1
|
Lee SO, Kim IK. Molecular pathophysiology of secondary lymphedema. Front Cell Dev Biol 2024; 12:1363811. [PMID: 39045461 PMCID: PMC11264244 DOI: 10.3389/fcell.2024.1363811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Lymphedema occurs as a result of lymphatic vessel damage or obstruction, leading to the lymphatic fluid stasis, which triggers inflammation, tissue fibrosis, and adipose tissue deposition with adipocyte hypertrophy. The treatment of lymphedema is divided into conservative and surgical approaches. Among surgical treatments, methods like lymphaticovenular anastomosis and vascularized lymph node transfer are gaining attention as they focus on restoring lymphatic flow, constituting a physiologic treatment approach. Lymphatic endothelial cells form the structure of lymphatic vessels. These cells possess button-like junctions that facilitate the influx of fluid and leukocytes. Approximately 10% of interstitial fluid is connected to venous return through lymphatic capillaries. Damage to lymphatic vessels leads to lymphatic fluid stasis, resulting in the clinical condition of lymphedema through three mechanisms: Inflammation involving CD4+ T cells as the principal contributing factor, along with the effects of immune cells on the VEGF-C/VEGFR axis, consequently resulting in abnormal lymphangiogenesis; adipocyte hypertrophy and adipose tissue deposition regulated by the interaction of CCAAT/enhancer-binding protein α and peroxisome proliferator-activated receptor-γ; and tissue fibrosis initiated by the overactivity of Th2 cells, leading to the secretion of profibrotic cytokines such as IL-4, IL-13, and the growth factor TGF-β1. Surgical treatments aimed at reconstructing the lymphatic system help facilitate lymphatic fluid drainage, but their effectiveness in treating already damaged lymphatic vessels is limited. Therefore, reviewing the pathophysiology and molecular mechanisms of lymphedema is crucial to complement surgical treatments and explore novel therapeutic approaches.
Collapse
|
2
|
Stasi E, Sciascia S, Naretto C, Baldovino S, Roccatello D. Lymphatic System and the Kidney: From Lymphangiogenesis to Renal Inflammation and Fibrosis Development. Int J Mol Sci 2024; 25:2853. [PMID: 38474100 DOI: 10.3390/ijms25052853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The lymphatic kidney system plays a crucial role in managing interstitial fluid removal, regulating fluid balance, and tuning immune response. It also assists in the reabsorption of proteins, electrolytes, cytokines, growth factors, and immune cells. Pathological conditions, including tissue damage, excessive interstitial fluid, high blood glucose levels, and inflammation, can initiate lymphangiogenesis-the formation of new lymphatic vessels. This process is associated with various kidney diseases, including polycystic kidney disease, hypertension, ultrafiltration challenges, and complications post-organ transplantation. Although lymphangiogenesis has beneficial effects in removing excess fluid and immune cells, it may also contribute to inflammation and fibrosis within the kidneys. In this review, we aim to discuss the biology of the lymphatic system, from its development and function to its response to disease stimuli, with an emphasis on renal pathophysiology. Furthermore, we explore how innovative treatments targeting the lymphatic system could potentially enhance the management of kidney diseases.
Collapse
Affiliation(s)
- Elodie Stasi
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, ASL Città di Torino and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy
| | - Savino Sciascia
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, ASL Città di Torino and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy
| | - Carla Naretto
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, ASL Città di Torino and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy
| | - Simone Baldovino
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, ASL Città di Torino and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy
| | - Dario Roccatello
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, ASL Città di Torino and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy
| |
Collapse
|
3
|
Jeong HH, Kim D, Kim T, Suh HP, Pak CJ, Jeon JY, Hong JP. The Role of Escin as a Topical Agent for Lymphedema Treatment in a Rat Model. INT J LOW EXTR WOUND 2023:15347346231195944. [PMID: 37605640 DOI: 10.1177/15347346231195944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Escin, a naturally derived material isolated from horse chestnut, is used as an anti-inflammatory and anti-edema agent. This study aimed to evaluate its effects on lymphedema in a rat tail model. We divided the rats into five groups. The treatment groups received topical application of escin gel at concentrations of 20%, 10%, 2%, and 0.5% for 4 weeks. The fifth group served as a control. We performed volumetric (water displacement) tests, H&E staining, and LYVE-1 immunohistochemical staining, followed by statistical evaluation. All treatment groups showed significant volumetric reductions compared with the control group, but no significant differences were observed between the treatment groups. H&E staining showed a significant reduction in dermal thickness in the 20%, 10%, and 2% escin treatment groups compared to the control group. Within the treatment groups, the 2% escin group showed a significant difference compared with the 20% and 10% escin groups (p = 0.021 for both). LYVE-1 immunohistochemical staining revealed a significantly higher mean lymphatic vessel count in the 2% escin group compared with the 20%, 10%, and 0.5% escin-treated groups and the control group (p = 0.019, p = 0.025, p = 0.019, and p = 0.032 respectively). Topical escin applied to a rat tail model of acute lymphedema resulted in a significant reduction in tail volume, reduced dermal thickness, and increased lymphatic structures. The 2% escin concentration may be the optimal dose for improving lymphedema in this model. Further research is warranted to explore the clinical application of escin in patients with lymphedema.
Collapse
Affiliation(s)
- Hyung Hwa Jeong
- Department of Plastic and Reconstructive Surgery, Asan Medical Center, University of Ulsan, School of Medicine, Seoul, Republic of Korea
| | - Donggeun Kim
- Department of Plastic and Reconstructive Surgery, Asan Medical Center, University of Ulsan, School of Medicine, Seoul, Republic of Korea
| | - Taehyun Kim
- Department of Plastic and Reconstructive Surgery, Asan Medical Center, University of Ulsan, School of Medicine, Seoul, Republic of Korea
| | - HyunSuk Peter Suh
- Department of Plastic and Reconstructive Surgery, Asan Medical Center, University of Ulsan, School of Medicine, Seoul, Republic of Korea
| | - ChangSik John Pak
- Department of Plastic and Reconstructive Surgery, Asan Medical Center, University of Ulsan, School of Medicine, Seoul, Republic of Korea
| | - Jae Yong Jeon
- Department of Rehabilitation Medicine, Asan Medical Center. University of Ulsan Collage of Medicine, Seoul, Republic of Korea
| | - Joon Pio Hong
- Department of Plastic and Reconstructive Surgery, Asan Medical Center, University of Ulsan, School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Brown S, Campbell AC, Kuonqui K, Sarker A, Park HJ, Shin J, Kataru RP, Coriddi M, Dayan JH, Mehrara BJ. The Future of Lymphedema: Potential Therapeutic Targets for Treatment. CURRENT BREAST CANCER REPORTS 2023; 15:1-9. [PMID: 37359311 PMCID: PMC10233555 DOI: 10.1007/s12609-023-00491-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 06/28/2023]
Abstract
Purpose of Review This review aims to summarize the current knowledge regarding the pharmacological interventions studied in both experimental and clinical trials for secondary lymphedema. Recent Findings Lymphedema is a progressive disease that results in tissue swelling, pain, and functional disability. The most common cause of secondary lymphedema in developed countries is an iatrogenic injury to the lymphatic system during cancer treatment. Despite its high incidence and severe sequelae, lymphedema is usually treated with palliative options such as compression and physical therapy. However, recent studies on the pathophysiology of lymphedema have explored pharmacological treatments in preclinical and early phase clinical trials. Summary Many potential treatment options for lymphedema have been explored throughout the past two decades including systemic agents and topical approaches to decrease the potential toxicity of systemic treatment. Treatment strategies including lymphangiogenic factors, anti-inflammatory agents, and anti-fibrotic therapies may be used independently or in conjunction with surgical approaches.
Collapse
Affiliation(s)
- Stav Brown
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| | - Adana C. Campbell
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| | - Kevin Kuonqui
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| | - Ananta Sarker
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| | - Hyeung Ju Park
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| | - Jinyeon Shin
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| | - Raghu P. Kataru
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| | - Michelle Coriddi
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| | - Joseph H. Dayan
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| | - Babak J. Mehrara
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| |
Collapse
|
5
|
Shimizu Y, Che Y, Murohara T. Therapeutic Lymphangiogenesis Is a Promising Strategy for Secondary Lymphedema. Int J Mol Sci 2023; 24:7774. [PMID: 37175479 PMCID: PMC10178056 DOI: 10.3390/ijms24097774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/15/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Secondary lymphedema is caused by lymphatic insufficiency (lymphatic drainage failure) following lymph node dissection during the surgical treatment or radiation therapy of breast or pelvic cancer. The clinical problems associated with lymphedema are reduced quality of life in terms of appearance and function, as well as the development of skin ulcers, recurrent pain, and infection. Currently, countermeasures against lymphedema are mainly physical therapy such as lymphatic massage, elastic stockings, and skin care, and there is no effective and fundamental treatment with a highly recommended grade. Therefore, there is a need for the development of a fundamental novel treatment for intractable lymphedema. Therapeutic lymphangiogenesis, which has been attracting attention in recent years, is a treatment concept that reconstructs the fragmented lymphatic network to recover lymphatic vessel function and is revolutionary to be a fundamental cure. This review focuses on the translational research of therapeutic lymphangiogenesis for lymphedema and outlines the current status and prospects in the development of therapeutic applications.
Collapse
Affiliation(s)
- Yuuki Shimizu
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | |
Collapse
|
6
|
Brown S, Dayan JH, Coriddi M, Campbell A, Kuonqui K, Shin J, Park HJ, Mehrara BJ, Kataru RP. Pharmacological Treatment of Secondary Lymphedema. Front Pharmacol 2022; 13:828513. [PMID: 35145417 PMCID: PMC8822213 DOI: 10.3389/fphar.2022.828513] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Lymphedema is a chronic disease that results in swelling and decreased function due to abnormal lymphatic fluid clearance and chronic inflammation. In Western countries, lymphedema most commonly develops following an iatrogenic injury to the lymphatic system during cancer treatment. It is estimated that as many as 10 million patients suffer from lymphedema in the United States alone. Current treatments for lymphedema are palliative in nature, relying on compression garments and physical therapy to decrease interstitial fluid accumulation in the affected extremity. However, recent discoveries have increased the hopes of therapeutic interventions that may promote lymphatic regeneration and function. The purpose of this review is to summarize current experimental pharmacological strategies in the treatment of lymphedema.
Collapse
|
7
|
Mukherjee A, Nepiyushchikh Z, Michalaki E, Dixon JB. Lymphatic injury alters the contractility and mechanosensitivity of collecting lymphatics to intermittent pneumatic compression. J Physiol 2021; 599:2699-2721. [PMID: 33644884 DOI: 10.1113/jp281206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS We present the first in vivo evidence that lymphatic contraction can entrain with an external oscillatory mechanical stimulus. Lymphatic injury can alter collecting lymphatic contractility, but not much is known about how its mechanosensitivity to external pressure is affected, which is crucial given the current pressure application methods for treating lymphoedema. We show that oscillatory pressure waves (OPW), akin to intermittent pneumatic compression (IPC) therapy, optimally entrain lymphatic contractility and modulate function depending on the frequency and propagation speed of the OPW. We show that the OPW-induced entrainment and contractile function in the intact collecting lymphatics are enhanced 28 days after a contralateral lymphatic ligation surgery. The results show that IPC efficacy can be improved through proper selection of OPW parameters, and that collecting lymphatics adapt their function and mechanosensitivity after a contralateral injury, switching their behaviour to a pump-like configuration that may be more suited to the altered microenvironment. ABSTRACT Intermittent pneumatic compression (IPC) is commonly used to control the swelling due to lymphoedema, possibly modulating the collecting lymphatic function. Lymphoedema causes lymphatic contractile dysfunction, but the consequent alterations in the mechanosensitivity of lymphatics to IPC is not known. In the present work, the spatiotemporally varying oscillatory pressure waves (OPW) generated during IPC were simulated to study the modulation of lymphatic function by OPW under physiological and pathological conditions. OPW with three temporal frequencies and three propagation speeds were applied to rat tail collecting lymphatics. The entrainment of the lymphatics to OPW was significantly higher at a frequency of 0.05 Hz compared with 0.1 Hz and 0.2 Hz (P = 0.0054 and P = 0.014, respectively), but did not depend on the OPW propagation speed. Lymphatic function was significantly higher at a frequency of 0.05 Hz and propagation speed of 2.55 mm/s (P = 0.015). Exogenous nitric oxide was not found to alter OPW-induced entrainment. A contralateral lymphatic ligation surgery was performed to simulate partial lymphatic injury in rat tails. The intact vessels showed a significant increase in entrainment to OPW, 28 days after ligation (compared with sham) (P = 0.016), with a similar increase in lymphatic transport function (P = 0.0029). The results suggest an enhanced mechanosensitivity of the lymphatics, along with a transition to a pump-like behaviour, in response to a lymphatic injury. These results enhance our fundamental understanding of how lymphatic mechanosensitivity assists the coordination of lymphatic contractility and how this might be leveraged in IPC therapy.
Collapse
Affiliation(s)
- Anish Mukherjee
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Zhanna Nepiyushchikh
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Eleftheria Michalaki
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - J Brandon Dixon
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| |
Collapse
|
8
|
Ahmadzadeh N, Robering JW, Kengelbach-Weigand A, Al-Abboodi M, Beier JP, Horch RE, Boos AM. Human adipose-derived stem cells support lymphangiogenesis in vitro by secretion of lymphangiogenic factors. Exp Cell Res 2020; 388:111816. [PMID: 31923426 DOI: 10.1016/j.yexcr.2020.111816] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/22/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
Lymphedema is a chronic progressive disease ultimately resulting in severe, disfiguring swelling and permanent changes of the affected tissues. Presently, there is no causal treatment approach of lymphedema. Therefore, most therapies are purely symptomatic. However, the recent use of stem cell-based therapies has offered new prospects for alternative treatment options. The present study was performed to investigate the effects of human adipose-derived stem cells (ADSCs) on human dermal lymphatic endothelial cells (HDLECs) in terms of basic in vitro lymphangiogenic assays (WST-8 assay, scratch assay, transmigration assay, sprouting assay, tube formation assay). The influence of ADSC-conditioned medium (ADSC-CM) on HDLECs was compared to recombinant VEGF-C, bFGF and HGF. Further ADSC-CM was characterized by protein microarray and enzyme-linked immunosorbent assay (ELISA). Although key-lymphangiogenic growth factors - like VEGF-C - could only be detected in low concentrations within the conditioned medium (CM), HDLECs were potently stimulated to proliferate, migrate and to form tube like structures by ADSC-CM. Despite concentrations more than hundredfold higher than those found in the conditioned medium, stimulation with recombinant VEGF-C, bFGF and HGF was still weaker compared to ADSC-CM. These results highlight the effectiveness of growth factors secreted by ADSC to stimulate HDLEC, potentially providing a promising new therapeutic approach for the treatment of lymphedema.
Collapse
Affiliation(s)
- Nima Ahmadzadeh
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Germany
| | - Jan W Robering
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Germany; Department of Plastic Surgery, Hand Surgery, Burns Center, University Hospital RWTH Aachen University, University Hospital Aachen, Germany
| | - Annika Kengelbach-Weigand
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Germany
| | - Majida Al-Abboodi
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Germany; Institute of Genetic Engineering and Biotechnology, University of Baghdad, Iraq
| | - Justus P Beier
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Germany; Department of Plastic Surgery, Hand Surgery, Burns Center, University Hospital RWTH Aachen University, University Hospital Aachen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Germany
| | - Anja M Boos
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Germany; Department of Plastic Surgery, Hand Surgery, Burns Center, University Hospital RWTH Aachen University, University Hospital Aachen, Germany.
| |
Collapse
|
9
|
Forte AJ, Boczar D, Huayllani MT, McLaughlin SA, Bagaria S. Topical Approach to Delivering Targeted Therapies in Lymphedema Treatment: A Systematic Review. Cureus 2019; 11:e6269. [PMID: 31815081 PMCID: PMC6886732 DOI: 10.7759/cureus.6269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It is estimated that 140 to 200 million people are affected by lymphedema worldwide. Many studies have proposed targeted therapies that can be delivered systemically or locally to treat lymphedema. Since lymphedema primarily affects the skin and subcutaneous tissues, topical approaches to therapy should be considered as an attractive proposition as they can avoid systemic complications. In light of this, we conducted a systematic review of publications that analyzed the use of topical approaches to delivering targeted therapies in the treatment of lymphedema. We hypothesized that topical approaches resulted in the satisfactory treatment of lymphedema. We conducted a systematic review of publications on PubMed. The main eligibility criterion was that the articles should primarily investigate the use of topical approaches to delivering targeted therapies in the treatment of lymphedema. Consequently, we excluded papers that investigated any other delivery approaches or medical conditions. Of the 174 potential studies found in the literature, six were found to fulfill our eligibility criteria. All these studies were experimental ones on small animals (mice). The authors generally proposed different types of therapies, which could be clustered into two main groups: 1) induction of lymphangiogenesis [vascular endothelial growth factor C (VEGF-C) hydrogel or fibroblast growth factor]; and 2) modulation of inflammation (tacrolimus or topical collagen gel or troxerutin-phosphatidylcholine). All studies presented positive outcomes, demonstrating that topical therapy is a promising route for delivering growth factors and anti-inflammatory agents in the treatment of lymphedema. However, studies were conducted under heterogeneous protocols, and the safe application of these therapies in humans has not been assessed. Further studies are necessary to confirm the benefits and safety of targeted topical therapy on patients with lymphedema.
Collapse
Affiliation(s)
- Antonio J Forte
- Plastic Surgery, Mayo Clinic Florida Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Jacksonville, USA
| | - Daniel Boczar
- Plastic Surgery, Mayo Clinic Florida Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Jacksonville, USA
| | - Maria T Huayllani
- Plastic Surgery, Mayo Clinic Florida Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Jacksonville, USA
| | - Sarah A McLaughlin
- Surgery, Mayo Clinic Florida Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Jacksonville, USA
| | - Sanjay Bagaria
- Surgery, Mayo Clinic Florida Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Jacksonville, USA
| |
Collapse
|
10
|
Choi J, Kim KY, Jeon JY, Yoon SH, Park JH, Song HY, Cho KJ. Development and Evaluation of a New In Vivo Volume Measuring System in Mouse Tail Lymphedema Model. Lymphat Res Biol 2019; 17:402-412. [DOI: 10.1089/lrb.2018.0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Joonmyeong Choi
- Biorobotics Laboratory, Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Republic of Korea
| | - Kun Yung Kim
- Department of Radiology, Chonbuk National University Hospital, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Chonbuk National University, Jeonju, Republic of Korea
| | - Jae Yong Jeon
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung Hwan Yoon
- Department of Biomedical Engineering Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jung-Hoon Park
- Department of Biomedical Engineering Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ho-Young Song
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyu-Jin Cho
- Biorobotics Laboratory, Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Niderla-Bielińska J, Ciszek B, Jankowska-Steifer E, Flaht-Zabost A, Gula G, Radomska-Leśniewska DM, Ratajska A. Mouse Proepicardium Exhibits a Sprouting Response to Exogenous Proangiogenic Growth Factors in vitro. J Vasc Res 2016; 53:83-93. [DOI: 10.1159/000448685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/24/2016] [Indexed: 11/19/2022] Open
|
12
|
Corliss BA, Azimi MS, Munson J, Peirce SM, Murfee WL. Macrophages: An Inflammatory Link Between Angiogenesis and Lymphangiogenesis. Microcirculation 2016; 23:95-121. [PMID: 26614117 PMCID: PMC4744134 DOI: 10.1111/micc.12259] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/23/2015] [Indexed: 12/14/2022]
Abstract
Angiogenesis and lymphangiogenesis often occur in response to tissue injury or in the presence of pathology (e.g., cancer), and it is these types of environments in which macrophages are activated and increased in number. Moreover, the blood vascular microcirculation and the lymphatic circulation serve as the conduits for entry and exit for monocyte-derived macrophages in nearly every tissue and organ. Macrophages both affect and are affected by the vessels through which they travel. Therefore, it is not surprising that examination of macrophage behaviors in both angiogenesis and lymphangiogenesis has yielded interesting observations that suggest macrophages may be key regulators of these complex growth and remodeling processes. In this review, we will take a closer look at macrophages through the lens of angiogenesis and lymphangiogenesis, examining how their dynamic behaviors may regulate vessel sprouting and function. We present macrophages as a cellular link that spatially and temporally connects angiogenesis with lymphangiogenesis, in both physiological growth and in pathological adaptations, such as tumorigenesis. As such, attempts to therapeutically target macrophages in order to affect these processes may be particularly effective, and studying macrophages in both settings will accelerate the field's understanding of this important cell type in health and disease.
Collapse
Affiliation(s)
- Bruce A. Corliss
- Department of Biomedical Engineering, 415 Lane Road, University of Virginia, Charlottesville, VA 22908
| | - Mohammad S. Azimi
- Department of Biomedical Engineering, 500 Lindy Boggs Energy Center, Tulane University, New Orleans, LA 70118
| | - Jenny Munson
- Department of Biomedical Engineering, 415 Lane Road, University of Virginia, Charlottesville, VA 22908
| | - Shayn M. Peirce
- Department of Biomedical Engineering, 415 Lane Road, University of Virginia, Charlottesville, VA 22908
| | - Walter Lee Murfee
- Department of Biomedical Engineering, 500 Lindy Boggs Energy Center, Tulane University, New Orleans, LA 70118
| |
Collapse
|
13
|
Blei F. Update March 2015. Lymphat Res Biol 2015. [DOI: 10.1089/lrb.2015.1312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|