of the 430 patients enrolled, 17 (4%) were high risk [4 hereditary non-polyposis colorectal cancer (HNPCC), 12 suspected HNPCC and 1 MUTYH-associated adenomatous polyposis coli (MAP)], 53 moderate risk and 360 mild risk cases. The MSI test was performed on 393 tumours, and 46 (12%) of them showed MSI-H. In these patients, one MLH1 pathogenetic mutations and two MSH2 pathogenetic mutations were found. Thirty-two (70%) MSI-H cases demonstrated MLH1 methylation and/or BRAF mutation: None of them showed MLH1/MSH2 mutation. Two biallelic germline MUTYH mutations were found, one with clinical features of MAP. A strong family history of CRC was present in 4% of the enrolled cases; incidence of MLH1/MSH2 or MUTHY mutations was 1.3% and of MSI-H phenotype was 12%. MLH1 methylation and BRAF mutation can exclude 70% of MSI-H cases from gene sequencing.
Collapse
|
32
|
Tomsic J, Liyanarachchi S, Hampel H, Morak M, Thomas BC, Raymond VM, Chittenden A, Schackert HK, Gruber SB, Syngal S, Viel A, Holinski-Feder E, Thibodeau SN, de la Chapelle A. An American founder mutation in MLH1. Int J Cancer 2011; 130:2088-95. [PMID: 21671475 DOI: 10.1002/ijc.26233] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/19/2011] [Indexed: 01/10/2023]
Abstract
Mutations in the mismatch repair genes cause Lynch syndrome (LS), conferring high risk of colorectal, endometrial and some other cancers. After the same splice site mutation in the MLH1 gene (c.589-2A>G) had been observed in four ostensibly unrelated American families with typical LS cancers, its occurrence in comprehensive series of LS cases (Mayo Clinic, Germany and Italy) was determined. It occurred in 10 out of 995 LS mutation carriers (1.0%) diagnosed in the Mayo Clinic diagnostic laboratory. It did not occur among 1,803 cases tested for MLH1 mutations by the German HNPCC consortium, while it occurred in three probands and an additional five family members diagnosed in Italy. In the U.S., the splice site mutation occurs on a large (∼4.8 Mb) shared haplotype that also harbors the variant c.2146G>A, which predicts a missense change in codon 716 referred to here as V716M. In Italy, it occurs on a different, shorter shared haplotype (∼2.2 Mb) that does not carry V716M. The V716M variant was found to be present by itself in the U.S., German and Italian populations with individuals sharing a common haplotype of 280 kb, allowing us to calculate that the variant arose around 5,600 years ago (225 generations; 95% confidence interval 183-272). The splice site mutation in America arose or was introduced some 450 years ago (18 generations; 95% confidence interval 14-23); it accounts for 1.0% all LS in the Unites States and can be readily screened for.
Collapse
Affiliation(s)
- Jerneja Tomsic
- Human Cancer Genetics Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|