1
|
Redolfi Riva E, Özkan M, Contreras E, Pawar S, Zinno C, Escarda-Castro E, Kim J, Wieringa P, Stellacci F, Micera S, Navarro X. Beyond the limiting gap length: peripheral nerve regeneration through implantable nerve guidance conduits. Biomater Sci 2024; 12:1371-1404. [PMID: 38363090 DOI: 10.1039/d3bm01163a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Peripheral nerve damage results in the loss of sensorimotor and autonomic functions, which is a significant burden to patients. Furthermore, nerve injuries greater than the limiting gap length require surgical repair. Although autografts are the preferred clinical choice, their usage is impeded by their limited availability, dimensional mismatch, and the sacrifice of another functional donor nerve. Accordingly, nerve guidance conduits, which are tubular scaffolds engineered to provide a biomimetic environment for nerve regeneration, have emerged as alternatives to autografts. Consequently, a few nerve guidance conduits have received clinical approval for the repair of short-mid nerve gaps but failed to regenerate limiting gap damage, which represents the bottleneck of this technology. Thus, it is still necessary to optimize the morphology and constituent materials of conduits. This review summarizes the recent advances in nerve conduit technology. Several manufacturing techniques and conduit designs are discussed, with emphasis on the structural improvement of simple hollow tubes, additive manufacturing techniques, and decellularized grafts. The main objective of this review is to provide a critical overview of nerve guidance conduit technology to support regeneration in long nerve defects, promote future developments, and speed up its clinical translation as a reliable alternative to autografts.
Collapse
Affiliation(s)
- Eugenio Redolfi Riva
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Melis Özkan
- Institute of Materials, école Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics and Institute of Bioengineering, école Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Estefania Contreras
- Integral Service for Laboratory Animals (SIAL), Faculty of Veterinary, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain.
| | - Sujeet Pawar
- Institute of Materials, école Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ciro Zinno
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Enrique Escarda-Castro
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Jaehyeon Kim
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Paul Wieringa
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Francesco Stellacci
- Institute of Materials, école Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute of Materials, Department of Bioengineering and Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Silvestro Micera
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics and Institute of Bioengineering, école Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Institute Guttmann Foundation, Hospital of Neurorehabilitation, Badalona, Spain
| |
Collapse
|
2
|
Bedar M, Saffari TM, Mathot F, Shin AY. Functional outcomes of nerve allografts augmented with mesenchymal stem cells and surgical angiogenesis in a rat sciatic nerve defect model. J Plast Reconstr Aesthet Surg 2023; 87:329-338. [PMID: 37925923 PMCID: PMC10842349 DOI: 10.1016/j.bjps.2023.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/22/2023] [Accepted: 10/07/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Motor function recovery following acellular nerve allograft (ANA) repair remains inferior to autologous nerve reconstruction. We investigated the functional recovery of ANAs after combined mesenchymal stem cell (MSC) delivery and surgical angiogenesis in a rat sciatic nerve defect model. METHODS In 100 Lewis rats, unilateral sciatic nerve defects were reconstructed with (I) autografts, (II) ANAs, (III) ANAs wrapped with a superficial inferior epigastric artery fascial (SIEF) flap, combined with either (IV) undifferentiated MSCs or (V) Schwann cell-like differentiated MSCs. The tibialis anterior muscle area was evaluated during the survival period using ultrasonography. Functional recovery, histomorphometry, and immunofluorescence were assessed at 12 and 16 weeks. RESULTS At 12 weeks, the addition of surgical angiogenesis and MSCs improved ankle contractures. The SIEF flap also significantly improved compound muscle action potential (CMAP) outcomes compared with ANAs. Autografts outperformed all groups in muscle force and weight. At 16 weeks, ankle contractures of ANAs remained inferior to autografts and SIEF, whereas the CMAP amplitude was comparable between groups. The muscle force of autografts remained superior to all other groups, and the muscle weight of ANAs remained inferior to autografts. No differences were found in histomorphometry outcomes between SIEF groups and ANAs. Vascularity, determined by CD34 staining, was significantly higher in SIEF groups compared with ANAs. CONCLUSIONS The combination of surgical angiogenesis and MSCs did not result in a synergistic improvement in functional outcomes. In a short nerve gap model, the adipofascial flap may provide sufficient MSCs to ANAs without additional ex vivo MSC seeding.
Collapse
Affiliation(s)
- Meiwand Bedar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Plastic Surgery, Nijmegen, the Netherlands
| | - Tiam M Saffari
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Plastic Surgery, Nijmegen, the Netherlands
| | - Femke Mathot
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Plastic Surgery, Nijmegen, the Netherlands
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
3
|
Chen J, Zhang D, Wu LP, Zhao M. Current Strategies for Engineered Vascular Grafts and Vascularized Tissue Engineering. Polymers (Basel) 2023; 15:polym15092015. [PMID: 37177162 PMCID: PMC10181238 DOI: 10.3390/polym15092015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Blood vessels not only transport oxygen and nutrients to each organ, but also play an important role in the regulation of tissue regeneration. Impaired or occluded vessels can result in ischemia, tissue necrosis, or even life-threatening events. Bioengineered vascular grafts have become a promising alternative treatment for damaged or occlusive vessels. Large-scale tubular grafts, which can match arteries, arterioles, and venules, as well as meso- and microscale vasculature to alleviate ischemia or prevascularized engineered tissues, have been developed. In this review, materials and techniques for engineering tubular scaffolds and vasculature at all levels are discussed. Examples of vascularized tissue engineering in bone, peripheral nerves, and the heart are also provided. Finally, the current challenges are discussed and the perspectives on future developments in biofunctional engineered vessels are delineated.
Collapse
Affiliation(s)
- Jun Chen
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Center for Chemical Biology and Drug Discovery, Laboratory of Computational Biomedicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Di Zhang
- Center for Chemical Biology and Drug Discovery, Laboratory of Computational Biomedicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Lin-Ping Wu
- Center for Chemical Biology and Drug Discovery, Laboratory of Computational Biomedicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ming Zhao
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
4
|
Saio S, Konishi K, Hohjoh H, Tamura Y, Masutani T, Iddamalgoda A, Ichihashi M, Hasegawa H, Mizutani KI. Extracellular Environment-Controlled Angiogenesis, and Potential Application for Peripheral Nerve Regeneration. Int J Mol Sci 2021; 22:ijms222011169. [PMID: 34681829 PMCID: PMC8541280 DOI: 10.3390/ijms222011169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/18/2022] Open
Abstract
Endothelial cells acquire different phenotypes to establish functional vascular networks. Vascular endothelial growth factor (VEGF) signaling induces endothelial proliferation, migration, and survival to regulate vascular development, which leads to the construction of a vascular plexuses with a regular morphology. The spatiotemporal localization of angiogenic factors and the extracellular matrix play fundamental roles in ensuring the proper regulation of angiogenesis. This review article highlights how and what kinds of extracellular environmental molecules regulate angiogenesis. Close interactions between the vascular and neural systems involve shared molecular mechanisms to coordinate developmental and regenerative processes. This review article focuses on current knowledge about the roles of angiogenesis in peripheral nerve regeneration and the latest therapeutic strategies for the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Shingo Saio
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan; (S.S.); (K.K.); (Y.T.); (M.I.)
| | - Kanna Konishi
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan; (S.S.); (K.K.); (Y.T.); (M.I.)
| | - Hirofumi Hohjoh
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1, Motoyamakitamachi, Higashinada-ku, Kobe 658-8558, Japan;
| | - Yuki Tamura
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan; (S.S.); (K.K.); (Y.T.); (M.I.)
| | - Teruaki Masutani
- Research & Development Dept., Ichimaru Pharcos Co., Ltd., 318-1 Asagi, Motosu 501-0475, Japan; (T.M.); (A.I.)
- Medical Education Development Center, Gifu University School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Arunasiri Iddamalgoda
- Research & Development Dept., Ichimaru Pharcos Co., Ltd., 318-1 Asagi, Motosu 501-0475, Japan; (T.M.); (A.I.)
| | - Masamitsu Ichihashi
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan; (S.S.); (K.K.); (Y.T.); (M.I.)
| | - Hiroshi Hasegawa
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1, Motoyamakitamachi, Higashinada-ku, Kobe 658-8558, Japan;
- Correspondence: (H.H.); (K.-i.M.)
| | - Ken-ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan; (S.S.); (K.K.); (Y.T.); (M.I.)
- Correspondence: (H.H.); (K.-i.M.)
| |
Collapse
|
5
|
Kaneko A, Naito K, Nakamura S, Miyahara K, Goto K, Obata H, Nagura N, Sugiyama Y, Kaneko K, Ishijima M. Influence of aging on the peripheral nerve repair process using an artificial nerve conduit. Exp Ther Med 2020; 21:168. [PMID: 33456535 PMCID: PMC7792472 DOI: 10.3892/etm.2020.9599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/24/2020] [Indexed: 11/17/2022] Open
Abstract
The influence of aging on the induction of nerve regeneration in artificial nerve conduits has yet to be clarified. In the present study, artificial nerve conduit transplantation and histological analysis using the sciatic nerve of young and elderly mice were performed. Using 20 male C57BL/6 mice, an artificial nerve conduit was transplanted to the sciatic nerve at 8 weeks (Young group) or 70 weeks of age (Aged group), and the sciatic nerve was evaluated histologically at 1, 4 and 12 weeks after surgery. Using hematoxylin and eosin staining, the state of induction of nerve regeneration in the artificial nerve conduit was evaluated. Additionally, immunohistochemical staining was used to investigate an angiogenic marker [vascular endothelial growth factor A (VEGFA)], Schwann cell markers [sex determining region Y-box 10 (SOX10) and S100 calcium-binding protein β (S100β)] and a nerve damage marker [nerve growth factor (NGF)]. The results revealed that the induction of nerve regeneration was significantly higher in the Young group than in the Aged group. In addition, VEGFA and SOX10 expression at 1 week, SOX10 expression at 4 weeks and SOX10, S100β and NGF expression at 12 weeks in the proximal stump were significantly higher in the Young group than in the Aged group. At the center of the artificial nerve conduit, S100β and NGF expression at 4 weeks, and VEGFA, SOX10, S100β and NGF expression at 12 weeks were significantly higher in the Young group than in the Aged group. In the distal stump, no significant difference was noted in immunostaining at any week between the two groups. The present study suggested that the nerve regeneration-inducing functions decrease due to aging.
Collapse
Affiliation(s)
- Ayaka Kaneko
- Department of Orthopaedics, Juntendo University School of Medicine, Bunkyo, Tokyo 113-8421, Japan
| | - Kiyohito Naito
- Department of Orthopaedics, Juntendo University School of Medicine, Bunkyo, Tokyo 113-8421, Japan
| | - Shinji Nakamura
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo 113-8421, Japan
| | - Katsumi Miyahara
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo 113-8421, Japan
| | - Kenji Goto
- Department of Orthopaedics, Juntendo University School of Medicine, Bunkyo, Tokyo 113-8421, Japan
| | - Hiroyuki Obata
- Department of Orthopaedics, Juntendo University School of Medicine, Bunkyo, Tokyo 113-8421, Japan
| | - Nana Nagura
- Department of Orthopaedics, Juntendo University School of Medicine, Bunkyo, Tokyo 113-8421, Japan
| | - Yoichi Sugiyama
- Department of Orthopaedics, Juntendo University School of Medicine, Bunkyo, Tokyo 113-8421, Japan
| | - Kazuo Kaneko
- Department of Orthopaedics, Juntendo University School of Medicine, Bunkyo, Tokyo 113-8421, Japan
| | - Muneaki Ishijima
- Department of Orthopaedics, Juntendo University School of Medicine, Bunkyo, Tokyo 113-8421, Japan
| |
Collapse
|
6
|
Stewart CE, Kan CFK, Stewart BR, Sanicola HW, Jung JP, Sulaiman OAR, Wang D. Machine intelligence for nerve conduit design and production. J Biol Eng 2020; 14:25. [PMID: 32944070 PMCID: PMC7487837 DOI: 10.1186/s13036-020-00245-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/13/2020] [Indexed: 02/08/2023] Open
Abstract
Nerve guidance conduits (NGCs) have emerged from recent advances within tissue engineering as a promising alternative to autografts for peripheral nerve repair. NGCs are tubular structures with engineered biomaterials, which guide axonal regeneration from the injured proximal nerve to the distal stump. NGC design can synergistically combine multiple properties to enhance proliferation of stem and neuronal cells, improve nerve migration, attenuate inflammation and reduce scar tissue formation. The aim of most laboratories fabricating NGCs is the development of an automated process that incorporates patient-specific features and complex tissue blueprints (e.g. neurovascular conduit) that serve as the basis for more complicated muscular and skin grafts. One of the major limitations for tissue engineering is lack of guidance for generating tissue blueprints and the absence of streamlined manufacturing processes. With the rapid expansion of machine intelligence, high dimensional image analysis, and computational scaffold design, optimized tissue templates for 3D bioprinting (3DBP) are feasible. In this review, we examine the translational challenges to peripheral nerve regeneration and where machine intelligence can innovate bottlenecks in neural tissue engineering.
Collapse
Affiliation(s)
- Caleb E. Stewart
- Current Affiliation: Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport Louisiana, USA
| | - Chin Fung Kelvin Kan
- Current Affiliation: Department of General Surgery, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Brody R. Stewart
- Current Affiliation: Department of Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Henry W. Sanicola
- Current Affiliation: Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport Louisiana, USA
| | - Jangwook P. Jung
- Department of Biological Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Olawale A. R. Sulaiman
- Ochsner Neural Injury & Regeneration Laboratory, Ochsner Clinic Foundation, New Orleans, LA 70121 USA
- Department of Neurosurgery, Ochsner Clinic Foundation, New Orleans, 70121 USA
| | - Dadong Wang
- Quantitative Imaging Research Team, Data 61, Commonwealth Scientific and Industrial Research Organization, Marsfield, NSW 2122 Australia
| |
Collapse
|
7
|
Pillai MM, Sathishkumar G, Houshyar S, Senthilkumar R, Quigley A, Shanthakumari S, Padhye R, Bhattacharyya A. Nanocomposite-Coated Silk-Based Artificial Conduits: The Influence of Structures on Regeneration of the Peripheral Nerve. ACS APPLIED BIO MATERIALS 2020; 3:4454-4464. [DOI: 10.1021/acsabm.0c00430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Gopal Sathishkumar
- Functional, Innovative and Smart Textiles, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - Shadi Houshyar
- Centre for Materials Innovation and Future Fashion, College of Design and Social Context, RMIT University, Melbourne, Victoria 3056, Australia
| | - Rathinasamy Senthilkumar
- Functional, Innovative and Smart Textiles, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - Anita Quigley
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent’s Hospital, Melbourne, Victoria 3065, Australia
| | - Sivanandam Shanthakumari
- Department of Pathology, PSG Institute of Medical Sciences and Research, Coimbatore 641004, India
| | - Rajiv Padhye
- Centre for Materials Innovation and Future Fashion, College of Design and Social Context, RMIT University, Melbourne, Victoria 3056, Australia
| | - Amitava Bhattacharyya
- Functional, Innovative and Smart Textiles, PSG Institute of Advanced Studies, Coimbatore 641004, India
| |
Collapse
|
8
|
Jafari M, Delaviz H, Torabi S, Mohammadi J, Gheitasi I. The Effect of Muscle Graft With Nerve Growth Factor and Laminin on Sciatic Nerve Repair in Rats. Basic Clin Neurosci 2020; 10:333-344. [PMID: 32231770 PMCID: PMC7101516 DOI: 10.32598/bcn.9.10.145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 04/29/2017] [Accepted: 03/03/2018] [Indexed: 11/21/2022] Open
Abstract
Introduction: Peripheral nerve injury is one of the most common damages that lead to physical disability. Considering the similarity between the coatings of skeletal muscles and nerve fibers, we conducted this research to determine the effect of muscle graft with Nerve Growth Factor (NGF) and Laminin (L) on nerve repair. Methods: We cut a 10-mm length of the sciatic nerve from 42 female Wistar rats (Weight: 200±250 g) and equally divided the rats into three groups. In the muscle graft+NGF+laminin group, the degenerated skeletal muscle was sutured with proximal and distal ends of the transected sciatic nerve. Then, NGF (100 ng) and laminin (1.28 mg/mL) were injected into the muscle graft. In the muscle graft group, normal saline was injected into the muscle graft. In the control group, 10 mm of the sciatic nerve was removed without any treatment. Functional recovery was assessed based on Sciatic Functional Index (SFI). Also, tracing motor neurons and histological studies were performed to evaluate nerve repair. The obtained data were analyzed by ANOVA test. Results: The Mean±SD SFI value significantly increased in the muscle graft+NGF+laminin (−76.6±2.9) and muscle graft (−82.1±3.5) groups 60 days after the injury compared to the control group. The Mean±SD number of labeled motor neurons significantly increased in the muscle graft+NGF+laminin (78.6±3.1) and muscle graft (61.3±6.1) groups compared to the control group (P<0.001). The mean number of myelinated axons in the distal segments of the muscle graft+NGF+laminin increased significantly compared to the muscle graft group. Conclusion: These findings suggest that muscle graft followed by NGF and laminin administration have therapeutic effects on nerve repair.
Collapse
Affiliation(s)
- Mehrzad Jafari
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hamdollah Delaviz
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Somayeh Torabi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Jamshid Mohammadi
- Herbal Medicine Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Izadpanah Gheitasi
- Herbal Medicine Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
9
|
Mathot F, Rbia N, Bishop AT, Hovius SER, Shin AY. Adipose derived mesenchymal stem cells seeded onto a decellularized nerve allograft enhances angiogenesis in a rat sciatic nerve defect model. Microsurgery 2020; 40:585-592. [PMID: 32233045 DOI: 10.1002/micr.30579] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/07/2020] [Accepted: 03/13/2020] [Indexed: 01/02/2023]
Abstract
PURPOSE Adipose derived mesenchymal stem cells (MSCs) are hypothesized to supplement tissues with growth factors essential for regeneration and neovascularization. The purpose of this study was to determine the effect of MSCs with respect to neoangiogenesis when seeded onto a decellularized nerve allograft in a rat sciatic nerve defect model. METHODS Allograft nerves were harvested from Sprague-Dawley rats and decellularized. MSCs were obtained from Lewis rats. 10 mm sciatic nerve defects in Lewis rats were reconstructed with reversed autograft nerves, decellularized allografts, decellularized allografts seeded with undifferentiated MSC or decellularized allografts seeded with differentiated MSCs. At 16 weeks, the vascular surface area and volume were evaluated. RESULTS The vascular surface area in normal nerves (34.9 ± 5.7%), autografts (29.5 ± 8.7%), allografts seeded with differentiated (38.9 ± 7.0%) and undifferentiated MSCs (29.2 ± 3.4%) did not significantly differ from each other. Unseeded allografts (21.2 ± 6.2%) had a significantly lower vascular surface area percentage than normal nonoperated nerves (13.7%, p = .001) and allografts seeded with differentiated MSCs (17.8%, p = .001). Although the vascular surface area was significantly correlated to the vascular volume (r = .416; p = .008), no significant differences were found between groups concerning vascular volumes. The vascularization pattern in allografts seeded with MSCs consisted of an extensive nonaligned network of microvessels with a centripetal pattern, while the vessels in autografts and normal nerves were more longitudinally aligned with longitudinal inosculation patterns. CONCLUSIONS Neoangiogenesis of decellularized allograft nerves was enhanced by stem cell seeding, in particular by differentiated MSCs. The pattern of vascularization was different between decellularized allograft nerves seeded with MSCs compared to autograft nerves.
Collapse
Affiliation(s)
- Femke Mathot
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.,Department of Plastic Surgery, Radboudumc, Nijmegen, The Netherlands
| | - Nadia Rbia
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.,Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Allen T Bishop
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Steven E R Hovius
- Department of Plastic Surgery, Radboudumc, Nijmegen, The Netherlands.,Xpert Clinic, Hand and Wrist Surgery, Eindhoven, The Netherlands
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
10
|
Restoration of Neurological Function Following Peripheral Nerve Trauma. Int J Mol Sci 2020; 21:ijms21051808. [PMID: 32155716 PMCID: PMC7084579 DOI: 10.3390/ijms21051808] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Following peripheral nerve trauma that damages a length of the nerve, recovery of function is generally limited. This is because no material tested for bridging nerve gaps promotes good axon regeneration across the gap under conditions associated with common nerve traumas. While many materials have been tested, sensory nerve grafts remain the clinical “gold standard” technique. This is despite the significant limitations in the conditions under which they restore function. Thus, they induce reliable and good recovery only for patients < 25 years old, when gaps are <2 cm in length, and when repairs are performed <2–3 months post trauma. Repairs performed when these values are larger result in a precipitous decrease in neurological recovery. Further, when patients have more than one parameter larger than these values, there is normally no functional recovery. Clinically, there has been little progress in developing new techniques that increase the level of functional recovery following peripheral nerve injury. This paper examines the efficacies and limitations of sensory nerve grafts and various other techniques used to induce functional neurological recovery, and how these might be improved to induce more extensive functional recovery. It also discusses preliminary data from the clinical application of a novel technique that restores neurological function across long nerve gaps, when repairs are performed at long times post-trauma, and in older patients, even under all three of these conditions. Thus, it appears that function can be restored under conditions where sensory nerve grafts are not effective.
Collapse
|
11
|
A unidirectional porous beta-tricalcium phosphate promotes angiogenesis in a vascularized pedicle rat model. J Orthop Sci 2019; 24:1118-1124. [PMID: 31421947 DOI: 10.1016/j.jos.2019.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/14/2019] [Accepted: 07/24/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Various types of artificial bone have been developed as alternatives to autologous bone grafts. In designing artificial bone, a porous structure is essential for the infiltration of blood and cells, which promotes angiogenesis within the bone matrix and ultimately ossification. However, it remains unclear what kind of pore system best promotes ossification. Here, we investigated angiogenesis in three different types of porous β-tricalcium phosphate (β-TCP) in a vascularized pedicle rat model. METHODS Three types of porous β-TCP-β-TCP60 (60% porosity), β-TCP75 (75% porosity), and unidirectional porous β-tricalcium phosphate (UDPTCP; 57% porosity)-were examined. A cylindrical piece of artificial bone was implanted beneath the superficial inferior epigastric (SIE) vessels in the groin of rats and angiogenesis was allowed to occur. Two weeks after surgery, India ink or lectin was systemically injected to detect newly formed blood vessels originating from the SIE vessels. Immunohistochemistry for von Willebrand factor, α-smooth muscle actin, or type IV collagen was performed to clarify the structural features of the newly formed capillaries within the vascularized UDPTCP. RESULTS The vascularity of the UDPTCP was superior to that of β-TCP60 and β-TCP75. The UDPTCP pore structure was completely filled with capillaries at 3 weeks after implantation. Immunohistochemistry showed that the walls of the capillaries contained endothelial cells, pericytes, and basement membrane originating from the SIE vessels, and that the cells proliferated and the basement membrane formed simultaneously as the newly formed capillaries extended through the unidirectional pore structure of the UDPTCP. CONCLUSIONS UDPTCP had greater angiogenic potential than β-TCP60 and β-TCP75 in a vascularized pedicle rat model. Vascularized UDPTCP grafts may be an alternative to vascularized autologous bone grafts.
Collapse
|
12
|
Dixon AR, Jariwala SH, Bilis Z, Loverde JR, Pasquina PF, Alvarez LM. Bridging the gap in peripheral nerve repair with 3D printed and bioprinted conduits. Biomaterials 2018; 186:44-63. [DOI: 10.1016/j.biomaterials.2018.09.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 01/14/2023]
|
13
|
Fukuda T, Kusuhara H, Nakagoshi T, Isogai N, Sueyoshi Y. A basic fibroblast growth factor slow-release system combined to a biodegradable nerve conduit improves endothelial cell and Schwann cell proliferation: A preliminary study in a rat model. Microsurgery 2018; 38:899-906. [PMID: 30380172 DOI: 10.1002/micr.30387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND A basic fibroblast growth factor (bFGF) slow-release system was combined to a biodegradable nerve conduit with the hypothesis this slow-release system would increase the capacity to promote nerve vascularization and Schwann cell proliferation in a rat model. MATERIALS AND METHODS Slow-release of bFGF was determined using Enzyme-Linked ImmunoSorbent Assay (ELISA). A total of 60 rats were used to create a 10 mm gap in the sciatic nerve. A polyglycolic acid-based nerve conduit was used to bridge the gap, either without or with a bFGF slow-release incorporated around the conduit (n = 30 in each group). At 2 (n = 6), 4 (n = 6), 8 (n = 6), and 20 (n = 12) weeks after surgery, samples were resected and subjected to histological, immunohistochemical, and transmission electron microscopic evaluation for nerve regeneration. RESULTS Continuous release of bFGF was found during the observation period of 2 weeks. After in vivo implantation of the nerve conduit, greater endothelial cell migration and vascularization resulted at 2 weeks (proximal: 20.0 ± 2.0 vs. 12.7 ± 2.1, P = .01, middle: 17.3 ± 3.5 vs. 8.7 ± 3.2, P = .03). Schwann cells showed a trend toward greater proliferation and axonal growth had significant elongation (4.9 ± 1.1 mm vs. 2.8 ± 1.5 mm, P = .04) at 4 weeks after implantation. The number of myelinated nerve fibers, indicating nerve maturation, were increased 20 weeks after implantation (proximal: 83.3 ± 7.5 vs. 53.3 ± 5.5, P = .06, distal: 71.0 ± 12.5 vs. 44.0 ± 11.1, P = .04). CONCLUSIONS These findings suggest that the bFGF slow-release system improves nerve vascularization and Schwann cell proliferation through the biodegradable nerve conduit.
Collapse
Affiliation(s)
- Tomokazu Fukuda
- Department of Plastic Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hirohisa Kusuhara
- Department of Plastic Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Takuya Nakagoshi
- Department of Plastic Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Noritaka Isogai
- Department of Plastic Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yu Sueyoshi
- Department of Plastic Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
14
|
Muangsanit P, Shipley RJ, Phillips JB. Vascularization Strategies for Peripheral Nerve Tissue Engineering. Anat Rec (Hoboken) 2018; 301:1657-1667. [PMID: 30334363 PMCID: PMC6282999 DOI: 10.1002/ar.23919] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/07/2018] [Accepted: 04/05/2018] [Indexed: 12/21/2022]
Abstract
Vascularization plays a significant role in treating nerve injury, especially to avoid the central necrosis observed in nerve grafts for large and long nerve defects. It is known that sufficient vascularization can sustain cell survival and maintain cell integration within tissue‐engineered constructs. Several studies have also shown that vascularization affects nerve regeneration. Motivated by these studies, vascularized nerve grafts have been developed using various different techniques, although donor site morbidity and limited nerve supply remain significant drawbacks. Tissue engineering provides an exciting alternative approach to prefabricate vascularized nerve constructs which could overcome the limitations of grafts. In this review article, we focus on the role of vascularization in nerve regeneration, discussing various approaches to generate vascularized nerve constructs and the contribution of tissue engineering and mathematical modeling to aid in developing vascularized engineered nerve constructs, illustrating these aspects with examples from our research experience. Anat Rec, 301:1657–1667, 2018. © 2018 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- Papon Muangsanit
- Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK.,UCL Centre for Nerve Engineering, University College London, London, UK.,Department of Pharmacology, UCL School of Pharmacy, University College London, London, UK
| | - Rebecca J Shipley
- UCL Centre for Nerve Engineering, University College London, London, UK.,UCL Mechanical Engineering, University College London, London, UK
| | - James B Phillips
- Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK.,UCL Centre for Nerve Engineering, University College London, London, UK.,Department of Pharmacology, UCL School of Pharmacy, University College London, London, UK
| |
Collapse
|
15
|
Dual-delivery of VEGF and NGF by emulsion electrospun nanofibrous scaffold for peripheral nerve regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 82:253-264. [DOI: 10.1016/j.msec.2017.08.030] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 11/20/2022]
|
16
|
Yapici AK, Bayram Y, Akgun H, Gumus R, Zor F. The effect of in vivo created vascularized neurotube on peripheric nerve regeneration. Injury 2017; 48:1486-1491. [PMID: 28529011 DOI: 10.1016/j.injury.2017.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Creating vascularized nerve conduits for treatment of nerve gaps have been researched, however, these methods need microsurgical anastomosis thereby complicating the nerve repair process. Thus, the concept of vascularized nerve conduits has not popularized up till now. The aim of this study is to evaluate the effects of vascularized and non-vascularized biological conduits on peripheral nerve regeneration. MATERIAL AND METHODS Following ethical board approval, 15 Sprague-Dawley rats were used in the study. The rats were equally divided into three groups. In group I, a silicon rod was inserted next to the sciatic nerve of the rat and connective tissue generated around this rod was used as a vascularized biological conduit. In group II, a silicon rod was inserted into the dorsum of the rat and connective tissue generated around this rod was used as a non-vascularized biological conduit. In group III, autogenic nerve graft was used to repair the nerve gap. The contralateral sciatic nerve is used as a control in all rats. Macroscopic, electrophysiological and histomorphometric evaluations were performed to determine the nerve regeneration. RESULTS There was no statistically significant difference between groups, in terms of latency. However, the mean amplitude of group I was found to be higher than other groups. The difference between group I and II was statistically significant. Myelinated axonal counts in group I was significantly higher than groups II and III. CONCLUSION Our results showed that vascularized biological conduits provided better nerve regeneration when compared to autografts and non-vascularized biological conduits. Creation and application of vascularized conduits by using the technique described here is easy. Although this method is not an alternative to autogenic nerve grafts, our results are promising and encouraging for further studies.
Collapse
Affiliation(s)
- Abdul Kerim Yapici
- Gulhane Military Medical Academy, Dept. of Plastic Surgery, Ankara, Turkey.
| | - Yalcin Bayram
- Gulhane Military Medical Academy, Dept. of Plastic Surgery, Ankara, Turkey
| | - Hakan Akgun
- Gulhane Military Medical Academy, Dept. of Neurology, Ankara, Turkey
| | - Recep Gumus
- Gulhane Military Medical Academy, Dept. of Histology, Ankara, Turkey
| | - Fatih Zor
- Gulhane Military Medical Academy, Dept. of Plastic Surgery, Ankara, Turkey
| |
Collapse
|