1
|
Wang BR, Ma HH, Chang CH, Liao CH, Chang WS, Mong MC, Yang YC, Gu J, Bau DT, Tsai CW. Contribution of Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9 to Upper Tract Urothelial Cancer Risk in Taiwan. Life (Basel) 2024; 14:801. [PMID: 39063556 PMCID: PMC11277778 DOI: 10.3390/life14070801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Matrix metalloproteinase (MMP)-2 and -9, which degrade type IV collagen, are linked to cancer invasion and metastasis. Gene polymorphisms in MMP-2 and MMP-9 can influence their function, impacting cancer development and progression. This study analyzed the association between polymorphisms MMP-2 rs243865 (C-1306T), rs2285053 (C-735T), and MMP-9 rs3918242 (C-1562T) with serum concentrations of these enzymes in upper tract urothelial cancer (UTUC) patients. We conducted a case-control study with 218 UTUC patients and 580 healthy individuals in Taiwan. Genotyping was performed using PCR/RFLP on DNA from blood samples, and MMP-2 and MMP-9 serum levels and mRNA expressions in 30 UTUC patients were measured using ELISA and real-time PCR. Statistical analysis showed that MMP-2 rs2285053 and MMP-9 rs3918242 genotypes were differently distributed between UTUC patients and controls (p = 0.0199 and 0.0020). The MMP-2 rs2285053 TT genotype was associated with higher UTUC risk compared to the CC genotype (OR = 2.20, p = 0.0190). Similarly, MMP-9 rs3918242 CT and TT genotypes were linked to increased UTUC risk (OR = 1.51 and 2.92, p = 0.0272 and 0.0054). In UTUC patients, TT carriers of MMP-2 rs2285053 and MMP-9 rs3918242 showed higher mRNA and protein levels (p < 0.01). These findings suggest that MMP-2 rs2285053 and MMP-9 rs3918242 genotypes are significant markers for UTUC risk and metastasis in Taiwan.
Collapse
Affiliation(s)
- Bo-Ren Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Division of Urology, Department of Surgery, Taichung Armed Forces General Hospital, Taichung 41152, Taiwan
- National Defense Medical Center, Taipei 11490, Taiwan
| | - Hung-Huan Ma
- Division of Nephrology, Department of Internal Medicine, Taichung Tzu Chi Hospital, Taichung 427003, Taiwan
| | - Chao-Hsiang Chang
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
- Department of Urology, China Medical University Hospital, Taichung 404327, Taiwan
| | - Cheng-Hsi Liao
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Division of Urology, Department of Surgery, Taichung Armed Forces General Hospital, Taichung 41152, Taiwan
- National Defense Medical Center, Taipei 11490, Taiwan
| | - Wen-Shin Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mei-Chin Mong
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413305, Taiwan
| | - Ya-Chen Yang
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413305, Taiwan
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Da-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413305, Taiwan
| | - Chia-Wen Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
2
|
Ramakrishnan K, Vishwakarma R, Dev RR, Raju R, Rehman N. Etiologically Significant microRNAs in Hepatitis B Virus-Induced Hepatocellular Carcinoma. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:280-290. [PMID: 38818956 DOI: 10.1089/omi.2024.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Hepatitis B virus (HBV) infection has been causally linked to hepatocellular carcinoma (HCC) in more than 50% cases. MicroRNAs (miRNAs) play cross-cutting mechanistic roles in the complex interplay between viral pathogenesis, host survival, and clinical outcomes. The present study set out to identify etiologically significant human miRNAs associated with HBV infection in liver-related pathologies leading to HCC. In diverse tissue types, we assembled 573 miRNAs differentially expressed in HBV-associated liver pathologies, HBV infection, fibrosis, cirrhosis, acute on chronic liver failure, and HCC. Importantly, 43 human differentially expressed miRNAs (hDEmiRs) were regulated in serum/plasma and liver tissue of patients with HBV-positive conditions. However, only two hDEmiRs, hsa-miR-21-5p and hsa-miR-143-3p, were regulated across all disease conditions. To shortlist the functional miRNAs in HBV-induced HCC pathogenesis, a reverse bioinformatics analysis was performed using eight GEO datasets and the TCGA database containing the list of differentially regulated mRNAs in HCC. A comparative study using these data with the identified targets of hDEmiRs, a set of unidirectionally regulated hDEmiRs with the potential to modulate mRNAs in HCC, were found. Moreover, our study identified five miRNAs; hsa-miR-98-5p, hsa-miR-193b-3p, hsa-miR-142-5p, hsa-miR-522-5p, and hsa-miR-370-3p targeting PIGC, KNTC1, CSTF2, SLC41A2, and RAB17, respectively, in HCC. These hDEmiRs and their targets could be pivotal in HBV infection and subsequent liver pathologies modulating HCC clinical progression. HBV infection is the largest contributor to HCC, and the present study comprises the first of its kind compendium of hDEmiRs related to HBV-related pathologies.
Collapse
Affiliation(s)
| | - Riya Vishwakarma
- Centre for Integrative Omics Data Science, Yenepoya, Mangalore, India
| | - Radul R Dev
- Centre for Integrative Omics Data Science, Yenepoya, Mangalore, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya, Mangalore, India
| | - Niyas Rehman
- Centre for Integrative Omics Data Science, Yenepoya, Mangalore, India
| |
Collapse
|
3
|
Zhou G, Wang S, Lin L, Lu K, Lin Z, Zhang Z, Zhang Y, Cheng D, Szeto K, Peng R, Luo C. Screening for immune-related biomarkers associated with myasthenia gravis and dilated cardiomyopathy based on bioinformatics analysis and machine learning. Heliyon 2024; 10:e28446. [PMID: 38571624 PMCID: PMC10988011 DOI: 10.1016/j.heliyon.2024.e28446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
Background We aim to investigate genes associated with myasthenia gravis (MG), specifically those potentially implicated in the pathogenesis of dilated cardiomyopathy (DCM). Additionally, we seek to identify potential biomarkers for diagnosing myasthenia gravis co-occurring with DCM. Methods We obtained two expression profiling datasets related to DCM and MG from the Gene Expression Omnibus (GEO). Subsequently, we conducted differential gene expression analysis and weighted gene co-expression network analysis (WGCNA) on these datasets. The genes exhibiting differential expression common to both DCM and MG were employed for protein-protein interaction (PPI), Gene Ontology (GO) enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Additionally, machine learning techniques were employed to identify potential biomarkers and develop a diagnostic nomogram for predicting MG-associated DCM. Subsequently, the machine learning results underwent validation using an external dataset. Finally, gene set enrichment analysis (GSEA) and machine algorithm analysis were conducted on pivotal model genes to further elucidate their potential mechanisms in MG-associated DCM. Results In our analysis of both DCM and MG datasets, we identified 2641 critical module genes and 11 differentially expressed genes shared between the two conditions. Enrichment analysis disclosed that these 11 genes primarily pertain to inflammation and immune regulation. Connectivity map (CMAP) analysis pinpointed SB-216763 as a potential drug for DCM treatment. The results from machine learning indicated the substantial diagnostic value of midline 1 interacting protein1 (MID1IP1) and PI3K-interacting protein 1 (PIK3IP1) in MG-associated DCM. These two hub genes were chosen as candidate biomarkers and employed to formulate a diagnostic nomogram with optimal diagnostic performance through machine learning. Simultaneously, single-gene GSEA results and immune cell infiltration analysis unveiled immune dysregulation in both DCM and MG, with MID1IP1 and PIK3IP1 showing significant associations with invasive immune cells. Conclusion We have elucidated the inflammatory and immune pathways associated with MG-related DCM and formulated a diagnostic nomogram for DCM utilizing MID1IP1/PIK3IP1. This contribution offers novel insights for prospective diagnostic approaches and therapeutic interventions in the context of MG coexisting with DCM.
Collapse
Affiliation(s)
- Guiting Zhou
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shushu Wang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liwen Lin
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kachun Lu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhichao Lin
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziyan Zhang
- Zhongshan Traditional Chinese Medicine Hospital, Zhongshan, China
| | - Yuling Zhang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danling Cheng
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - KaMan Szeto
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui Peng
- Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Chuanjin Luo
- Cardiology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Zhang Q, Tsui YM, Zhang VX, Lu AJ, Lee JMF, Lee E, Cheung GCH, Li PM, Cheung ETY, Chia NH, Lo ILO, Chan ACY, Cheung TT, Ng IOL, Ho DWH. Reciprocal interactions between malignant cells and macrophages enhance cancer stemness and M2 polarization in HBV-associated hepatocellular carcinoma. Theranostics 2024; 14:892-910. [PMID: 38169544 PMCID: PMC10758064 DOI: 10.7150/thno.87962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Background: The tumor microenvironment of cancers has emerged as a crucial component in regulating cancer stemness and plays a pivotal role in cell-cell communication. However, the specific mechanisms underlying these phenomena remain poorly understood. Methods: We performed the single-cell RNA sequencing (scRNA-seq) on nine HBV-associated hepatocellular carcinoma (HCC) patients. The heterogeneity of the malignant cells in pathway functions, transcription factors (TFs) regulation, overall survival, stemness, as well as ligand-receptor-based intercellular communication with macrophages were characterized. The aggressive and stemness feature for the target tumor subclone was validated by the conduction of in vitro assays including sphere formation, proliferation, Annexin V apoptosis, flow cytometry, siRNA library screening assays, and multiple in vivo preclinical mouse models including mouse hepatoma cell and human HCC cell xenograft models with subcutaneous or orthotopic injection. Results: Our analysis yielded a comprehensive atlas of 31,664 cells, revealing a diverse array of malignant cell subpopulations. Notably, we identified a stemness-related subclone of HCC cells with concurrent upregulation of CD24, CD47, and ICAM1 expression that correlated with poorer overall survival. Functional characterization both in vitro and in vivo validated S100A11 as one of the top downstream mediators for tumor initiation and stemness maintenance of this subclone. Further investigation of cell-cell communication within the tumor microenvironment revealed a propensity for bi-directional crosstalk between this stemness-related subclone and tumor-associated macrophages (TAMs). Co-culture study showed that this interaction resulted in the maintenance of the expression of cancer stem cell markers and driving M2-like TAM polarization towards a pro-tumorigenic niche. We also consolidated an inverse relationship between the proportions of TAMs and tumor-infiltrating T cells. Conclusions: Our study highlighted the critical role of stemness-related cancer cell populations in driving an immunosuppressive tumor microenvironment and identified the S100A11 gene as a key mediator for stemness maintenance in HCC. Moreover, our study provides support that the maintenance of cancer stemness is more attributed to M2 polarization than the recruitment of the TAMs.
Collapse
Affiliation(s)
- Qingyang Zhang
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Yu-Man Tsui
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Vanilla Xin Zhang
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Anna Jingyi Lu
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Joyce Man-Fong Lee
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Eva Lee
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Gary Cheuk-Hang Cheung
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Po-Man Li
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | | | - Nam-Hung Chia
- Department of Surgery, Queen Elizabeth Hospital, Hong Kong
| | | | - Albert Chi-Yan Chan
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Tan-To Cheung
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Daniel Wai-Hung Ho
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| |
Collapse
|