1
|
Asemota S, Effah W, Young KL, Holt J, Cripe L, Ponnusamy S, Thiyagarajan T, Hwang DJ, He Y, Mcnamara K, Johnson D, Wang Y, Grimes B, Khosrosereshki Y, Hollingsworth TJ, Fleming MD, Pritchard FE, Hendrix A, Khan F, Fan M, Makowski L, Yin Z, Sasano H, Hayes DN, Pfeffer LM, Miller DD, Narayanan R. Identification of a targetable JAK-STAT enriched androgen receptor and androgen receptor splice variant positive triple-negative breast cancer subtype. Cell Rep 2023; 42:113461. [PMID: 37979170 PMCID: PMC10872270 DOI: 10.1016/j.celrep.2023.113461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype with no targeted therapeutics. The luminal androgen receptor (LAR) subtype constitutes 15% of TNBC and is enriched for androgen receptor (AR) and AR target genes. Here, we show that a cohort of TNBC not only expresses AR at a much higher rate (∼80%) but also expresses AR splice variants (AR-SVs) (∼20%), further subclassifying LAR-TNBC. Higher AR and AR-SV expression and corresponding aggressive phenotypes are observed predominantly in specimens obtained from African American women. LAR TNBC specimens are enriched for interferon, Janus kinase (JAK)-signal activator and transducer (STAT), and androgen signaling pathways, which are exclusive to AR-expressing epithelial cancer cells. AR- and AR-SV-expressing TNBC cell proliferation and xenograft and patient-tumor explant growth are inhibited by AR N-terminal domain-binding selective AR degrader or by a JAK inhibitor. Biochemical analysis suggests that STAT1 is an AR coactivator. Collectively, our work identifies pharmacologically targetable TNBC subtypes and identifies growth-promoting interaction between AR and JAK-STAT signaling.
Collapse
Affiliation(s)
- Sarah Asemota
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Wendy Effah
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Kirsten L Young
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Jeremiah Holt
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Linnea Cripe
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Suriyan Ponnusamy
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Thirumagal Thiyagarajan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Yali He
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Keely Mcnamara
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8577, Japan
| | - Daniel Johnson
- Molecular Bioinformatics Core, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Yinan Wang
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Brandy Grimes
- West Cancer Center and Research Institute, Memphis, TN 38138, USA
| | - Yekta Khosrosereshki
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - T J Hollingsworth
- Department of Ophthalmology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Martin D Fleming
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Frances E Pritchard
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Ashley Hendrix
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Farhan Khan
- Department of Pathology, Methodist Hospital, Memphis, TN 38104, USA
| | - Meiyun Fan
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Liza Makowski
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA; UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Zheng Yin
- Biomedical and Informatics Services Core, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8577, Japan
| | - D Neil Hayes
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA; UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Lawrence M Pfeffer
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA; UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38103, USA; UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Ramesh Narayanan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA; UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA.
| |
Collapse
|
2
|
Diep CH, Mauro LJ, Lange CA. Navigating a plethora of progesterone receptors: Comments on the safety/risk of progesterone supplementation in women with a history of breast cancer or at high-risk for developing breast cancer. Steroids 2023; 200:109329. [PMID: 37884178 PMCID: PMC10842046 DOI: 10.1016/j.steroids.2023.109329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Progesterone and progestin agonists are potent steroid hormones. There are at least three major types of progesterone receptor (PR) families that interact with and respond to progesterone or progestin ligands. These receptors include ligand-activated transcription factor isoforms (PR-A and PR-B) encoded by the PGR gene, often termed classical or nuclear progesterone receptor (nPR), membrane-spanning progesterone receptor membrane component proteins known as PGRMC1/2, and a large family of progestin/adipoQreceptors or PAQRs (also called membrane PRs or mPRs). Cross-talk between mPRs and nPRs has also been reported. The complexity of progesterone actions via a plethora of diverse receptors warrants careful consideration of the clinical applications of progesterone, which primarily include birth control formulations in young women and hormone replacement therapy following menopause. Herein, we focus on the benefits and risk of progesterone/progestin supplementation. We conclude that progesterone-only supplementation is considered safe for most reproductive-age women. However, women who currently have ER + breast cancer or have had such cancer in the past should not take sex hormones, including progesterone. Women at high-risk for developing breast or ovarian cancer, either due to their family history or known genetic factors (such as BRCA1/2 mutation) or hormonal conditions, should avoid exogenous sex hormones and proceed with caution when considering using natural hormones to mitigate menopausal symptoms and/or improve quality of life after menopause. These individuals are urged to consult with a qualified OB-GYN physician to thoroughly assess the risks and benefits of sex hormone supplementation. As new insights into the homeostatic roles and specificity of highly integrated rapid signaling and nPR actions are revealed, we are hopeful that the benefits of using progesterone use may be fully realized without an increased risk of women's cancer.
Collapse
Affiliation(s)
- Caroline H Diep
- Department of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - Laura J Mauro
- Department of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA; Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - Carol A Lange
- Department of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA.
| |
Collapse
|
3
|
Koch MK, Ravichandran A, Murekatete B, Clegg J, Joseph MT, Hampson M, Jenkinson M, Bauer HS, Snell C, Liu C, Gough M, Thompson EW, Werner C, Hutmacher DW, Haupt LM, Bray LJ. Exploring the Potential of PEG-Heparin Hydrogels to Support Long-Term Ex Vivo Culture of Patient-Derived Breast Explant Tissues. Adv Healthc Mater 2023; 12:e2202202. [PMID: 36527735 PMCID: PMC11469079 DOI: 10.1002/adhm.202202202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Breast cancer is a complex, highly heterogenous, and dynamic disease and the leading cause of cancer-related death in women worldwide. Evaluation of the heterogeneity of breast cancer and its various subtypes is crucial to identify novel treatment strategies that can overcome the limitations of currently available options. Explant cultures of human mammary tissue have been known to provide important insights for the study of breast cancer structure and phenotype as they include the context of the surrounding microenvironment, allowing for the comprehensive exploration of patient heterogeneity. However, the major limitation of currently available techniques remains the short-term viability of the tissue owing to loss of structural integrity. Here, an ex vivo culture model using star-shaped poly(ethylene glycol) and maleimide-functionalized heparin (PEG-HM) hydrogels to provide structural support to the explant cultures is presented. The mechanical support allows the culture of the human mammary tissue for up to 3 weeks and prevent disintegration of the cellular structures including the epithelium and surrounding stromal tissue. Further, maintenance of epithelial phenotype and hormonal receptors is observed for up to 2 weeks of culture which makes them relevant for testing therapeutic interventions. Through this study, the importance of donor-to-donor variability and intra-patient tissue heterogeneity is reiterated.
Collapse
Affiliation(s)
- Maria K. Koch
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)Kelvin GroveQLD4059Australia
| | - Akhilandeshwari Ravichandran
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)Kelvin GroveQLD4059Australia
- Centre for Biomedical TechnologiesQueensland University of Technology (QUT)BrisbaneQLD4059Australia
| | - Berline Murekatete
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)Kelvin GroveQLD4059Australia
| | - Julien Clegg
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)Kelvin GroveQLD4059Australia
- Centre for the Personalised Analysis of CancersQueensland University of Technology (QUT)Translational Research InstituteBrisbaneQLD4102Australia
| | - Mary Teresa Joseph
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)Kelvin GroveQLD4059Australia
| | - Madison Hampson
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)Kelvin GroveQLD4059Australia
| | - Mitchell Jenkinson
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)Kelvin GroveQLD4059Australia
| | - Hannah S. Bauer
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)Kelvin GroveQLD4059Australia
| | - Cameron Snell
- Peter MacCallum Cancer CentreMelbourneVIC3000Australia
- Mater PathologyMater Hospital BrisbaneMater Health ServicesBrisbaneQLD4101Australia
| | - Cheng Liu
- Mater PathologyMater Hospital BrisbaneMater Health ServicesBrisbaneQLD4101Australia
- Faculty of MedicineThe University of QueenslandHerstonQLD4006Australia
| | - Madeline Gough
- Mater PathologyMater Hospital BrisbaneMater Health ServicesBrisbaneQLD4101Australia
- Cancer Pathology Research GroupMater Research Institute – The University of QueenslandTranslational Research InstituteBrisbaneQLD4102Australia
| | - Erik W. Thompson
- Centre for the Personalised Analysis of CancersQueensland University of Technology (QUT)Translational Research InstituteBrisbaneQLD4102Australia
- School of Biomedical SciencesQueensland University of Technology (QUT)Translational Research InstituteBrisbaneQLD4102Australia
| | - Carsten Werner
- Leibniz Institute of Polymer Research01069DresdenGermany
| | - Dietmar W. Hutmacher
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)Kelvin GroveQLD4059Australia
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering TechnologiesQueensland University of Technology (QUT)BrisbaneQLD4000Australia
- Australian Research Council (ARC) Training Centre for Multiscale 3D ImagingModellingand Manufacturing (M3D Innovation)Queensland University of Technology (QUT)BrisbaneQLD4000Australia
- Max Planck Queensland Center for the Materials Science of Extracellular MatricesQueensland University of Technology (QUT)BrisbaneQLD4000Australia
| | - Larisa M. Haupt
- School of Biomedical SciencesQueensland University of Technology (QUT)Translational Research InstituteBrisbaneQLD4102Australia
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering TechnologiesQueensland University of Technology (QUT)BrisbaneQLD4000Australia
- Max Planck Queensland Center for the Materials Science of Extracellular MatricesQueensland University of Technology (QUT)BrisbaneQLD4000Australia
- Centre for Genomics and Personalised HealthGenomics Research CentreSchool of Biomedical SciencesQueensland University of Technology (QUT)Kelvin GroveQLD4059Australia
| | - Laura J. Bray
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)Kelvin GroveQLD4059Australia
- Centre for Biomedical TechnologiesQueensland University of Technology (QUT)BrisbaneQLD4059Australia
- Centre for the Personalised Analysis of CancersQueensland University of Technology (QUT)Translational Research InstituteBrisbaneQLD4102Australia
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering TechnologiesQueensland University of Technology (QUT)BrisbaneQLD4000Australia
- Max Planck Queensland Center for the Materials Science of Extracellular MatricesQueensland University of Technology (QUT)BrisbaneQLD4000Australia
| |
Collapse
|
4
|
Leo J, Dondossola E, Basham KJ, Wilson NR, Alhalabi O, Gao J, Kurnit KC, White MG, McQuade JL, Westin SN, Wellberg EA, Frigo DE. Stranger Things: New Roles and Opportunities for Androgen Receptor in Oncology Beyond Prostate Cancer. Endocrinology 2023; 164:bqad071. [PMID: 37154098 PMCID: PMC10413436 DOI: 10.1210/endocr/bqad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
The androgen receptor (AR) is one of the oldest therapeutic targets in oncology and continues to dominate the treatment landscape for advanced prostate cancer, where nearly all treatment regimens include some form of AR modulation. In this regard, AR remains the central driver of prostate cancer cell biology. Emerging preclinical and clinical data implicate key roles for AR in additional cancer types, thereby expanding the importance of this drug target beyond prostate cancer. In this mini-review, new roles for AR in other cancer types are discussed as well as their potential for treatment with AR-targeted agents. Our understanding of these additional functions for AR in oncology expand this receptor's potential as a therapeutic target and will help guide the development of new treatment approaches.
Collapse
Affiliation(s)
- Javier Leo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Eleonora Dondossola
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Nathaniel R Wilson
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Omar Alhalabi
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Katherine C Kurnit
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, The University of Chicago, Chicago, IL 60637, USA
| | - Michael G White
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer L McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth A Wellberg
- Department of Pathology, Harold Hamm Diabetes Center, and Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
5
|
The Other Side of the Coin: May Androgens Have a Role in Breast Cancer Risk? Int J Mol Sci 2021; 23:ijms23010424. [PMID: 35008851 PMCID: PMC8745651 DOI: 10.3390/ijms23010424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer prevention is a major challenge worldwide. During the last few years, efforts have been made to identify molecular breast tissue factors that could be linked to an increased risk of developing the disease in healthy women. In this concern, steroid hormones and their receptors are key players since they are deeply involved in the growth, development and lifetime changes of the mammary gland and play a crucial role in breast cancer development and progression. In particular, androgens, by binding their own receptor, seem to exert a dichotomous effect, as they reduce cell proliferation in estrogen receptor α positive (ERα+) breast cancers while promoting tumour growth in the ERα negative ones. Despite this intricate role in cancer, very little is known about the impact of androgen receptor (AR)-mediated signalling on normal breast tissue and its correlation to breast cancer risk factors. Through an accurate collection of experimental and epidemiological studies, this review aims to elucidate whether androgens might influence the susceptibility for breast cancer. Moreover, the possibility to exploit the AR as a useful marker to predict the disease will be also evaluated.
Collapse
|
6
|
Flores VA, Pal L, Manson JE. Hormone Therapy in Menopause: Concepts, Controversies, and Approach to Treatment. Endocr Rev 2021; 42:720-752. [PMID: 33858012 DOI: 10.1210/endrev/bnab011] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 12/22/2022]
Abstract
Hormone therapy (HT) is an effective treatment for menopausal symptoms, including vasomotor symptoms and genitourinary syndrome of menopause. Randomized trials also demonstrate positive effects on bone health, and age-stratified analyses indicate more favorable effects on coronary heart disease and all-cause mortality in younger women (close proximity to menopause) than in women more than a decade past menopause. In the absence of contraindications or other major comorbidities, recently menopausal women with moderate or severe symptoms are appropriate candidates for HT. The Women's Health Initiative (WHI) hormone therapy trials-estrogen and progestin trial and the estrogen-alone trial-clarified the benefits and risks of HT, including how the results differed by age. A key lesson from the WHI trials, which was unfortunately lost in the posttrial cacophony, was that the risk:benefit ratio and safety profile of HT differed markedly by clinical characteristics of the participants, especially age, time since menopause, and comorbidity status. In the present review of the WHI and other recent HT trials, we aim to provide readers with an improved understanding of the importance of the timing of HT initiation, type and route of administration, and of patient-specific considerations that should be weighed when prescribing HT.
Collapse
Affiliation(s)
- Valerie A Flores
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Lubna Pal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - JoAnn E Manson
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Jain J, Kwan D, Forcier M. Medroxyprogesterone Acetate in Gender-Affirming Therapy for Transwomen: Results From a Retrospective Study. J Clin Endocrinol Metab 2019; 104:5148-5156. [PMID: 31127826 DOI: 10.1210/jc.2018-02253] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/17/2019] [Indexed: 02/04/2023]
Abstract
CONTEXT Medroxyprogesterone acetate (MPA) is a widely used progestin in feminizing hormone therapy. However, the side effects and hormonal changes elicited by this drug have never been investigated in the transgender population. OBJECTIVE We evaluated the incidence of self-reported effects among transwomen using MPA and this drug's impact on hormonal and metabolic parameters. DESIGN, SETTING, AND PARTICIPANTS We retrospectively collected data from 290 follow-up visits (FUVs) of transwomen treated at Rhode Island Hospital from January 2011 to July 2018 (mean duration of therapy 3.4 ± 1.7 years). FUVs followed regimens of estradiol (E) and spironolactone, with MPA (n = 102) or without MPA (n = 188). MAIN OUTCOME MEASURES We assessed the incidence of self-reported effects after MPA treatment. We also compared blood levels of E, testosterone, and various laboratory parameters between MPA and non-MPA groups. RESULTS Mean weighted E level was 211 ± 57 pg/mL after MPA treatment and 210 ± 31 pg/mL otherwise; this difference was nonsignificant [t(274) = 0.143, P = 0.886]. Mean weighted testosterone level was 79 ± 18 ng/dL after MPA treatment and 215 ± 29 ng/dL otherwise; testosterone levels were significantly lower in the MPA group [t(122) = 32.4, P < 0.001]. There were minimal changes in other laboratory parameters. Of 39 patients receiving MPA, 26 reported improved breast development and 11 reported decreased facial hair. Five patients experienced mood swings on MPA. CONCLUSIONS In our cohort of transwomen, we found minimal side effects, unchanged E levels, and a decline in testosterone associated with MPA, outcomes consistent with feminization. Prospective studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Jaison Jain
- Gender and Sexual Health Services, Department of Pediatrics, Rhode Island Hospital, Providence, Rhode Island
- Department of Plastic and Reconstructive Surgery, Rhode Island Hospital, Providence, Rhode Island
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Daniel Kwan
- Department of Plastic and Reconstructive Surgery, Rhode Island Hospital, Providence, Rhode Island
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Michelle Forcier
- Gender and Sexual Health Services, Department of Pediatrics, Rhode Island Hospital, Providence, Rhode Island
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
8
|
Meijer BJ, Wielenga MCB, Hoyer PB, Amos-Landgraf JM, Hakvoort TBM, Muncan V, Heijmans J, van den Brink GR. Colorectal tumor prevention by the progestin medroxyprogesterone acetate is critically dependent on postmenopausal status. Oncotarget 2018; 9:30561-30567. [PMID: 30093969 PMCID: PMC6078141 DOI: 10.18632/oncotarget.25703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/01/2018] [Indexed: 11/25/2022] Open
Abstract
The large randomized placebo controlled trials of the Women’s Health Initiative have shown that the combination of estrogen and progestin medroxyprogesterone acetate (MPA) protects from colorectal cancer in postmenopausal women. No effect was observed in women treated with estrogen alone. This suggests that progesterone, or more specifically the progestin MPA may have chemopreventive activity. The effect of MPA on colorectal carcinogenesis has been difficult to study in animal models. Most models are not affected by either depleting female hormones by ovariectomy or treatment with MPA. Importantly, an ovariectomy fails to reproduce one of the hall marks of the postmenopausal state in women with intact ovaries. That is, the continued production of androgens by the atrophic postmenopausal ovaries. Here we show that adenoma incidence is increased in the vinyl cylcohexene diepoxide (VCD) mouse model of the menopause compared to age matched fertile female mice. Treatment with MPA protected VCD treated mice from adenomagenesis, but had no effect on adenoma numbers in age-matched fertile female mice. Our data show that the protective effect of MPA depends on the postmenopausal state and suggest that MPA monotherapy may be studied as a chemopreventive agent in postmenopausal women.
Collapse
Affiliation(s)
- Bartolomeus J Meijer
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands
| | - Mattheus C B Wielenga
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands
| | - Patricia B Hoyer
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | | | - Theodorus B M Hakvoort
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands
| | - Vanesa Muncan
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands
| | - Jarom Heijmans
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands.,Department of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Gijs R van den Brink
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands.,Department of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands.,GlaxoSmithKline, Medicines Research Center, Stevenage, UK
| |
Collapse
|
9
|
Severson TM, Zwart W. A review of estrogen receptor/androgen receptor genomics in male breast cancer. Endocr Relat Cancer 2017; 24:R27-R34. [PMID: 28062545 DOI: 10.1530/erc-16-0225] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/06/2017] [Indexed: 01/17/2023]
Abstract
Male breast cancer is a rare disease, of which little is known. In contrast to female breast cancer, the very vast majority of all cases are positive for estrogen receptor alpha (ERα), implicating the function of this steroid hormone receptor in tumor development and progression. Consequently, adjuvant treatment of male breast cancer revolves around inhibition of ERα. In addition, the androgen receptor (AR) gradually receives more attention as a relevant novel target in breast cancer treatment. Importantly, the rationale of treatment decision making is strongly based on parallels with female breast cancer. Yet, prognostic indicators are not necessarily the same in breast cancer between both genders, complicating translatability of knowledge developed in female breast cancer toward male patients. Even though ERα and AR are expressed both in female and male disease, are the genomic functions of both steroid hormone receptors conserved between genders? Recent studies have reported on mutational and epigenetic similarities and differences between male and female breast cancer, further suggesting that some features are strongly conserved between the two diseases, whereas others are not. This review critically discusses the recent developments in the study of male breast cancer in relation to ERα and AR action and highlights the potential future studies to further elucidate the genomic regulation of this rare disease.
Collapse
Affiliation(s)
- Tesa M Severson
- Division of Molecular Pathologythe Netherlands Cancer Institute, Amsterdam, the Netherlands
- Division of Molecular Carcinogenesisthe Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wilbert Zwart
- Division of Molecular Pathologythe Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
10
|
Carroll JS, Hickey TE, Tarulli GA, Williams M, Tilley WD. Deciphering the divergent roles of progestogens in breast cancer. Nat Rev Cancer 2017; 17:54-64. [PMID: 27885264 DOI: 10.1038/nrc.2016.116] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most breast cancers are driven by oestrogen receptor-α. Anti-oestrogenic drugs are the standard treatment for these breast cancers; however, treatment resistance is common, necessitating new therapeutic strategies. Recent preclinical and historical clinical studies support the use of progestogens to activate the progesterone receptor (PR) in breast cancers. However, widespread controversy exists regarding the role of progestogens in this disease, hindering the clinical implementation of PR-targeted therapies. Herein, we present and discuss data at the root of this controversy and clarify the confusion and misinterpretations that have consequently arisen. We then present our view on how progestogens may be safely and effectively used in treating breast cancer.
Collapse
Affiliation(s)
- Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Hanson Institute and School of Medicine, University of Adelaide, Adelaide SA 5005, Australia
| | - Gerard A Tarulli
- Dame Roma Mitchell Cancer Research Laboratories, Hanson Institute and School of Medicine, University of Adelaide, Adelaide SA 5005, Australia
| | - Michael Williams
- Division of Epidemiology, Department of Public Health and Preventive Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239-3098, USA
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Hanson Institute and School of Medicine, University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
11
|
Hu DG, Selth LA, Tarulli GA, Meech R, Wijayakumara D, Chanawong A, Russell R, Caldas C, Robinson JLL, Carroll JS, Tilley WD, Mackenzie PI, Hickey TE. Androgen and Estrogen Receptors in Breast Cancer Coregulate Human UDP-Glucuronosyltransferases 2B15 and 2B17. Cancer Res 2016; 76:5881-5893. [PMID: 27496708 DOI: 10.1158/0008-5472.can-15-3372] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 07/14/2016] [Indexed: 11/16/2022]
Abstract
Glucuronidation is an enzymatic process that terminally inactivates steroid hormones, including estrogens and androgens, thereby influencing carcinogenesis in hormone-dependent cancers. While estrogens drive breast carcinogenesis via the estrogen receptor alpha (ERα), androgens play a critical role as prohormones for estrogen biosynthesis and ligands for the androgen receptor (AR). In this study, the expression and regulation of two androgen-inactivating enzymes, the UDP-glucuronosyltransferases UGT2B15 and UGT2B17, was assessed in breast cancer. In large clinical cohorts, high UGT2B15 and UGT2B17 levels positively influenced disease-specific survival in distinct molecular subgroups. Expression of these genes was highest in cases positive for ERα. In cell line models, ERα, AR, and the transcription factor FOXA1 cooperated to increase transcription via tandem binding events at their proximal promoters. ERα activity was dependent on FOXA1, facilitated by AR activation, and potently stimulated by estradiol as well as estrogenic metabolites of 5α-dihydrotestosterone. AR activity was mediated via binding to an estrogen receptor half-site 3' to the FOXA1 and ERα-binding sites. Although AR and FOXA1 bound the UGT promoters in AR-positive/ERα-negative breast cancer cell lines, androgen treatment did not influence basal transcription levels. Ex vivo culture of human breast tissue and ERα+ tumors provided evidence for upregulation of UGT2B15 and UGT2B17 by estrogen or androgen treatment. ERα binding was evident at the promoters of these genes in a small cohort of primary tumors and distant metastases. Collectively, these data provide insight into sex steroid receptor-mediated regulation of androgen-inactivating enzymes in ERα+ breast cancer, which may have subtype-specific consequences for disease progression and outcomes. Cancer Res; 76(19); 5881-93. ©2016 AACR.
Collapse
Affiliation(s)
- Dong G Hu
- Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, South Australia, Australia
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia. Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Gerard A Tarulli
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Robyn Meech
- Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, South Australia, Australia
| | - Dhilushi Wijayakumara
- Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, South Australia, Australia
| | - Apichaya Chanawong
- Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, South Australia, Australia
| | - Roslin Russell
- Breast Cancer Genomics Group, Cancer Research UK, Cambridge Institute, Cambridge University, Cambridge, United Kingdom
| | - Carlos Caldas
- Breast Cancer Genomics Group, Cancer Research UK, Cambridge Institute, Cambridge University, Cambridge, United Kingdom
| | - Jessica L L Robinson
- Nuclear Transcription Factor Laboratory, Cancer Research UK, Cambridge Institute, Cambridge University, Cambridge, United Kingdom
| | - Jason S Carroll
- Nuclear Transcription Factor Laboratory, Cancer Research UK, Cambridge Institute, Cambridge University, Cambridge, United Kingdom
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia. Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Peter I Mackenzie
- Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, South Australia, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia.
| |
Collapse
|
12
|
De Hert M, Peuskens J, Sabbe T, Mitchell AJ, Stubbs B, Neven P, Wildiers H, Detraux J. Relationship between prolactin, breast cancer risk, and antipsychotics in patients with schizophrenia: a critical review. Acta Psychiatr Scand 2016; 133:5-22. [PMID: 26114737 DOI: 10.1111/acps.12459] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/02/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE A recent meta-analysis showed that breast cancer probably is more common in female patients with schizophrenia than in the general population (effect size = 1.25, P < 0.05). Increasing experimental and epidemiological data have alerted researchers to the influence of prolactin (PRL) in mammary carcinogenesis. We therefore investigated the possible relationship between antipsychotic-induced hyperprolactinemia (HPRL) and breast cancer risk in female patients with schizophrenia. METHOD A literature search (1950 until January 2015), using the MEDLINE database, was conducted for English-language published clinical trials to identify and synthesize data of the current state of knowledge concerning breast cancer risk (factors) in women with schizophrenia and its (their) relationship between HPRL and antipsychotic medication. RESULTS Although an increasing body of evidence supports the involvement of PRL in breast carcinogenesis, results of human prospective studies are limited, equivocal, and correlative (with risk ratios ranging from 0.70 to 1.9 for premenopausal women and from 0.76 to 2.03 for postmenopausal women). Moreover, these studies equally do not take into account the local production of PRL in breast epithelium, although amplification or overexpression of the local autocrine/paracrine PRL loop may be a more important mechanism in tumorigenesis. Until now, there is also no conclusive evidence that antipsychotic medication can increase the risk of breast malignancy and mortality. CONCLUSION Other breast risk factors than PRL, such as nulliparity, obesity, diabetes mellitus, and unhealthy lifestyle behaviours (alcohol dependence, smoking, low physical activity), probably are of greater relevance in individual breast cancer cases within the population of female patients with schizophrenia.
Collapse
Affiliation(s)
- M De Hert
- Department of Neurosciences, KU Leuven University Psychiatric Centre, Kortenberg, Belgium
| | - J Peuskens
- Department of Neurosciences, KU Leuven University Psychiatric Centre, Kortenberg, Belgium
| | - T Sabbe
- Department of Neurosciences, KU Leuven University Psychiatric Centre, Kortenberg, Belgium
| | - A J Mitchell
- Department of Psycho-oncology, Cancer & Molecular Medicine, University of Leicester, Leicester, UK
| | - B Stubbs
- School of Health and Social Care, University of Greenwich, Greenwich, UK
| | - P Neven
- Multidisciplinary Breast Center, University Hospitals Leuven, KU Leuven - University of Leuven, Leuven, Belgium
| | - H Wildiers
- Multidisciplinary Breast Center, University Hospitals Leuven, KU Leuven - University of Leuven, Leuven, Belgium.,Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, KU Leuven - University of Leuven, Leuven, Belgium
| | - J Detraux
- Department of Neurosciences, KU Leuven University Psychiatric Centre, Kortenberg, Belgium
| |
Collapse
|
13
|
Flores VA, Taylor HS. The Effect of Menopausal Hormone Therapies on Breast Cancer: Avoiding the Risk. Endocrinol Metab Clin North Am 2015; 44:587-602. [PMID: 26316245 PMCID: PMC4555991 DOI: 10.1016/j.ecl.2015.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Estrogen and P treatment results in greater risk of breast cancer than placebo. Treatment with estrogen alone does not increase the risk of breast cancer, may be used by women who have had a hysterectomy, and may even result in a decreased risk of breast cancer. Continued research seeks to improve the understanding of the interplay between estrogen and progestogens that predispose to adverse effects on breast tissue. Caution over this hypothesized benefit is warranted until it is substantiated by data on the incidence of breast cancer in tissue selective estrogen complex users.
Collapse
Affiliation(s)
- Valerie A Flores
- Women and Infants Hospital, Warren Alpert Medical School of Brown University, 222 Richmond Street, Providence, RI 02903, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
14
|
Africander DJ, Storbeck KH, Hapgood JP. A comparative study of the androgenic properties of progesterone and the progestins, medroxyprogesterone acetate (MPA) and norethisterone acetate (NET-A). J Steroid Biochem Mol Biol 2014; 143:404-15. [PMID: 24861265 DOI: 10.1016/j.jsbmb.2014.05.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 05/11/2014] [Accepted: 05/14/2014] [Indexed: 01/21/2023]
Abstract
The importance of investigating the molecular mechanism of action of medroxyprogesterone acetate (MPA) and norethisterone acetate (NET-A), two clinically important progestins used in hormone therapy (HT), has been highlighted by clinical evidence showing that MPA and norethisterone (NET) increase the risk of the development of breast cancer in HRT users, and that MPA may increase susceptibility to- and transmission of HIV-1. The aim of this study was to compare the molecular mechanisms of action of MPA, NET-A and progesterone (Prog) via the androgen receptor (AR) in a cell line model that can minimize confounding factors such as the presence of other steroid receptors. This study is the first to determine accurate apparent Ki values for Prog, MPA and NET-A toward the human AR in COS-1 cells. The results reveal that these ligands have a similar binding affinity for the AR to that of the natural androgen 5α-dihydrotestosterone (DHT) (Ki's for DHT, Prog, MPA and NET-A are 29.4, 36.6, 19.4 and 21.9 nM, respectively). Moreover, in both transactivation and transrepression transcriptional assays we demonstrate that, unlike Prog, MPA and NET-A are efficacious AR agonists, with activities comparable to DHT. One of the most novel findings of our study is that NET-A, like DHT, induces the ligand-dependent interaction between the NH2- and COOH-terminal domains (N/C-interaction) of the AR independent of promoter-context, while MPA does not induce the N/C interaction on a classical ARE and does so only weakly on an AR-selective ARE. This suggests that MPA and NET-A may exert differential promoter-specific actions via the AR in vivo. Consistent with this, molecular modeling suggests that MPA and NET-A induce subtle differences in the structure of the AR ligand binding domain. Taken together, the results from this study suggest that unlike Prog, both MPA and NET-A used in hormonal therapy are likely to compete with DHT and exert significant and promoter-specific off-target transcriptional effects via the AR, possibly contributing to some of the observed side-effects with the clinical use of MPA and NET-A.
Collapse
Affiliation(s)
- Donita J Africander
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa.
| | - Karl-Heinz Storbeck
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Janet P Hapgood
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.
| |
Collapse
|
15
|
Gibson DA, Simitsidellis I, Collins F, Saunders PTK. Evidence of androgen action in endometrial and ovarian cancers. Endocr Relat Cancer 2014; 21:T203-18. [PMID: 24623742 DOI: 10.1530/erc-13-0551] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endometrial cancer (EC) and ovarian cancer are common gynaecological malignancies. The impact of androgen action in these cancers is poorly understood; however, there is emerging evidence to suggest that targeting androgen signalling may be of therapeutic benefit. Epidemiological evidence suggests that there is an increased risk of EC associated with exposure to elevated levels of androgens, and genetic variants in genes related to both androgen biosynthesis and action are associated with an increased risk of both EC and ovarian cancer. Androgen receptors (ARs) may be a potential therapeutic target in EC due to reported anti-proliferative activities of androgens. By contrast, androgens may promote growth of some ovarian cancers and anti-androgen therapy has been proposed. Introduction of new therapies targeting ARs expressed in EC or ovarian cancer will require a much greater understanding of the impacts of cell context-specific AR-dependent signalling and how ARs can crosstalk with other steroid receptors during progression of disease. This review considers the evidence that androgens may be important in the aetiology of EC and ovarian cancer with discussion of evidence for androgen action in normal and malignant endometrial and ovarian tissue.
Collapse
Affiliation(s)
- Douglas A Gibson
- MRC Centre for Reproductive HealthThe University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Ioannis Simitsidellis
- MRC Centre for Reproductive HealthThe University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Frances Collins
- MRC Centre for Reproductive HealthThe University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Philippa T K Saunders
- MRC Centre for Reproductive HealthThe University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
16
|
McNamara KM, Moore NL, Hickey TE, Sasano H, Tilley WD. Complexities of androgen receptor signalling in breast cancer. Endocr Relat Cancer 2014; 21:T161-81. [PMID: 24951107 DOI: 10.1530/erc-14-0243] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While the clinical benefit of androgen-based therapeutics in breast cancer has been known since the 1940s, we have only recently begun to fully understand the mechanisms of androgen action in breast cancer. Androgen signalling pathways can have either beneficial or deleterious effects in breast cancer depending on the breast cancer subtype and intracellular context. This review discusses our current knowledge of androgen signalling in breast cancer, including the relationship between serum androgens and breast cancer risk, the prognostic significance of androgen receptor (AR) expression in different breast cancer subtypes and the downstream molecular pathways mediating androgen action in breast cancer cells. Intracrine androgen metabolism has also been discussed and proposed as a potential mechanism that may explain some of the reported differences regarding dichotomous androgen actions in breast cancers. A better understanding of AR signalling in this disease is critical given the current resurgence in interest in utilising contemporary AR-directed therapies for breast cancer and the need for biomarkers that will accurately predict clinical response.
Collapse
Affiliation(s)
- Keely M McNamara
- Department of PathologyTohoku University School of Medicine, Miyagi, Sendai, JapanDame Roma Mitchell Cancer Research LaboratoriesDiscipline of Medicine, The University of Adelaide and Hanson Institute, DX 650801, Adelaide, South Australia 5005, Australia
| | - Nicole L Moore
- Department of PathologyTohoku University School of Medicine, Miyagi, Sendai, JapanDame Roma Mitchell Cancer Research LaboratoriesDiscipline of Medicine, The University of Adelaide and Hanson Institute, DX 650801, Adelaide, South Australia 5005, Australia
| | - Theresa E Hickey
- Department of PathologyTohoku University School of Medicine, Miyagi, Sendai, JapanDame Roma Mitchell Cancer Research LaboratoriesDiscipline of Medicine, The University of Adelaide and Hanson Institute, DX 650801, Adelaide, South Australia 5005, Australia
| | - Hironobu Sasano
- Department of PathologyTohoku University School of Medicine, Miyagi, Sendai, JapanDame Roma Mitchell Cancer Research LaboratoriesDiscipline of Medicine, The University of Adelaide and Hanson Institute, DX 650801, Adelaide, South Australia 5005, Australia
| | - Wayne D Tilley
- Department of PathologyTohoku University School of Medicine, Miyagi, Sendai, JapanDame Roma Mitchell Cancer Research LaboratoriesDiscipline of Medicine, The University of Adelaide and Hanson Institute, DX 650801, Adelaide, South Australia 5005, Australia
| |
Collapse
|