1
|
Kim SJ, Jo Y, Park SJ, Ji E, Lee JY, Choi E, Baek JY, Jang IY, Jung HW, Kim K, Ryu D, Yoo HJ, Kim BJ. Metabolomic profiles of ovariectomized mice and their associations with body composition and frailty-related parameters in postmenopausal women. J Endocrinol Invest 2024; 47:2551-2563. [PMID: 38493245 DOI: 10.1007/s40618-024-02338-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/12/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Menopause, a dramatical estrogen-deficient condition, is considered the most significant milestone in women's health. PURPOSE To investigate the metabolite changes attributed to estrogen deficiency using random forest (RF)-based machine learning (ML) modeling strategy in ovariectomized (OVX) mice as well as determine the clinical relevance of selected metabolites in older women. METHODS AND RESULTS Untargeted and targeted metabolomic analyses revealed that metabolites related to TCA cycle, sphingolipids, phospholipids, fatty acids, and amino acids, were significantly changed in the plasma and/or muscle of OVX mice. Subsequent ML classifiers based on RF algorithm selected alpha-ketoglutarate (AKG), arginine, carnosine, ceramide C24, phosphatidylcholine (PC) aa C36:6, and PC ae C42:3 in plasma as well as PC aa 34:1, PC aa C34:3, PC aa C36:5, PC aa C32:1, PC aa C36:2, and sphingosine in muscle as top featured metabolites that differentiate the OVX mice from the sham-operated group. When circulating levels of AKG, arginine, and carnosine, which showed the most significant changes in OVX mice blood, were measured in postmenopausal women, higher plasma AKG levels were associated with lower bone mass, weak grip strength, poor physical performance, and increased frailty risk. CONCLUSIONS Metabolomics- and ML-based methods identified the key metabolites of blood and muscle that were significantly changed after ovariectomy in mice, and the clinical implication of several metabolites was investigated by looking at their correlation with body composition and frailty-related parameters in postmenopausal women. These findings provide crucial context for understanding the diverse physiological alterations caused by estrogen deficiency in women.
Collapse
Affiliation(s)
- S J Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center,, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea
| | - Y Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - S J Park
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - E Ji
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - J Y Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - E Choi
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - J-Y Baek
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - I Y Jang
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - H-W Jung
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - K Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - D Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea.
| | - H J Yoo
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center,, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea.
| | - B-J Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea.
| |
Collapse
|
2
|
Peyton MP, Yang TY, Higgins L, Markowski TW, Vue C, Parker LL, Lowe DA. Global phosphoproteomic profiling of skeletal muscle in ovarian hormone-deficient mice. Physiol Genomics 2022; 54:417-432. [PMID: 36062884 PMCID: PMC9639773 DOI: 10.1152/physiolgenomics.00104.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/05/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
Protein phosphorylation is important in skeletal muscle development, growth, regeneration, and contractile function. Alterations in the skeletal muscle phosphoproteome due to aging have been reported in males; however, studies in females are lacking. We have demonstrated that estrogen deficiency decreases muscle force, which correlates with decreased myosin regulatory light chain phosphorylation. Thus, we questioned whether the decline of estrogen in females that occurs with aging might alter the skeletal muscle phosphoproteome. C57BL/6J female mice (6 mo) were randomly assigned to a sham-operated (Sham) or ovariectomy (Ovx) group to investigate the effects of estrogen deficiency on skeletal muscle protein phosphorylation in a resting, noncontracting condition. After 16 wk of estrogen deficiency, the tibialis anterior muscle was dissected and prepped for label-free nano-liquid chromatography-tandem mass spectrometry phosphoproteomic analysis. We identified 4,780 phosphopeptides in tibialis anterior muscles of ovariectomized (Ovx) and Sham-operated (Sham) control mice. Further analysis revealed 647 differentially regulated phosphopeptides (Benjamini-Hochberg adjusted P value < 0.05 and 1.5-fold change ratio) that corresponded to 130 proteins with 22 proteins differentially phosphorylated (3 unique to Ovx, 2 unique to Sham, 6 upregulated, and 11 downregulated). Differentially phosphorylated proteins associated with the sarcomere, cytoplasm, and metabolic and calcium signaling pathways were identified. Our work provides the first global phosphoproteomic analysis in females and how estrogen deficiency impacts the skeletal muscle phosphoproteome.
Collapse
Affiliation(s)
- Mina P Peyton
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Twin Cities, Minneapolis, Minnesota
- Department of Computer Science, Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, Minnesota
| | - Tzu-Yi Yang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, Minneapolis, Minnesota
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, Minneapolis, Minnesota
| | - Todd W Markowski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, Minneapolis, Minnesota
| | - Cha Vue
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Twin Cities, Minneapolis, Minnesota
| | - Laurie L Parker
- Department of Computer Science, Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, Minnesota
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, Minneapolis, Minnesota
| | - Dawn A Lowe
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Twin Cities, Minneapolis, Minnesota
- Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Twin Cities, Minneapolis, Minnesota
| |
Collapse
|
3
|
Silva SB, Honorato-Sampaio K, Costa SP, Domingues TE, da Cruz TMM, Rodrigues CM, Costa KB, Dos Santos JM, da Silva Lage VK, Gaiad TP, Santos AP, Dias-Peixoto MF, Coimbra CC, Dos Reis AM, Szawka RE, Figueiredo PHS, Costa HS, Oliveira MX, Mendonça VA, Lacerda ACR. The superior beneficial effects of exercise training versus hormone replacement therapy on skeletal muscle of ovariectomized rats. Sci Rep 2022; 12:8764. [PMID: 35610295 PMCID: PMC9130272 DOI: 10.1038/s41598-022-12739-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/06/2022] [Indexed: 12/31/2022] Open
Abstract
Previous studies have highlighted the positive effects of Estradiol (E2) replacement therapy and physical exercise on skeletal muscle during menopause. However, the comparison effects of exercise training (ET) and estradiol replacement therapy during menopause on skeletal muscle have not been investigated to date. This study aimed to compare the effects of endurance exercise training versus E2 replacement therapy on mitochondrial density, redox status, and inflammatory biomarkers in the skeletal muscle of ovariectomized rats. Thirty female Wistar rats (12-week-old) were randomly assigned into three groups: Untrained ovariectomized rats (UN-OVX, n = 10); untrained ovariectomized rats treated with estradiol replacement therapy (E2-OVX); and, trained ovariectomized rats (TR-OVX). After ovariectomy, the E2-OVX rats were treated subcutaneously with E2 (implanted Silastic® capsule containing 360 μg of 17β-estradiol/mL) while the TR-OVX group performed an exercise training protocol (50–70% of maximal running speed on a treadmill, 60 min/day, 5 days/week for 8 weeks). After euthanasia, the soleus muscle was processed for histological and biochemical evaluations. Only exercise prevented the reduction of maximal oxygen consumption and increased mechanical efficiency (ME). While mitochondrial muscle density, total antioxidant capacity (FRAP), catalase (CAT) activity, and interleukin 10 levels were higher in TR-OVX, only OVX-E2 presented higher CAT activity and lower interleukin 6 levels. Endurance exercise training compared with E2 replacement therapy maintains the aerobic capacity improving the ME of OVX rats. In addition, only endurance exercise training raises the skeletal muscle mitochondrial content and tends to balance the redox and inflammatory status in the skeletal muscle of OVX rats.
Collapse
Affiliation(s)
- Sara Barros Silva
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK-Highway MGT-367-Km 583, N°. 5000-Alto da Jacuba, Diamantina, 39100-000, Brazil.,Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Kinulpe Honorato-Sampaio
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil.,Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Sabrina Paula Costa
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Talita Emanuela Domingues
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil
| | - Timilly Mayra Martins da Cruz
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Cíntia Maria Rodrigues
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil
| | - Karine Beatriz Costa
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil
| | - Jousielle Márcia Dos Santos
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil
| | - Vanessa Kelly da Silva Lage
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil
| | - Thais Peixoto Gaiad
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK-Highway MGT-367-Km 583, N°. 5000-Alto da Jacuba, Diamantina, 39100-000, Brazil.,Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Ana Paula Santos
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK-Highway MGT-367-Km 583, N°. 5000-Alto da Jacuba, Diamantina, 39100-000, Brazil.,Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Marco Fabrício Dias-Peixoto
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil.,Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Cândido Celso Coimbra
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Adelina Martha Dos Reis
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Raphael Escorsim Szawka
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Pedro Henrique Scheidt Figueiredo
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK-Highway MGT-367-Km 583, N°. 5000-Alto da Jacuba, Diamantina, 39100-000, Brazil.,Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Henrique Silveira Costa
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK-Highway MGT-367-Km 583, N°. 5000-Alto da Jacuba, Diamantina, 39100-000, Brazil.,Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Murilo Xavier Oliveira
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK-Highway MGT-367-Km 583, N°. 5000-Alto da Jacuba, Diamantina, 39100-000, Brazil.,Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Vanessa Amaral Mendonça
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK-Highway MGT-367-Km 583, N°. 5000-Alto da Jacuba, Diamantina, 39100-000, Brazil.,Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil.,Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Ana Cristina Rodrigues Lacerda
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK-Highway MGT-367-Km 583, N°. 5000-Alto da Jacuba, Diamantina, 39100-000, Brazil. .,Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil. .,Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil. .,Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil. .,Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Kim JH, Lee H, Kim JM, Lee BJ, Kim IJ, Pak K, Jeon YK, Kim K. Effect of oligonol, a lychee-derived polyphenol, on skeletal muscle in ovariectomized rats by regulating body composition, protein turnover, and mitochondrial quality signaling. Food Sci Nutr 2022; 10:1184-1194. [PMID: 35432979 PMCID: PMC9007287 DOI: 10.1002/fsn3.2750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/18/2021] [Accepted: 01/07/2022] [Indexed: 12/11/2022] Open
Abstract
Oligonol is a low‐molecular‐weight polyphenol product derived from lychee (Litchi chinensis Sonn.) fruits. This study was focused on the effects of oligonol on the skeletal muscle of ovariectomized rats. We randomly divided female Sprague–Dawley rats into three groups: a sham surgery control group (Sham), an ovariectomy (OVX) group, and an OVX group treated with oligonol (OVX + Oligonol). Oligonol was intraperitoneally administrated at 30 mg/kg daily for 6 weeks. Oligonol treatment after OVX decreased body weight and fat mass, regulated lipid metabolism in skeletal muscle, without loss of lean mass and bone. Bone turnover was not affected by oligonol. In protein synthesis and degradation, oligonol increased the levels of the mammalian target of rapamycin and its downstream targets, eukaryotic initiation factor 4E‐binding protein 1 and 70‐kDa ribosomal protein S6 kinase, and it stimulated the expression of ubiquitin‐proteasome pathway proteins, the forkhead box transcription factors of the class O and the muscle ring‐finger protein‐1. Moreover, oligonol treatment enhanced mitochondrial biogenesis and dynamics. Thus, our results indicated that oligonol treatment had beneficial effects on the skeletal muscle in an estrogen‐deficiency rat model.
Collapse
Affiliation(s)
- Jeong Hun Kim
- Biomedical Research Institute Pusan National University Hospital Busan Korea
| | - Hyangkyu Lee
- Biobehavioral Research Centre Mo-Im Kim Nursing Research Institute College of Nursing Yonsei University Seoul Korea
| | - Ji Min Kim
- Pusan National University Medical Research Institute Pusan National University School of Medicine Pusan National University Yangsan Korea
| | - Byung-Joo Lee
- Department of Otorhinolaryngology-Head and Neck Surgery Pusan National University School of Medicine Pusan National University Busan Korea
| | - In-Joo Kim
- Department of Nuclear Medicine and Biomedical Research Institute Pusan National University Hospital Busan Korea
| | - Kyoungjune Pak
- Department of Nuclear Medicine and Biomedical Research Institute Pusan National University Hospital Busan Korea
| | - Yun Kyung Jeon
- Department of Internal Medicine and Biomedical Research Institute Pusan National University Hospital Busan Korea
| | - Keunyoung Kim
- Department of Nuclear Medicine and Biomedical Research Institute Pusan National University Hospital Busan Korea
| |
Collapse
|
5
|
Kelley RC, Betancourt L, Noriega AM, Brinson SC, Curbelo-Bermudez N, Hahn D, Kumar RA, Balazic E, Muscato DR, Ryan TE, van der Pijl RJ, Shen S, Ottenheijm CAC, Ferreira LF. Skeletal myopathy in a rat model of postmenopausal heart failure with preserved ejection fraction. J Appl Physiol (1985) 2022; 132:106-125. [PMID: 34792407 PMCID: PMC8742741 DOI: 10.1152/japplphysiol.00170.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/01/2021] [Accepted: 11/11/2021] [Indexed: 01/03/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for ∼50% of all patients with heart failure and frequently affects postmenopausal women. The HFpEF condition is phenotype-specific, with skeletal myopathy that is crucial for disease development and progression. However, most of the current preclinical models of HFpEF have not addressed the postmenopausal phenotype. We sought to advance a rodent model of postmenopausal HFpEF and examine skeletal muscle abnormalities therein. Female, ovariectomized, spontaneously hypertensive rats (SHRs) were fed a high-fat, high-sucrose diet to induce HFpEF. Controls were female sham-operated Wistar-Kyoto rats on a lean diet. In a complementary, longer-term cohort, controls were female sham-operated SHRs on a lean diet to evaluate the effect of strain difference in the model. Our model developed key features of HFpEF that included increased body weight, glucose intolerance, hypertension, cardiac hypertrophy, diastolic dysfunction, exercise intolerance, and elevated plasma cytokines. In limb skeletal muscle, HFpEF decreased specific force by 15%-30% (P < 0.05) and maximal mitochondrial respiration by 40%-55% (P < 0.05), increased oxidized glutathione by approximately twofold (P < 0.05), and tended to increase mitochondrial H2O2 emission (P = 0.10). Muscle fiber cross-sectional area, markers of mitochondrial content, and indices of capillarity were not different between control and HFpEF in our short-term cohort. Overall, our preclinical model of postmenopausal HFpEF recapitulates several key features of the disease. This new model reveals contractile and mitochondrial dysfunction and redox imbalance that are potential contributors to abnormal metabolism, exercise intolerance, and diminished quality of life in patients with postmenopausal HFpEF.NEW & NOTEWORTHY Heart failure with preserved ejection fraction (HFpEF) is a condition with phenotype-specific features highly prevalent in postmenopausal women and skeletal myopathy contributing to disease development and progression. We advanced a rat model of postmenopausal HFpEF with key cardiovascular and systemic features of the disease. Our study shows that the skeletal myopathy of postmenopausal HFpEF includes loss of limb muscle-specific force independent of atrophy, mitochondrial dysfunction, and oxidized shift in redox balance.
Collapse
Affiliation(s)
- Rachel C Kelley
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Lauren Betancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Andrea M Noriega
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Suzanne C Brinson
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Nuria Curbelo-Bermudez
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Dongwoo Hahn
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Ravi A Kumar
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Eliza Balazic
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Derek R Muscato
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Robbert J van der Pijl
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
- Department of Physiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Shengyi Shen
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Coen A C Ottenheijm
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
- Department of Physiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| |
Collapse
|
6
|
Experimental models of lipid overload and their relevance in understanding skeletal muscle insulin resistance and pathological changes in mitochondrial oxidative capacity. Biochimie 2021; 196:182-193. [PMID: 34563603 DOI: 10.1016/j.biochi.2021.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/30/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Abstract
It remains essential to decipher some of the pathological mechanisms that link obesity with deteriorating human health. Insulin resistance, due to enhanced free fatty acid substrate delivery, results in disrupted glucose homeostasis and altered mitochondrial oxidative capacity, which is a characteristic feature of an obese state. In fact, as a major site for regulating glucose homeostasis and energy production in response to insulin, the skeletal muscle has become an interesting target tissue to understand the impact of lipid overload on the development of insulin resistance and impaired mitochondrial respiratory function. In addition to systematically retrieving the discussed data, the current review brings an essential perspective in understanding the relevance of experimental models of lipid overload such as high fat diets in understanding the pathological link between insulin resistance and pathological changes in mitochondrial oxidative capacity. Importantly, inclusion of evidence from transgenic model highlights some of the unique molecular targets that are implicated in the development of insulin resistance and inefficient mitochondrial respiration processes within an obese state. Importantly, saturation with lipid products such as ceramides and diacylglycerols, especially within the skeletal muscle, appears to be instrumental in paving the path leading to worsening of metabolic complications. These metabolic consequences mostly interfere with the efficiency of the mitochondrial electron transport chain, leading to overproduction of toxic reactive oxygen species. Therefore, therapeutic agents that reverse the effects of lipid overload by improving insulin sensitivity and mitochondrial oxidative capacity are crucial for the management or even treatment of metabolic diseases.
Collapse
|
7
|
Banin RM, Machado MMF, de Andrade IS, Carvalho LOT, Hirata BKS, de Andrade HM, Júlio VDS, Ribeiro JDSFB, Cerutti SM, Oyama LM, Ribeiro EB, Telles MM. Ginkgo biloba extract (GbE) attenuates obesity and anxious/depressive-like behaviours induced by ovariectomy. Sci Rep 2021; 11:44. [PMID: 33420094 PMCID: PMC7794418 DOI: 10.1038/s41598-020-78528-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
While several pieces of evidence link obesity and mood disorders in menopause, the mechanisms involved are not yet fully understood. We have previously demonstrated that Ginkgo biloba extract (GbE) both attenuated diet-induced obesity of male rats and restored serotonin-induced hypophagia in ovariectomized female rats. The present study aimed at exploring whether GbE treatment ameliorates ovariectomy-related obesity and anxious/depressive-like behaviours. Wistar female rats were either ovariectomized (OVX) or sham-operated (Sham). After 2 months, either 500 mg/kg of GbE or vehicle were administered daily by gavage for 14 days. Anxious/depressive-like behaviours were assessed by the Elevated Plus Maze and the Forced Swim Tests, respectively. Ovariectomy caused high visceral adiposity, hyperleptinemia, and hypercholesterolemia, and increased the anxiety index (p = 0.048 vs. Sham + GbE) while it decreased the latency to immobility (p = 0.004 vs. Sham). GbE treatment in OVX rats improved body composition, adiponectin levels and blood lipid profile. It also reduced the anxiety index (p = 0.004) and increased the latency to immobility (p = 0.003) of OVX rats. Linear regression analysis demonstrated that leptin (p = 0.047) and total cholesterol levels (p = 0.022) were associated with anxious-like behaviours while body adiposity (p = 0.00005) was strongly associated with depressive-like behaviours. The results showed that GbE therapy was effective in attenuating the deleterious effects of ovariectomy on body composition, lipid profile, and anxious/depressive-like behaviours. Further studies are warranted to better understand the therapeutic potential of GbE in menopause.
Collapse
Affiliation(s)
- Renata Mancini Banin
- Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862, Edifício de Ciências Biomédicas, 2º andar, Vila Clementino, São Paulo, SP, CEP: 04023-062, Brasil
| | - Meira Maria Forcelini Machado
- Setor de Fisiologia e Farmacologia, Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP, Brasil
| | - Iracema Senna de Andrade
- Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862, Edifício de Ciências Biomédicas, 2º andar, Vila Clementino, São Paulo, SP, CEP: 04023-062, Brasil
| | - Lorenza Oliveira Testa Carvalho
- Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862, Edifício de Ciências Biomédicas, 2º andar, Vila Clementino, São Paulo, SP, CEP: 04023-062, Brasil
| | - Bruna Kelly Sousa Hirata
- Setor de Fisiologia e Farmacologia, Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP, Brasil
| | - Heider Mendonça de Andrade
- Setor de Fisiologia e Farmacologia, Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP, Brasil
| | - Viviane da Silva Júlio
- Setor de Fisiologia e Farmacologia, Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP, Brasil
| | | | - Suzete Maria Cerutti
- Setor de Fisiologia e Farmacologia, Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP, Brasil
| | - Lila Missae Oyama
- Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862, Edifício de Ciências Biomédicas, 2º andar, Vila Clementino, São Paulo, SP, CEP: 04023-062, Brasil
| | - Eliane Beraldi Ribeiro
- Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862, Edifício de Ciências Biomédicas, 2º andar, Vila Clementino, São Paulo, SP, CEP: 04023-062, Brasil.
| | - Mônica Marques Telles
- Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862, Edifício de Ciências Biomédicas, 2º andar, Vila Clementino, São Paulo, SP, CEP: 04023-062, Brasil
| |
Collapse
|
8
|
Liu S, Sun Y, Zhao R, Wang Y, Zhang W, Pang W. Isoleucine increases muscle mass through promoting myogenesis and intramyocellular fat deposition. Food Funct 2020; 12:144-153. [PMID: 33289736 DOI: 10.1039/d0fo02156c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Isoleucine (Ile), as a branched-chain amino acid (BCAA), has a vital role in regulating body weight and muscle protein synthesis. However, the regulatory effect of Ile on muscle mass under high-fat diet (HFD) conditions and intramyocellular lipid deposition remains largely unclear. In this study, a feeding experiment with HFD with or without 25 g L-1 Ile was performed using 32 wild male C57BL/6J mice randomly divided into two groups. The results showed that Ile significantly increased both muscle and fat mass, as well as causing insulin resistance and meanwhile upregulating the levels of key adipogenic and myogenic proteins. More importantly, Ile damaged the mitochondrial function by vacuolation, swelling and cristae fracture in the gastrocnemius (GAS) and tibialis anterior (TA) with downregulation of mitochondrial function-related genes. Furthermore, Ile promoted myogenesis and more lipid droplet accumulation in myotubes. Compared with the control, the protein levels of myosin heavy chain (MyHC), myoblast determination protein 1 (MyoD), myogenin (MyoG), peroxisome proliferator-activated receptor gamma (PPARg) and fatty acid synthase (FAS) were upregulated in the Ile group, whereas the protein levels of adipose triglyceride lipase (ATGL) and lipoprotein lipase (LPL) were downregulated. Collectively, Ile increased muscle mass through myogenesis and intramyocellular lipid deposition. Our findings provide a new perspective for not only improving the lean juiciness of farm animals by increasing intramyocellular lipid accumulation, but also modulating myopathies under obesity.
Collapse
Affiliation(s)
- Shuge Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yunmei Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Rui Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yingqian Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Wanrong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Weijun Pang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Camargo TF, Zanesco AM, Pacher KAS, Andrade TAM, Alves AA, do Amaral MEC. Physiological profile regulation during weight gain and loss by ovariectomized females: importance of SIRT1 and SIRT4. Am J Physiol Endocrinol Metab 2020; 319:E769-E778. [PMID: 32865007 DOI: 10.1152/ajpendo.00465.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity in menopausal women occurs because of the systemic effects of loss of ovarian function, resulting in increased body weight and oxidative stress. Caloric restriction (CR) is essential for weight loss, since it provides benefits associated with metabolic normalization resulting from the action of sirtuins. The aim of this work was to evaluate the physiological effects of weight cycling in ovariectomized females. Females aged 2 mo (n = 8/group) were submitted to simulated surgery, ovariectomy (OVX group), and ovariectomy with weight fluctuation (WF group). In the WF group, weight cycling was performed two times, using 21 days of ad libitum commercial feed and 21 days of caloric restriction with 40% of the feed consumed by the OVX group. After 17 wk, the animals were evaluated experimentally. Weight fluctuations reduced triacylglycerol and the adipose tissue index of the WF animals, while increasing the expression of antioxidant proteins. In addition to causing fluctuations in the physiological parameters, the weight cycling led to increases of adipocyte number and serum fatty acids. These effects were reflected in increased expression of the sirtuin (SIRT) 1 and SIRT4 proteins, as well as protein complexes of the mitochondrial electron transport chain, especially in the liver and adipose tissues. The weight-cycling results suggested that mitochondrial and nuclear sirtuins were active in cellular signaling for the control of lipid metabolism, oxidative phosphorylation, and redox status. Weight cycling was able to restore the health characteristics of lean animals.
Collapse
Affiliation(s)
- Thaís Furtado Camargo
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto, FHO/UNIARARAS, Araras, Sãu Paulo, Brazil
| | - Ariane Maria Zanesco
- College of Biomedicine, Centro Universitário Hermínio Ometto, Araras, Sãu Paulo, Brazil
| | - Kayo Augusto Salandin Pacher
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto, FHO/UNIARARAS, Araras, Sãu Paulo, Brazil
| | | | | | | |
Collapse
|
10
|
A proprotein convertase subtilisin/kexin type 9 inhibitor provides comparable efficacy with lower detriment than statins on mitochondria of oxidative muscle of obese estrogen-deprived rats. ACTA ACUST UNITED AC 2020; 27:1155-1166. [PMID: 32576799 DOI: 10.1097/gme.0000000000001586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The aim of the study was to compare the effects of atorvastatin, a proprotein convertase subtilisin/kexin type 9 inhibitor (PCSK9i), and 17β-estradiol on oxidative muscle mitochondria in a model of menopause with obesity. METHODS Female Wistar rats consumed either a standard diet (n = 12) or a high-fat/calorie diet (HFCD: n = 60). At week 13, standard diet-fed rats underwent a sham operation, whereas HFCD-fed rats underwent either a sham operation (n = 12) or an ovariectomy (n = 48). At week 19, all sham-operated rats received vehicle, and ovariectomized HFCD-fed rats received either vehicle, 40 mg/kg/d of atorvastatin, 4 mg/kg/d of PCSK9i (SBC-115076), or 50 μg/kg/d of 17β-estradiol for 3 weeks (n = 12/group). Metabolic parameters and soleus muscle physiology were investigated at the end of week 21. RESULTS Sham-operated and ovariectomized HFCD-fed rats developed obesity, hyperlipidemia, and insulin resistance, also showing increased oxidative phosphorylation (OXPHOS) proteins, ratio of p-Drp1-to-total Drp1 protein, malondialdehyde level, mitochondrial reactive oxygen species, and mitochondrial membrane depolarization in soleus muscle. All drugs equally decreased insulin resistance, OXPHOS proteins, ratio of p-Drp1-to-total Drp1 protein, and malondialdehyde level in soleus muscle. Only atorvastatin and PCSK9i attenuated hypertriglyceridemia, whereas 17β-estradiol had greater efficacy in preventing weight gain than the other two drugs. In addition, 17β-estradiol decreased mitochondrial reactive oxygen species and mitochondrial membrane depolarization. Atorvastatin increased ratio of cleaved caspase 3,8-to-procaspase 3,8, and cytochrome C. CONCLUSIONS 17β-Estradiol exhibits the greatest efficacy on the attenuation of obesity with the least harmful effect on skeletal muscle in a model of menopause with obesity, yet its effect on the treatment of hyperlipidemia is inferior to those of standard lipid-lowering agents.
Collapse
|
11
|
The comparative effects of high dose atorvastatin and proprotein convertase subtilisin/kexin type 9 inhibitor on the mitochondria of oxidative muscle fibers in obese-insulin resistant female rats. Toxicol Appl Pharmacol 2019; 382:114741. [PMID: 31473249 DOI: 10.1016/j.taap.2019.114741] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/06/2019] [Accepted: 08/28/2019] [Indexed: 12/23/2022]
Abstract
The present study aimed to compare the effects of high dose atorvastatin and a proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor on the mitochondrial function in oxidative muscle fibers in obese female rats. Female Wistar rats were fed with either a normal diet (ND: n = 12) or a high-fat diet (HFD: n = 36) for a total of 15 weeks. At week 13, ND-fed rats received a vehicle, and HFD-fed rats were divided to three groups to receive either a vehicle, 40 mg/kg/day of atorvastatin, or 4 mg/kg/day of PCSK9 inhibitor (SBC-115076) for 3 weeks. Soleus muscles were investigated to assess mitochondrial ROS, membrane potential, swelling, mitochondrial-related protein expression, and level of malondialdehyde (MDA). The results showed that HFD-fed rats with vehicle developed obese-insulin resistance and dyslipidemia. Both atorvastatin and PCSK9 inhibitor reduced obesity and dyslipidemia, as well as improved insulin sensitivity in HFD-fed rats. However, the efficacy of PCSK9 inhibitor to increase weight loss and reduce dyslipidemia in HFD-fed rats was greater than those of atorvastatin. An increase in MDA level, ratio of p-Drp1ser616/total Drp1 protein, CPT1 protein, mitochondrial ROS, and membrane depolarization in the soleus muscle were observed in HFD-fed rats with vehicle. PCSK9 inhibitor enabled the restoration of all these parameters to normal levels. However, atorvastatin facilitated restoration of some parameters, including MDA level, p-Drp1ser616/total Drp1 ratio, and CPT1 protein expression. These findings suggest that PCSK9 inhibitor is superior to atorvastatin in instigating weight loss, cholesterol reduction, and attenuation of mitochondrial oxidative stress in oxidative muscle fibers of obese female rats.
Collapse
|