1
|
Luo Y, Zhu J, Hu Z, Luo W, Du X, Hu H, Peng S. Progress in the Pathogenesis of Diabetic Encephalopathy: The Key Role of Neuroinflammation. Diabetes Metab Res Rev 2024; 40:e3841. [PMID: 39295168 DOI: 10.1002/dmrr.3841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/29/2024] [Accepted: 06/27/2024] [Indexed: 09/21/2024]
Abstract
Diabetic encephalopathy (DE) is a severe complication that occurs in the central nervous system (CNS) and leads to cognitive impairment. DE involves various pathophysiological processes, and its pathogenesis is still unclear. This review summarised current research on the pathogenesis of diabetic encephalopathy, which involves neuroinflammation, oxidative stress, iron homoeostasis, blood-brain barrier disruption, altered gut microbiota, insulin resistance, etc. Among these pathological mechanisms, neuroinflammation has been focused on. This paper summarises some of the molecular mechanisms involved in neuroinflammation, including the Mammalian Target of Rapamycin (mTOR), Lipocalin-2 (LCN-2), Pyroptosis, Advanced Glycosylation End Products (AGEs), and some common pro-inflammatory factors. In addition, we discuss recent advances in the study of potential therapeutic targets for the treatment of DE against neuroinflammation. The current research on the pathogenesis of DE is progressing slowly, and more research is needed in the future. Further study of neuroinflammation as a mechanism is conducive to the discovery of more effective treatments for DE in the future.
Collapse
Affiliation(s)
- Yifan Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jinxi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Ziyan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haijun Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Rishabh, Rohilla M, Bansal S, Bansal N, Chauhan S, Sharma S, Goyal N, Gupta S. Estrogen signalling and Alzheimer's disease: Decoding molecular mechanisms for therapeutic breakthrough. Eur J Neurosci 2024; 60:3466-3490. [PMID: 38726764 DOI: 10.1111/ejn.16360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 07/06/2024]
Abstract
In females, Alzheimer's disease (AD) incidences increases as compared to males due to estrogen deficiency after menopause. Estrogen therapy is the mainstay therapy for menopause and associated complications. Estrogen, a hormone with multifaceted physiological functions, has been implicated in AD pathophysiology. Estrogen plays a crucial role in amyloid precursor protein (APP) processing and overall neuronal health by regulating various factors such as brain-derived neurotrophic factor (BDNF), intracellular calcium signalling, death domain-associated protein (Daxx) translocation, glutamatergic excitotoxicity, Voltage-Dependent Anion Channel, Insulin-Like Growth Factor 1 Receptor, estrogen-metabolising enzymes and apolipoprotein E (ApoE) protein polymorphisms. All these factors impact the physiology of postmenopausal women. Estrogen replacement therapies play an important treatment strategy to prevent AD after menopause. However, use of these therapies may lead to increased risks of breast cancer, venous thromboembolism and cardiovascular disease. Various therapeutic approaches have been used to mitigate the effects of estrogen on AD. These include hormone replacement therapy, Selective Estrogen Receptor Modulators (SERMs), Estrogen Receptor Beta (ERβ)-Selective Agonists, Transdermal Estrogen Delivery, Localised Estrogen Delivery, Combination Therapies, Estrogen Metabolism Modulation and Alternative Estrogenic Compounds like genistein from soy, a notable phytoestrogen from plant sources. However, mechanism via which these approaches modulate AD in postmenopausal women has not been explained earlier thoroughly. Present review will enlighten all the molecular mechanisms of estrogen and estrogen replacement therapies in AD. Along-with this, the association between estrogen, estrogen-metabolising enzymes and ApoE protein polymorphisms will also be discussed in postmenopausal AD.
Collapse
Affiliation(s)
- Rishabh
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Manni Rohilla
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Seema Bansal
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Nitin Bansal
- Department of Pharmacy, Chaudhary Bansilal University, Bhiwani, India
| | - Samrat Chauhan
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sheenam Sharma
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Navjyoti Goyal
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| |
Collapse
|
3
|
Rishabh, Bansal S, Goel A, Gupta S, Malik D, Bansal N. Unravelling the Crosstalk between Estrogen Deficiency and Gut-biotaDysbiosis in the Development of Diabetes Mellitus. Curr Diabetes Rev 2024; 20:e240124226067. [PMID: 38275037 DOI: 10.2174/0115733998275953231129094057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 01/27/2024]
Abstract
Estrogens are classically considered essential hormonal signals, but they exert profound effects in a number of physiological and pathological states, including glucose homeostasis and insulin resistance. Estrogen deficiency after menopause in most women leads to increased androgenicity and changes in body composition, and it is recommended to manipulate the β-cell function of the pancreas, insulin-induced glucose transport, and hepatic glucose output, hence, the increasing incidence of type 2 diabetes mellitus. Recently, studies have reported that gut biota alteration due to estrogen deficiency contributes to altered energy metabolism and, hence, accentuates the pathology of diabetes mellitus. Emerging research suggests estrogen deficiency via genetic disposition or failure of ovaries to function in old age modulates the insulin resistance and glucose secretion workload on pancreatic beta cells by decreasing the levels of good bacteria such as Akkermansia muciniphila, Bifidobacterium spp., Lactobacillus spp., Faecalibacterium prausnitzii, Roseburia spp., and Prevotella spp., and increasing the levels of bad bacteria's such as Bacteroides spp., Clostridium difficile, Escherichia coli, and Enterococcus spp. Alteration in these bacteria's concentrations in the gut further leads to the development of impaired glucose uptake by the muscles, increased gluconeogenesis in the liver, and increased lipolysis and inflammation in the adipose tissues. Thus, the present review paper aims to clarify the intricate interactions between estrogen deficiency, gut microbiota regulation, and the development of diabetes mellitus.
Collapse
Affiliation(s)
- Rishabh
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Seema Bansal
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Akriti Goel
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Sumeet Gupta
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Deepti Malik
- Department of Biochemistry, All India Institute of Medical Sciences Bilaspur, HP, India
| | - Nitin Bansal
- Department of Pharmacy, Chaudhary Bansilal University, Bhiwani, India
| |
Collapse
|
4
|
Nan X, Sun Q, Xu X, Yang Y, Zhen Y, Zhang Y, Zhou H, Fang H. Forsythoside B ameliorates diabetic cognitive dysfunction by inhibiting hippocampal neuroinflammation and reducing synaptic dysfunction in ovariectomized mice. Front Aging Neurosci 2022; 14:974690. [PMID: 36389075 PMCID: PMC9650402 DOI: 10.3389/fnagi.2022.974690] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/07/2022] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Diabetes-associated cognitive impairment (DACI) is a common complication of diabetes, and studies have shown that DACI is more severe in postmenopausal patients with diabetes. Forsythoside B (FTS⋅B) can inhibit inflammation and reduce synaptic dysfunction, which can improve cognitive function. However, it has not been confirmed whether FTS⋅B has a reversing or retarding effect on postmenopausal diabetic encephalopathy. METHODS Seven days after bilateral ovariectomy (OVX) or sham surgery, adult female C57 mice (n = 15/group) received intraperitoneal injection of streptozotocin (60 mg/kg/day/L) and citrate buffer for 5 consecutive days to induce diabetes mellitus (DM). Fourteen days later, ovariectomized diabetic mice were given intraperitoneal injection of FTS⋅B (100, 150 mg/kg/day/L) and subcutaneous injection of 17β-estradiol (1 mg/kg) for 8 weeks [OVX + DM + low-FTS⋅B group (L-F), OVX + DM + high-FTS⋅B group (H-F), and OVX + DM + 17β-estradiol (ER)]. In addition, the following control groups were defined: Sham, OVX, DM, and OVX + DM (O + D). Fasting plasma glucose, body weight and blood insulin levels were determined in each group of mice. Next, their cognitive function was tested through behavioral experiments. Hematoxylin & eosin (H&E) and Nissl staining were used to detect the morphological changes in the hippocampus. The aggregation of amyloid beta (Aβ) and the hyperaggregation of p-tau were assessed by immunohistochemistry. Interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), brain-derived neurotrophic factor (BDNF), post-synaptic density-95 (PSD-95), synaptophysin, and synapsin-1 expression in the hippocampus was detected by real-time polymerase chain reaction (RT-PCR) and western blot analysis. RESULTS FTS⋅B can decrease fasting glucose and blood insulin level. Behavioral results showed that cognitive decline was the most severe in the O + D group, and the ER, L-F, and H-F groups revised the cognitive decline. Compared to the O + D group, more normal morphology, which has obvious nucleoli and clear nuclear membrane, was observed by H&E and Nissl staining in the ER, L-F, and H-F groups. FTS⋅B alleviated DACI by reducing the aggregation of Aβ and the hyperaggregation of p-tau in the hippocampus. Moreover, the protein and mRNA expression showed that FTS⋅B not only inhibited inflammation by decreasing IL-1β, IL-6, and TNF-α but also modulated synaptic plasticity by increasing BDNF, PSD-95, synaptophysin, and synapsin-1. CONCLUSION These results suggest that FTS⋅B may be a novel therapeutic target for postmenopausal diabetic encephalopathy treatment.
Collapse
Affiliation(s)
- Xinyu Nan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qi Sun
- Department of Orthopedics, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xiaoyu Xu
- Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Ying Yang
- Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Yanfeng Zhen
- Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Yameng Zhang
- Department of Internal Medicine, North China University of Science and Technology, Tangshan, Hebei, China
| | - Haixia Zhou
- Department of Internal Medicine, North China University of Science and Technology, Tangshan, Hebei, China
| | - Hui Fang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
- Tangshan Gongren Hospital, Tangshan, Hebei, China
| |
Collapse
|
5
|
Khodabakhsh P, Pournajaf S, Mohaghegh Shalmani L, Ahmadiani A, Dargahi L. Insulin Promotes Schwann-Like Cell Differentiation of Rat Epidermal Neural Crest Stem Cells. Mol Neurobiol 2021; 58:5327-5337. [PMID: 34297315 DOI: 10.1007/s12035-021-02423-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/05/2021] [Indexed: 10/20/2022]
Abstract
Schwann cells (SCs) are considered potentially attractive candidates for transplantation therapies in neurodegenerative diseases. However, problems arising from the isolation and expansion of the SCs restrict their clinical applications. Establishing an alternative Schwann-like cell type is a prerequisite. Epidermal neural crest stem cells (EPI-NCSCs) are well studied for their autologous accessibility, along with the ability to produce major neural crest derivatives and neurotrophic factors. In the current study, we explored insulin influence, a well-known growth factor, on directing EPI-NCSCs into the Schwann cell (SC) lineage. EPI-NCSCs were isolated from rat hair bulge explants. The viability of cells treated with a range of insulin concentrations (0.05-100 μg/ml) was defined by MTT assay at 24, 48, and 72 h. The gene expression profiles of neurotrophic factors (BDNF, FGF-2, and IL-6), key regulators involved in the development of SC (EGR-1, SOX-10, c-JUN, GFAP, OCT-6, EGR-2, and MBP), and oligodendrocyte (PDGFR-α and NG-2) were quantified 1 and 9 days post-treatment with 0.05 and 5 μg/ml insulin. Furthermore, the protein expression of nestin (stemness marker), SOX-10, PDGFR-α, and MBP was analyzed following the long-term insulin treatment. Insulin downregulated the early-stage SC differentiation marker (EGR-1) and increased neurotrophins (BDNF and IL-6) and pro-myelinating genes, including OCT-6, SOX-10, EGR-2, and MBP, as well as oligodendrocyte differentiation markers, upon exposure for 9 days. Insulin can promote EPI-NCSC differentiation toward SC lineage and possibly oligodendrocytes. Thus, employing insulin might enhance the EPI-NCSCs efficiency in cell transplantation strategies.
Collapse
Affiliation(s)
- Pariya Khodabakhsh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safura Pournajaf
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Mohaghegh Shalmani
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Protective effect of metformin against ovariectomy induced depressive- and anxiety-like behaviours in rats: role of oxidative stress. Neuroreport 2021; 32:666-671. [PMID: 33913928 DOI: 10.1097/wnr.0000000000001634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Several studies have shown that low estrogen levels can lead to an increase in the incidence of depression and anxiety during menopause. The hippocampus and prefrontal cortex are parts of the brain involved in depressive- and anxiety-like behaviors. Recent studies have revealed that metformin has neuroprotective effects mainly due to its antioxidant properties. The aim of the present study was to examine the therapeutic potential of metformin in depressive- and anxiety-like behavior as well as oxidative stress in the prefrontal cortex and hippocampus of ovariectomized rats. Young female Wistar Albino rats were distributed into four groups (n:8): control, metformin-administered control, ovariectomized and metformin administered ovariectomized groups. Metformin (25 mg/kg) was administered daily by oral gavage for 2 weeks. Forced swimming test and open field test were performed to evaluate depression- and anxiety-like behaviors, respectively. Following the treatment with metformin, the tissues of the hippocampus and prefrontal cortex were isolated for the measurement of malondialdehyde, reduced glutathione and ascorbic acid contents. Ovariectomy resulted in depressive- and anxiety-like behaviors, and besides, increased content of malondialdehyde in both prefrontal cortex and hippocampus. The levels of ascorbic acid and glutathione were found to be reduced in ovariectomized rats. Metformin treatment significantly decreased depressive behaviour and malondialdehyde content in the prefrontal cortex. Reducing oxidative stress of the prefrontal cortex was suggested as a possible mechanism implicated in the beneficial effects of metformin on ovariectomy-induced depressive-like behaviour. We believe that the therapeutic efficiency of metformin needs to be tested for potential clinical use in surgical menopause or gonadal hormone deficiency women with depression.
Collapse
|
7
|
Bansal S, Agrawal M, Mahendiratta S, Kumar S, Arora S, Joshi R, Prajapat M, Sarma P, Prakash A, Chopra K, Medhi B. Everolimus: A potential therapeutic agent targeting PI3K/Akt pathway in brain insulin system dysfunction and associated neurobehavioral deficits. Fundam Clin Pharmacol 2021; 35:1018-1031. [PMID: 33783880 DOI: 10.1111/fcp.12677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND It is well accepted that PI3k/Akt signaling pathway is a potential therapeutic window which regulates metabolism and energy homeostasis within the brain, and is an important mediator of normal neuronal physiological functions. Dysregulation of this pathway results in impaired insulin signaling, learning and memory and neuronal survival. OBJECTIVES Elucidating the role of everolimus in intracerebroventricular (ICV) streptozotocin induced Insulin/IGF-1 dependent PI3K/Akt/mTOR pathway dysregulation and associated neurobehavioral deficits. METHODS Rats were administered with streptozotocin (3 mg/kg) intracerebroventricular, followed by administration of everolimus (1 mg/kg) orally for 21 days. After that, Morris water maze and passive avoidance tests were performed for assessment of memory. Animals were sacrificed to evaluate brain insulin pathway dysfunction, neurotrophic, apoptotic, inflammatory, and biochemical markers in rat brain. To elucidate the mechanism of action of everolimus, PI3K inhibitor, wortmannin was administered in the presence of everolimus in one group. RESULTS Streptozotocin administration resulted in a significant decrease of brain insulin, insulin growth factor-1 levels, and alterations in behavioral, neurotrophic (BDNF), inflammatory (TNF-α), apoptotic (NF-κB, Bcl2 and Bax) and biochemical (AChE and ChAT assay) parameters in comparison to sham group rats. Everolimus significantly mitigated the deleterious behavioral, biochemical, and molecular changes in rats having central insulin dysfunction. However, the protective effect of everolimus was completely abolished when it was administered in the presence of wortmannin. CONCLUSION Findings from the study reveal that mTOR inhibitors can be an important treatment strategy for neurobehavioral deficits occurring due to central insulin pathway dysfunction. Protective effect of drugs is via modulation of PI3K/Akt pathway.
Collapse
Affiliation(s)
- Seema Bansal
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhunika Agrawal
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Saniya Mahendiratta
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Subodh Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shiyana Arora
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Rupa Joshi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Manisha Prajapat
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Phulen Sarma
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Prakash
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kanwaljit Chopra
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
8
|
Bansal S, Chopra K. Selective ER-β agonists alleviate neuronal deficits in insulin-resistant estrogen-deficient rats. Climacteric 2021; 24:415-420. [PMID: 33719783 DOI: 10.1080/13697137.2020.1857353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The present study aimed to determine the effect of estrogen receptor (ER) agonists on depression and memory impairment in insulin-resistant ovariectomized (OVX) rats. METHODS Rats underwent bilateral ovariectomy, and low-dose streptozotocin (STZ) and a high-fat diet (58% fat, 25% protein, and 17% carbohydrates as a percentage of kilocalories) were administered to induce an estrogen-deficient insulin-resistant state. After 1 week of STZ administration, rats were treated with 17β-estradiol (17βE2) and selective ER-α (propylpyrazoletriol) and ER-β (diarylpropionitrile) agonists (10 μg/kg subcutaneously). Memory was evaluated using the Morris water maze and depression using the forced swim test. RESULTS Treatment with selective ER-β agonist and 17βE2 but not with selective ER-α agonist significantly modulated the neurobehavioral deficits in insulin-resistant OVX rats. These neurobehavioral parameters were further correlated with brain-derived neurotrophic factor (BDNF) levels and acetylcholinesterase (AChE) activity. Selective ER-β agonist and 17βE2 significantly modulated BDNF levels and AChE activity in insulin-resistant OVX rats. Significant increases in estradiol and uterine weight were observed in 17βE2-treated rats, but selective ER agonists did not show any effect. CONCLUSION ER-β agonist can be an effective strategy for the mitigation of memory loss and depression in an estrogen-deficient insulin-resistant state without all of the deleterious feminizing effects that occur with the use of 17βE2.
Collapse
Affiliation(s)
- S Bansal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - K Chopra
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
9
|
Bansal S, Mahendiratta S, Agrawal M, Kumar S, Sharma AR, Garg N, Joshi R, Sarma P, Prakash A, Chopra K, Medhi B. Role of protein tyrosine phosphatase 1B inhibitor in central insulin resistance and associated cognitive deficits. Brain Res Bull 2021; 171:113-125. [PMID: 33684458 DOI: 10.1016/j.brainresbull.2021.02.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Protein tyrosine phosphatase 1B (PTP1B) inhibitors are potential candidates for the treatment of peripheral insulin resistance and diabetes mellitus. Similar to peripheral action within the brain also, PTP1B activation impairs insulin signaling pathways. Activation of PTP1B in brain also accentuates neuroinflammation, oxidative stress and decreases neurotrophic factors in various brain dysfunctions including cognitive decline. OBJECTIVES The main objective of our study was to elucidate the role of alendronate, a potent PTP1B inhibitor (blood brain barrier crossing bisphosphonate) in central insulin resistance and associated memory deficits. METHODOLOGY To induce central insulin resistance, streptozotocin (3 mg/kg) intracerebroventricular (ICV) was administered in two alternate days (1st and 3rd). After 21 days, memory was assessed via using the passive avoidance and Morris water maze paradigm. At the end of behavioral studies, animals were sacrificed to assess a variety of biochemical and molecular parameters in the hippocampus and cerebral cortex region of the brain. Treatment drug alendronate (3 mg/kg/day, p.o) and standard drug donepezil (3 mg/kg/i.p.) were administered from the 3rd day of STZ administration till the end of the study. Inhibition of PTP1B activates phosphoinsotide-3 kinase (PI3 K) (down-stream regulator of insulin signaling pathway).Thus, to illuminate the mechanism of action of alendronate, PI3 K inhibitor, wortmannin was administered in presence of alendronate in one group. RESULTS Administration of alendronate to ICV streprozotocin treated rats resulted in modulation of the insulin signaling pathway and associated behavioral, biochemical and molecular changes in central insulin resistance. However, the protective effect of alendronate was entirely vanished when it was administered in the presence of wortmannin. CONCLUSION Alendronate can be an important treatment strategy in central insulin signaling pathway dysfunction and associated cognitive deficits. Protective effect of alendronate is via modulation of PI3-K/Akt signaling pathway.
Collapse
Affiliation(s)
- Seema Bansal
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Saniya Mahendiratta
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Madhunika Agrawal
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Subodh Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Amit Raj Sharma
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Nitika Garg
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rupa Joshi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Phulen Sarma
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ajay Prakash
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Kanwaljit Chopra
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
10
|
Rocha DS, Kucharski LC. Is the beta estradiol receptor receiving enough attention for its metabolic importance in postmenopause? Horm Mol Biol Clin Investig 2021; 42:329-340. [PMID: 34704691 DOI: 10.1515/hmbci-2020-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/16/2021] [Indexed: 11/15/2022]
Abstract
The relationship between menopause and the development of metabolic diseases is well established. In postmenopause women, there is an expansion of visceral white adipose tissue (WATv), which highly contributes to the rise of circulating lipids. Meanwhile, muscle glucose uptake decreases and hepatic glucose production increases. Consequently, in the pancreas, lipotoxicity and glycotoxicity lead to deficient insulin production. These factors initiate an energy imbalance and enhance the probability of developing cardiovascular and metabolic diseases. Although the activation of estradiol receptors (ER) has been shown to be beneficial for the WAT stock pattern, leading to the insulin-sensitive phenotype, authors have described the risk of these receptors' activation, contributing to neoplasia development. The selective activation of beta-type ER (ERβ) seems to be a promising strategy in the treatment of energy imbalance, acting on several tissues of metabolic importance and allowing an intervention with less risk for the development of estrogen-dependent neoplasia. However, the literature on the risks and benefits of selective ERβ activation still needs to increase. In this review, several aspects related to ERβ were considered, such as its physiological role in tissues of energy importance, beneficial effects, and risks of its stimulation during menopause. PubMed, SciELO, Cochrane, and Medline/Bireme databases were used in this study.
Collapse
Affiliation(s)
- Débora Santos Rocha
- Physiology Department, Federal University of Rio Grande do Sul, Sarmento Leite, 500, 90050-170 Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiz Carlos Kucharski
- Physiology Department, Federal University of Rio Grande do Sul, Sarmento Leite, 500, 90050-170 Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
11
|
Mohammadi M, Zare Z. Effects of treadmill exercise on cognitive functions and anxiety-related behaviors in ovariectomized diabetic rats. Physiol Behav 2020; 224:113021. [DOI: 10.1016/j.physbeh.2020.113021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022]
|
12
|
Talarowska ME, Szemraj J, Kuan-Pin S. Expression of ESR1 and ESR2 oestrogen receptor encoding gene and personality traits - preliminary study. PRZEGLAD MENOPAUZALNY = MENOPAUSE REVIEW 2019; 18:133-140. [PMID: 31975979 PMCID: PMC6970415 DOI: 10.5114/pm.2019.90804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/03/2019] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The main objective of the study is to examine the hypothesis claiming a correlation between personality traits measured with the use of the Minnesota Multiphasic Personality Inventory (MMPI-2) personality questionnaire and the expression of the ERα (ESR1) and ERβ (ESR2) encoding gene in patients suffering from depression. MATERIAL AND METHODS The experiment was carried out on a group of 44 individuals with depression. The Polish variant of the MMPI-2 was applied with the aim of assessing personality traits. Furthermore, the authors evaluated the expression of the genes encoding the oestrogen receptors (ERα and ERβ) at the mRNA level and protein level in the studied population. RESULTS No significant differences in the expression of ERα and ERβ encoding genes were found and confirmed in the patients with the first episode of depression and those suffering from subsequent episodes of the disease. No differences were found between women and men, either. In women a positive relationship was found between the scale of psychopathy (p = 0.04), paranoia (p = 0.01), and mania (p = 0.03) and expression for the ERα encoding gene at the mRNA level. A negative relationship was found between the mania scale and ERβ encoding gene expression at mRNA (p = 0.03) and protein (p = 0.04) levels. In males a positive relationship between anxiety as a personality trait and expression of the ERβ receptor encoding gene at mRNA level (p = 0.03) and protein level (p = 0.03) was found. CONCLUSIONS Personality traits may be linked with the expression of genes encoding oestrogen receptors (ERα and ERβ) among patients with depressive disorders.
Collapse
Affiliation(s)
- Monika E. Talarowska
- Department of Personality and Individual Differences, Institute of Psychology, University of Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Poland
| | - Su Kuan-Pin
- Department of General Psychiatry, China Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
13
|
Effects of Camellia Sinensis Extract on Repeated Restraint Stress-Induced Ovariectomized Female Rats. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1926352. [PMID: 31428628 PMCID: PMC6681582 DOI: 10.1155/2019/1926352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/17/2019] [Accepted: 07/03/2019] [Indexed: 11/17/2022]
Abstract
The mortality of individuals suffering from depression has been increasing, noticeably of postmenopausal women; consequently, their care and treatment are significant to retain a high quality of life. The aim of this study was to examine the effect of Camellia sinensis (CS) on repeated stress-induced changes of the depression related function on the tail suspension test (TST), forced swimming test (FST) in ovariectomized female rats. After behavioral test, we evaluated the changes in the neurotransmitter by measuring the level of dopamine in the nucleus accumbens (NaC) and the serum levels of estrogen and oxytocin. We used 18F-2-fluoro-deoxy-D-glucose positron emission tomography (18F-FDG-PET) to examine the effects of CS on glucose metabolism in ovariectomized rats. Female rats were randomly segregated into three groups. Nor group was considered as nonoperated and nonstressed group, while the control was the ovariectomized and stressed group (OVX+ST), and CS was the ovariectomized, stressed and CS treated group. The rats were exposed to immobilization stress (IMO) for 14 d (2 h/d), and CS (300 mg/kg, i.p.) was treated 30 min before IMO stress. Significant reduction of immobility in the TST and FST was indicated in rats treatment with CS compared to the control group (OVX+ST). The levels of estrogen in the serum of the Nor and CS groups were significantly elevated compared to the OVX+ST group. Also, CS activated brain glucose metabolism in the cortex. The present findings suggested that CS had antidepressant effectiveness in a menopausal depression animal model. These findings suggest evidence that CS plays a crucial role in stressful situation, providing that CS might be a dependable antidepressant medicine to treat menopausal depression.
Collapse
|
14
|
Rebolledo-Solleiro D, Fernández-Guasti A. Influence of sex and estrous cycle on blood glucose levels, body weight gain, and depressive-like behavior in streptozotocin-induced diabetic rats. Physiol Behav 2018; 194:560-567. [DOI: 10.1016/j.physbeh.2018.06.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/10/2018] [Accepted: 06/20/2018] [Indexed: 12/14/2022]
|
15
|
Said SA, Isedowo R, Guerin C, Nar NN, Lillie L, Bukovac S, Simone JJ, Green MR, McCormick CM, Stuart JA. Effects of long-term dietary administration of estrogen receptor-beta agonist diarylpropionitrile on ovariectomized female ICR (CD-1) mice. GeroScience 2018; 40:393-403. [PMID: 30099673 DOI: 10.1007/s11357-018-0038-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/02/2018] [Indexed: 12/18/2022] Open
Abstract
Diarylpropionitrile (DPN) is an estrogen receptor-β-specific agonist that has been linked to neuroprotection, preserving cognitive function with age, the suppression of anxiety-like behaviors, inhibition of cancer growth, and other positive properties. We hypothesized that DPN may have pro-longevity properties. DPN was administered via feed at a dose corresponding to approximately 3 mg/kg/day to ovariectomized female mice beginning at 7 months of age. Mice were followed for the duration of their lifespans while monitoring body mass, aspects of behavior, learning, memory, and frailty. DPN-treated mice gained more body mass over the first 2 years of age (17 months of the study). A test of voluntary running behavior at 24 months of age behavior revealed no deficits in DPN-treated mice, which were as likely as control mice to engage in extended bouts of wheel running, and did so at higher average speeds. DPN administration had anxiolytic-like effects when measured using an elevated plus maze at 9 months of age. A mouse frailty index was used to assess age-related changes. The correlation between age and frailty differed between control and DPN-treated mice. Overall, dietary DPN administration had some beneficial effects on the aging phenotype of ovariectomized female mice with few significant detrimental effects.
Collapse
Affiliation(s)
- Sherry A Said
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Rachel Isedowo
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Christilynn Guerin
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Navreek N Nar
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Leesa Lillie
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Shawn Bukovac
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada.,Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Jonathan J Simone
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Matthew R Green
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Cheryl M McCormick
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada.,Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Jeffrey A Stuart
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
16
|
Effects of Estrogen Therapy on the Serotonergic System in an Animal Model of Perimenopause Induced by 4-Vinylcyclohexen Diepoxide (VCD). eNeuro 2018; 5:eN-NWR-0247-17. [PMID: 29362726 PMCID: PMC5777542 DOI: 10.1523/eneuro.0247-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/07/2017] [Accepted: 12/16/2017] [Indexed: 01/05/2023] Open
Abstract
Chronic exposure to 4-vinylcycloxene diepoxide (VCD) in rodents accelerates the natural process of ovarian follicular atresia modelling perimenopause in women. We investigated why estrogen therapy is beneficial for symptomatic women despite normal or high estrogen levels during perimenopause. Female rats (28 d) were injected daily with VCD or oil for 15 d; 55-65 d after the first injection, pellets of 17β-estradiol or oil were inserted subcutaneously. Around 20 d after, the rats were euthanized (control rats on diestrus and estradiol-treated 21 d after pellets implants). Blood was collected for hormone measurement, the brains were removed and dorsal raphe nucleus (DRN), hippocampus (HPC), and amygdala (AMY) punched out for serotonin (5-HT), estrogen receptor β (ERβ), and progesterone receptor (PR) mRNA level measurements. Another set of rats was perfused for tryptophan hydroxylase (TPH) immunohistochemistry in the DRN. Periestropausal rats exhibited estradiol levels similar to controls and a lower progesterone level, which was restored by estradiol. The DRN of periestropausal rats exhibited lower expression of PR and ERβ mRNA and a lower number of TPH cells. Estradiol restored the ERβ mRNA levels and number of serotonergic cells in the DRN caudal subregion. The 5-HT levels were lower in the AMY and HPC in peristropausal rats, and estradiol treatment increased the 5-HT levels in the HPC and also increased ERβ expression in this area. In conclusion, estradiol may improve perimenopause symptoms by increasing progesterone and boosting serotonin pathway from the caudal DRN to the dorsal HPC potentially through an increment in ERβ expression in the DRN.
Collapse
|
17
|
Zhang J, Chen L, Ma J, Qiao Z, Zhao M, Qi D, Zhao Y, Ban B, Zhu X, He J, Yang Y, Pan H. Interaction of estrogen receptor β and negative life events in susceptibility to major depressive disorder in a Chinese Han female population. J Affect Disord 2017; 208:628-633. [PMID: 27814959 DOI: 10.1016/j.jad.2016.08.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/18/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Both genetic and environmental factors as well as their interaction contribute to the etiology of major depressive disorder (MDD). Estrogen receptor β (ESR2) may play a vital role in the development of MDD in females. The aim of this study is to analyze ESR2 gene polymorphisms and the interaction of ESR2 gene variation and negative life events concerning the risk of developing MDD in females, especially during menopausal stage. METHODS Genotyping was performed by Taqman allelic discrimination assay among 191 female MDD patients and 200 healthy females. Life Events Scale and the generalized multifactor dimensionality reduction method were employed to assess the frequency and severity of negative life events and gene-environment interaction (G×E), respectively. All subjects were regrouped into reproductive and menopausal group based on age. Logistic regression was used to evaluate the set of risk factors. RESULTS No association of ESR2 G×E interaction with MDD was found in the reproductive group. However, in menopausal females, significant G×E interactions between negative life events and allelic variation of rs1256049 and rs4986938 were observed. Individuals with the A+ allele of rs1256049 and rs4986938 were susceptible to MDD when exposed to low negative life events. LIMITATION Assessment of negative life events was influenced by subjective interpretation. CONCLUSIONS ESR2 may modify the interaction between negative life events and MDD in the Chinese Han menopausal females. To our knowledge, this study is the first to report an effect modification between negative life events and ESR2 variations in female MDD patients.
Collapse
Affiliation(s)
- Jian Zhang
- Psychology Department of the Public Health Institute of Harbin Medical University, 157, Baojian Road, Nangang District, Harbin 150081, Heilongjiang Province, China
| | - Lu Chen
- Peking Union Medical College Hospital, 1# Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Jingsong Ma
- Psychology Department of the Public Health Institute of Harbin Medical University, 157, Baojian Road, Nangang District, Harbin 150081, Heilongjiang Province, China
| | - Zhengxue Qiao
- Psychology Department of the Public Health Institute of Harbin Medical University, 157, Baojian Road, Nangang District, Harbin 150081, Heilongjiang Province, China
| | - Mingzhe Zhao
- Psychology Department of the Public Health Institute of Harbin Medical University, 157, Baojian Road, Nangang District, Harbin 150081, Heilongjiang Province, China
| | - Dong Qi
- Psychology Department of the Public Health Institute of Harbin Medical University, 157, Baojian Road, Nangang District, Harbin 150081, Heilongjiang Province, China
| | - Yan Zhao
- The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, China
| | - Bo Ban
- Affiliated Hosptial of Jining Medical University, Shandong Province, China
| | - Xiongzhao Zhu
- Medical Psychological Institute of the Second Xiangya Hospital of Central South University, Hunan Province, China
| | - Jincai He
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, China
| | - Yanjie Yang
- Psychology Department of the Public Health Institute of Harbin Medical University, 157, Baojian Road, Nangang District, Harbin 150081, Heilongjiang Province, China.
| | - Hui Pan
- Peking Union Medical College Hospital, 1# Shuaifuyuan, Dongcheng District, Beijing 100730, China.
| |
Collapse
|
18
|
Xu Y, Sheng H, Bao Q, Wang Y, Lu J, Ni X. NLRP3 inflammasome activation mediates estrogen deficiency-induced depression- and anxiety-like behavior and hippocampal inflammation in mice. Brain Behav Immun 2016; 56:175-86. [PMID: 26928197 DOI: 10.1016/j.bbi.2016.02.022] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/14/2016] [Accepted: 02/25/2016] [Indexed: 11/18/2022] Open
Abstract
Decline of estrogen level is associated with an increase in mood disturbances such as depression and anxiety. Our previous study showed that increased levels of inflammatory cytokines in hippocampus contribute to estrogen deficiency-induced depression-like behavior in rodents. Since the nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome plays a critical role in various inflammatory diseases, we explored whether NLRP3 inflammasome is involved in affective disorders caused by estrogen deficiency. It was found that ovariectomy increased the levels of IL-1β and IL-18, NLRP3 expression and active caspase-1 in hippocampus of female mice. Ovariectomy also resulted in an increase in the level of TLR-2 and TLR-4, active NF-κB, pro-IL-1β and pro-IL-18. Treatment of ovariectomized (OVX) mice with inflammasome inhibitor VX-765 ameliorated depression- and anxiety-like behavior and reversed increased levels of IL-1β and IL-18 in hippocampus. Ovariectomy-induced depression- and anxiety-like behavior and increased inflammatory indicators were reversed by administration of 17β-estradiol (E2) and estrogen receptor (ER)β agonist but not ERα agonist. In addition, ovariectomy led to increased expression of P2X7 receptor (P2X7R), which was also reversed by E2 and ERβ agonist. Our study suggests that estrogen deficiency results in NLRP3 inflammasome activation, thereby leading to neuroinflammation in hippocampus and depression and anxiety. Estrogen modulation of inflammation in hippocampus and depression- and anxiety-like behavior is ERβ dependent. NLRP3 inflammasome could be the potential therapeutic target for estrogen deficiency-related affective disorders.
Collapse
Affiliation(s)
- Yongjun Xu
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Hui Sheng
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Qingyue Bao
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Yujun Wang
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Jianqiang Lu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Xin Ni
- Department of Physiology, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
19
|
Vargas KG, Milic J, Zaciragic A, Wen KX, Jaspers L, Nano J, Dhana K, Bramer WM, Kraja B, van Beeck E, Ikram MA, Muka T, Franco OH. The functions of estrogen receptor beta in the female brain: A systematic review. Maturitas 2016; 93:41-57. [PMID: 27338976 DOI: 10.1016/j.maturitas.2016.05.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 05/31/2016] [Indexed: 01/22/2023]
Abstract
Females have unique and additional risk factors for neurological disorders. Among classical estrogen receptors, estrogen receptor beta (ERβ) has been suggested as a therapeutic target. However, little is known about the role of ERβ in the female brain. Six electronic databases were searched for articles evaluating the role of ERβ in the female brain and the influence of age and menopause on ERβ function. After screening 3186 titles and abstracts, 49 articles were included in the review, all of which were animal studies. Of these, 19 focused on cellular signaling, 7 on neuroendocrine pathways, 8 on neurological disorders, 4 on neuroprotection and 19 on psychological and psychiatric outcomes (6 studies evaluated two or more outcomes). Our findings showed that ERβ phosphorylated and activated intracellular second messenger proteins and regulated protein expression of genes involved in neurological functions. It also promoted neurogenesis, modulated the neuroendocrine regulation of stress response, conferred neuroprotection against ischemia and inflammation, and reduced anxiety- and depression-like behaviors. Targeting ERβ may constitute a novel treatment for menopausal symptoms, including anxiety, depression, and neurological diseases. However, to establish potential therapeutic and preventive strategies targeting ERβ, future studies should be conducted in humans to further our understanding of the importance of ERβ in women's mental and cognitive health.
Collapse
Affiliation(s)
- Kris G Vargas
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Jelena Milic
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Asija Zaciragic
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Ke-Xin Wen
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Loes Jaspers
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Jana Nano
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Klodian Dhana
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Bledar Kraja
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands; Department of Biomedical Sciences, Faculty of Medicine, University of Medicine, Tirana, Albania; University Clinic of Gastrohepatology, University Hospital Center Mother Teresa, Tirana, Albania
| | - Ed van Beeck
- Department of Public Health, Erasmus University Medical Center, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands; Department of Neurology, Erasmus University Medical Center, The Netherlands; Department of Radiology, Erasmus University Medical Center, The Netherlands
| | - Taulant Muka
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.
| | - Oscar H Franco
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|