1
|
Yang L, Zhou G, Liu L, Rao S, Wang W, Jin K, Fu C, Zeng M, Ding Y. Assessing liver fibrosis in chronic liver disease: Comparison of diffusion-weighted MR elastography and two-dimensional shear-wave elastography using histopathologic assessment as the reference standard. Ann Hepatol 2024; 30:101743. [PMID: 39662592 DOI: 10.1016/j.aohep.2024.101743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION AND OBJECTIVES Liver stiffness measurement (LSM) by two-dimensional shear-wave elastography (2D SWE) is a well-established method for assessing hepatic fibrosis. Diffusion-weighted imaging (DWI) can be converted into virtual shear modulus (µDiff) to estimate liver elasticity. The purpose of this study was to correlate and compare the diagnostic performance of DWI-based virtual elastography and 2D SWE for staging hepatic fibrosis in patients with chronic liver disease, using histopathologic assessment as the reference standard. PATIENTS AND METHODS This retrospective study included 111 patients who underwent preoperative multiple b-value DWI and 2D SWE. The µDiff was calculated using DWI acquisition with b-values of 200 and 1,500 /mm2, and LSM was obtained by 2D SWE. Correlation between µDiff and LSM was assessed, as well as the correlation between these noninvasive methods and histologic fibrosis stages. The diagnostic efficacy of µDiff and LSM for staging liver fibrosis was compared with receiver operating characteristic (ROC) curve analysis. RESULTS There was a significant positive correlation between µDiff and LSM (rho= 0.48, P < 0.001). µDiff (rho= 0.54, P < 0.001) and LSM (rho= 0.76, P < 0.001) were positively correlated with liver fibrosis stages. Areas under the curves (AUCs) of µDiff and LSM, respectively, were 0.81 and 0.90 for significant fibrosis, 0.89 and 0.98 for advanced fibrosis, and 0.77 and 0.91 for cirrhosis. The AUCs of 2D SWE for diagnosing advanced fibrosis and cirrhosis were significantly higher than those of µDiff (P < 0.05 for both). CONCLUSIONS LSM by 2D SWE yields larger AUCs compared to µDiff obtained from DWI-based virtual elastography for various stages of liver fibrosis. LSM is superior to µDiff in predicting advanced fibrosis and cirrhosis.
Collapse
Affiliation(s)
- Li Yang
- Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, PR China; Department of Radiology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, PR China
| | - Guofeng Zhou
- Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Liheng Liu
- Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Shengxiang Rao
- Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Wentao Wang
- Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Kaipu Jin
- Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Caixia Fu
- MR Application Development, Siemens Shenzhen Magnetic Resonance Ltd, Shenzhen, PR China
| | - Mengsu Zeng
- Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Ying Ding
- Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| |
Collapse
|
2
|
Cathcart J, Barrett R, Bowness JS, Mukhopadhya A, Lynch R, Dillon JF. Accuracy of Non-Invasive Imaging Techniques for the Diagnosis of MASH in Patients With MASLD: A Systematic Review. Liver Int 2024. [PMID: 39400428 DOI: 10.1111/liv.16127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/14/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing public health problem. The secondary stage in MASLD is steatohepatitis (MASH), the co-existence of steatosis and inflammation, a leading cause of progression to fibrosis and mortality. MASH resolution alone improves survival. Currently, MASH diagnosis is via liver biopsy. This study sought to evaluate the accuracy of imaging-based tests for MASH diagnosis, which offer a non-invasive method of diagnosis. METHODS Eight academic literature databases were searched and references of previous systematic reviews and included papers were checked for additional papers. Liver biopsy was used for reference standard. RESULTS We report on 69 imaging-based studies. There were 31 studies on MRI, 27 on ultrasound, five on CT, 13 on transient elastography, eight on controlled attenuation parameter (CAP) and two on scintigraphy. The pathological definition of MASH was inconsistent, making it difficult to compare studies. 55/69 studies (79.71%) were deemed high-risk of bias as they had no preset thresholds and no validation. The two largest groups of imaging papers were on MRI and ultrasound. AUROCs were up to 0.93 for MRE, 0.90 for MRI, 1.0 for magnetic resonance spectroscopy (MRS) and 0.94 for ultrasound-based studies. CONCLUSIONS Our study found that the most promising imaging tools are MRI techniques or ultrasound-based scores and confirmed there is potential to utilise these for MASH diagnosis. However, many publications are single studies without independent prospective validation. Without this, there is no clear imaging tool or score currently available that is reliably tested to diagnose MASH.
Collapse
Affiliation(s)
- Jennifer Cathcart
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
- Gastroenterology Department, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Rachael Barrett
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - James S Bowness
- University College London Hospitals NHS Foundation Trust, London, UK
- Department of Targeting Intervention, University College London, London, UK
| | | | - Ruairi Lynch
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - John F Dillon
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| |
Collapse
|
3
|
Zhi Y, Dong Y, Li X, Zhong W, Lei X, Tang J, Mao Y. Current Progress and Challenges in the Development of Pharmacotherapy for Metabolic Dysfunction-Associated Steatohepatitis. Diabetes Metab Res Rev 2024; 40:e3846. [PMID: 39329241 DOI: 10.1002/dmrr.3846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/10/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH), a severe form of metabolic dysfunction-associated steatotic liver disease (MASLD), poses a significant threat to global health. Despite extensive research efforts over the past decade, only one drug has received market approval under accelerated pathways. In this review, we summarise the pathogenesis of MASH and present a comprehensive overview of recent advances in phase 2-3 clinical trials targeting MASH. These trials have highlighted considerable challenges, including low response rates to drugs, limitations of current surrogate histological endpoints, and inadequacies in the design of MASH clinical trials, all of which hinder the progress of MASH pharmacotherapy. We also explored the potential of non-invasive tests to enhance clinical trial design. Furthermore, given the strong association between MASLD and cardiometabolic disorders, we advocate for an integrated approach to disease management to improve overall patient outcomes. Continued investigation into the mechanisms and pharmacology of combination therapies may offer valuable insights for developing innovative MASH treatments.
Collapse
Affiliation(s)
- Yang Zhi
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yinuo Dong
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyun Li
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhong
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohong Lei
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jieting Tang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yimin Mao
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Bai J, Wang S, Pan H, Shi Z, Zhao M, Yue X, Yang K, Zhang X, Wang W, Liu C, Zhang T. Correlation analysis of dynamic changes of abdominal fat during rapid weight loss after bariatric surgery: A prospective magnetic resonance imaging study. Eur J Radiol 2024; 178:111630. [PMID: 39024662 DOI: 10.1016/j.ejrad.2024.111630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/20/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVE The factors related to the changes in the liver and abdominal adipose tissue during the rapid weight loss after bariatric surgery remain uncertain. METHODS This study included 44 participants who had undergone sleeve gastrectomy. The study aimed to analyze changes and correlations of body weight (BW), laboratory tests, and magnetic resonance imaging (MRI) indicators of the liver and abdominal adipose tissue conducted before and after bariatric surgery at 1, 3, and 6 months. RESULTS Following a rapid weight loss within 6 months of surgery, there was a concurrent decrease in blood glucose, blood lipids, and fat content of the liver and abdomen and the changes showed a correlation. The change of BW (ΔBW) was positively correlated with the change of hepatic proton density fat fraction (ΔPDFF) in one and three months after surgery and was positively correlated with the change of abdominal visceral fat area (ΔAVFA) in six months after surgery, (P<0.05). In one month after surgery, ΔPDFF was positively correlated with the change of aspartate aminotransferase (ΔAST), change of alanine aminotransferase (ΔALT), and change of triglyceride glucose (ΔTYG) index (P<0.05). ΔPDFF was positively correlated with the change of hepatic native T1 values (P<0.001) and was moderately negatively correlated with the change of hepatic apparent diffusion coefficient (ΔADC) values in three months after surgery (P<0.05). CONCLUSION ΔBW can serve as an indirect indicator for evaluating changes in liver fat fraction at 1 and 3 months after bariatric surgery and indicative of changes in visceral fat 6 months after surgery. ΔPDFF was positively correlated with ΔAST, ΔALT and ΔTYG index in 1 months after surgery.
Collapse
Affiliation(s)
- Jinquan Bai
- Department of Radiology, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, YiYuan Street, NanGang District, Harbin 150001, Heilongjiang, China
| | - Shuting Wang
- Department of Radiology, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, YiYuan Street, NanGang District, Harbin 150001, Heilongjiang, China
| | - Hong Pan
- Department of Radiology, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, YiYuan Street, NanGang District, Harbin 150001, Heilongjiang, China
| | - Zhenzhou Shi
- Department of Radiology, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, YiYuan Street, NanGang District, Harbin 150001, Heilongjiang, China
| | - Min Zhao
- Pharmaceutical Diagnostics, GE Healthcare, No. 1, Tongji South Road, Daxing District, Beijing 100176, China
| | - Xiuzheng Yue
- Philips Healthcare, Tower No. 2, The World Profit Centre, No. 16, Tianze Road, Chaoyang District, Beijing 100600, China
| | - Kai Yang
- Department of Bariatric and Metabolic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, YiYuan Street, NanGang District, Harbin 150001, Heilongjiang, China
| | - Xia Zhang
- Department of Bariatric and Metabolic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, YiYuan Street, NanGang District, Harbin 150001, Heilongjiang, China
| | - Wei Wang
- The MRI Room, The First Affliated Hospital of Harbin Medical University, No. 23, YouZheng Street, NanGang District, Harbin 150001, Heilongjiang, China
| | - Chang Liu
- Department of Bariatric and Metabolic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, YiYuan Street, NanGang District, Harbin 150001, Heilongjiang, China.
| | - Tong Zhang
- Department of Radiology, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, YiYuan Street, NanGang District, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
5
|
Fan W, Bradford TM, Török NJ. Metabolic dysfunction-associated liver disease and diabetes: Matrix remodeling, fibrosis, and therapeutic implications. Ann N Y Acad Sci 2024; 1538:21-33. [PMID: 38996214 DOI: 10.1111/nyas.15184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Metabolic dysfunction-associated liver disease (MASLD) and steatohepatitis (MASH) are becoming the most common causes of chronic liver disease in the United States and worldwide due to the obesity and diabetes epidemics. It is estimated that by 2030 close to 100 million people might be affected and patients with type 2 diabetes are especially at high risk. Twenty to 30% of patients with MASLD can progress to MASH, which is characterized by steatosis, necroinflammation, hepatocyte ballooning, and in advanced cases, fibrosis progressing to cirrhosis. Clinically, it is recognized that disease progression in diabetic patients is accelerated and the role of various genetic and epigenetic factors, as well as cell-matrix interactions in fibrosis and stromal remodeling, have recently been recognized. While there has been great progress in drug development and clinical trials for MASLD/MASH, the complexity of these pathways highlights the need to improve diagnosis/early detection and develop more successful antifibrotic therapies that not only prevent but reverse fibrosis.
Collapse
Affiliation(s)
- Weiguo Fan
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
- Palo Alto VA Medical Center, Palo Alto, California, USA
| | - Toby M Bradford
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| | - Natalie J Török
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
- Palo Alto VA Medical Center, Palo Alto, California, USA
| |
Collapse
|
6
|
Qi S, Wei X, Zhao J, Wei X, Guo H, Hu J, WuYun Q, Pan CQ, Zhang N, Zhang J. Performance of MAST, FAST, and MEFIB in predicting metabolic dysfunction-associated steatohepatitis. J Gastroenterol Hepatol 2024; 39:1656-1662. [PMID: 38686620 DOI: 10.1111/jgh.16589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/14/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND AND AIM To identify individuals with metabolic dysfunction-associated steatohepatitis (MASH) or "at-risk" MASH among patients with metabolic dysfunction-associated steatotic liver disease (MASLD), three noninvasive models are available with satisfactory efficiency, which include magnetic resonance imaging [MRI]- AST (MAST), FibroScan-AST (FAST score), and magnetic resonance elastography [MRE] plus FIB-4 (MEFIB). We aimed to evaluate the most accurate approach for diagnosing MASH or "at-risk" MASH. METHODS We included 108 biopsy-proven MASLD patients who underwent simultaneous assessment of MRE, MRI proton density fat fraction (MRI-PDFF), and FibroScan scans. Compared with the histological diagnosis, we analyzed the AUC of each model and assessed the accuracy. RESULTS Our study cohort consisted of 64.8% of MASH and 25.9% of "at-risk" MASH. When analyzing the performance of each model for the diagnostic accuracy of MASH, we found that the AUC [95% CI] of MAST was comparable to FAST (0.803 [0.719-0.886] vs 0.799 [0.707-0.891], P = 0.930) and better than MEFIB (0.671 [0.571-0.772], P = 0.005). Similar findings were observed in the "at-risk" MASH patients. The AUCs [95% CI] for MAST, FAST, and MEFIB were 0.810 [0.719-0.900], 0.782 [0.689-0.874], and 0.729 [0.619-0.838], respectively. The models of MAST and FAST had comparable AUCs (P = 0.347), which were statistically significantly higher than that of MEFIB (P = 0.041). Additionally, the cutoffs for diagnosis of MASH were lower than "at-risk" MASH. CONCLUSION MAST and FAST performed better than MEFIB in diagnosing "at-risk" MASH and MASH using lower cutoff values. Our findings provided evidence for selecting the most accurate noninvasive model to identify patients with MASH or at-risk MASH.
Collapse
Affiliation(s)
- Shi Qi
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaodie Wei
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jinhan Zhao
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xinhuan Wei
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Haiqing Guo
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jingxian Hu
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Qiqige WuYun
- Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
| | - Calvin Q Pan
- Division of Gastroenterology and Hepatology, NYU Langone Health, NYU Grossman School of Medicine, New York, USA
| | - Nengwei Zhang
- Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
| | - Jing Zhang
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Alkhouri N, Harisinghani M. Letter to the Editor: Comparing quantitative MRI technologies in steatotic liver disease. Hepatology 2024; 79:E119-E120. [PMID: 37939217 DOI: 10.1097/hep.0000000000000676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023]
Affiliation(s)
- Naim Alkhouri
- Hepatology Division, Arizona Liver Health, Chandler, Arizona, USA
| | - Mukesh Harisinghani
- Abdominal Imaging Department, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Erratum: Head-to-head comparison of magnetic resonance elastography-based liver stiffness, fat fraction, and T1 relaxation time in identifying at-risk NASH. Hepatology 2024; 79:E103-E104. [PMID: 38363854 DOI: 10.1097/hep.0000000000000731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
|
9
|
Marti-Aguado D, Arnouk J, Liang JX, Lara-Romero C, Behari J, Furlan A, Jimenez-Pastor A, Ten-Esteve A, Alfaro-Cervello C, Bauza M, Gallen-Peris A, Gimeno-Torres M, Merino-Murgui V, Perez-Girbes A, Benlloch S, Pérez-Rojas J, Puglia V, Ferrández-Izquierdo A, Aguilera V, Giesteira B, França M, Monton C, Escudero-García D, Alberich-Bayarri Á, Serra MA, Bataller R, Romero-Gomez M, Marti-Bonmati L. Development and validation of an image biomarker to identify metabolic dysfunction associated steatohepatitis: MR-MASH score. Liver Int 2024; 44:202-213. [PMID: 37904633 DOI: 10.1111/liv.15766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/11/2023] [Accepted: 10/08/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND AND AIMS Diagnosis of metabolic dysfunction-associated steatohepatitis (MASH) requires histology. In this study, a magnetic resonance imaging (MRI) score was developed and validated to identify MASH in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). Secondarily, a screening strategy for MASH diagnosis was investigated. METHODS This prospective multicentre study included 317 patients with biopsy-proven MASLD and contemporaneous MRI. The discovery cohort (Spain, Portugal) included 194 patients. NAFLD activity score (NAS) and fibrosis were assessed with the NASH-CRN histologic system. MASH was defined by the presence of steatosis, lobular inflammation, and ballooning, with NAS ≥4 with or without fibrosis. An MRI-based composite biomarker of Proton Density Fat Fraction and waist circumference (MR-MASH score) was developed. Findings were afterwards validated in an independent cohort (United States, Spain) with different MRI protocols. RESULTS In the derivation cohort, 51% (n = 99) had MASH. The MR-MASH score identified MASH with an AUC = .88 (95% CI .83-.93) and strongly correlated with NAS (r = .69). The MRI score lower cut-off corresponded to 88% sensitivity with 86% NPV, while the upper cut-off corresponded to 92% specificity with 87% PPV. MR-MASH was validated with an AUC = .86 (95% CI .77-.92), 91% sensitivity (lower cut-off) and 87% specificity (upper cut-off). A two-step screening strategy with sequential MR-MASH examination performed in patients with indeterminate-high FIB-4 or transient elastography showed an 83-84% PPV to identify MASH. The AUC of MR-MASH was significantly higher than that of the FAST score (p < .001). CONCLUSIONS The MR-MASH score has clinical utility in the identification and management of patients with MASH at risk of progression.
Collapse
Affiliation(s)
- David Marti-Aguado
- Digestive Disease Department, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, and Imaging La Fe node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), Valencia, Spain
| | - Joud Arnouk
- Division of Gastroenterology, Hepatology and Nutrition, Center for Liver Diseases, Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jia-Xu Liang
- Digestive Diseases Department, CIBERehd, Virgen del Rocio University Hospital, Seville, Spain
- Institute of Biomedicine of Seville (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain
| | - Carmen Lara-Romero
- Digestive Diseases Department, CIBERehd, Virgen del Rocio University Hospital, Seville, Spain
- Institute of Biomedicine of Seville (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain
| | - Jaideep Behari
- Division of Gastroenterology, Hepatology and Nutrition, Center for Liver Diseases, Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Alessandro Furlan
- Division of Abdominal Imaging, Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ana Jimenez-Pastor
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, and Imaging La Fe node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), Valencia, Spain
- Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain
| | - Amadeo Ten-Esteve
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, and Imaging La Fe node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), Valencia, Spain
| | - Clara Alfaro-Cervello
- Pathology Department, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
- Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Mónica Bauza
- Pathology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Ana Gallen-Peris
- Digestive Disease Department, Hospital Arnau de Vilanova, Valencia, Spain
| | - Marta Gimeno-Torres
- Digestive Disease Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Víctor Merino-Murgui
- Digestive Disease Department, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - Alexandre Perez-Girbes
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, and Imaging La Fe node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), Valencia, Spain
- Radiology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Salvador Benlloch
- Digestive Disease Department, Hospital Arnau de Vilanova, Valencia, Spain
- CIBERehd, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
| | - Judith Pérez-Rojas
- Pathology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Víctor Puglia
- Pathology Department, Hospital Arnau de Vilanova, Valencia, Spain
| | - Antonio Ferrández-Izquierdo
- Pathology Department, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
- Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Victoria Aguilera
- CIBERehd, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
- Hepatology and Liver Transplantation Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Bruno Giesteira
- Radiology Department, Centro Hospitalar Universitário do Porto, Instituto de Ciências Biomédicas de Abel Salazar, University of Porto, Porto, Portugal
| | - Manuela França
- Radiology Department, Centro Hospitalar Universitário do Porto, Instituto de Ciências Biomédicas de Abel Salazar, University of Porto, Porto, Portugal
| | - Cristina Monton
- Digestive Disease Department, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - Desamparados Escudero-García
- Digestive Disease Department, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
- Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Ángel Alberich-Bayarri
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, and Imaging La Fe node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), Valencia, Spain
- Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain
| | - Miguel A Serra
- Digestive Disease Department, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
- Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Ramon Bataller
- Division of Gastroenterology, Hepatology and Nutrition, Center for Liver Diseases, Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Manuel Romero-Gomez
- Digestive Diseases Department, CIBERehd, Virgen del Rocio University Hospital, Seville, Spain
- Institute of Biomedicine of Seville (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain
- University of Seville, Seville, Spain
| | - Luis Marti-Bonmati
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, and Imaging La Fe node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), Valencia, Spain
- Radiology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| |
Collapse
|
10
|
Yoneda M, Nakajima A. The role of MRI technology in liver evaluation for NAFLD patients: Advancements and opportunities. Hepatology 2023; 78:1020-1022. [PMID: 37212150 DOI: 10.1097/hep.0000000000000478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Affiliation(s)
- Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Hospital, Yokohama, Japan
| | | |
Collapse
|
11
|
Moriya K, Sato S, Nishimura N, Kawaratani H, Takaya H, Kaji K, Namisaki T, Uejima M, Nagamatsu S, Matsuo H, Yoshiji H. Efficacy of Serum Ferritin-Zinc Ratio for Predicting Advanced Liver Fibrosis in Patients with Autoimmune Hepatitis. J Clin Med 2023; 12:4463. [PMID: 37445498 DOI: 10.3390/jcm12134463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Background/Aims: The search for noninvasive biomarkers that can efficiently estimate the extent of liver fibrosis progression is ongoing. Although Fibrosis-4 (FIB-4), the aspartate transaminase-to-platelet ratio index (APRI), and the Forns index have been reported as useful biomarkers, their investigation in autoimmune hepatitis (AIH) is limited. This study aimed to examine the usefulness of these serological indices and a newly developed index in predicting liver fibrosis progression in AIH. Methods: The study analyzed data from 190 patients diagnosed with AIH at our institution between 1990 and 2015. Their histological liver fibrosis progression and clinical long-term prognosis were evaluated retrospectively (cohort 1). In 90 patients, receiver operating characteristic (ROC) curves were compared to choose severe fibrosis cases with respect to existing indices (FIB-4, APRI, and Forns index) and the ferritin-zinc ratio (cohort 2). Results: In cohort 1, liver-related death and hepatocellular carcinoma rates were significantly higher in the severe (n = 27) than in the mild (n = 63) fibrosis group (p = 0.0001 and 0.0191, respectively). In cohort 2, liver-related death in the severe fibrosis group was significantly frequent (p = 0.0071), and their ferritin-zinc ratio was higher (median 2.41 vs. 0.62, p = 0.0011). ROC analyses were performed to compare the ability of the ferritin-zinc ratio, FIB-4, APRI, and the Forns index to predict severe and mild fibrosis. Accordingly, areas under the ROC were 0.732, 0.740, 0.721, and 0.729, respectively. Conclusions: The serum ferritin-zinc ratio can noninvasively predict liver fibrosis progression in AIH and be applied to predict long-term prognosis.
Collapse
Affiliation(s)
- Kei Moriya
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
- Department of Gastroenterology, Nara Prefecture General Medical Center, 897-5, 2-Chome, Shichijo-Nishimachi, Nara 630-8581, Japan
| | - Shinya Sato
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| | - Hideto Kawaratani
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| | - Hiroaki Takaya
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| | - Masakazu Uejima
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
- Department of Gastroenterology, Nara Prefecture General Medical Center, 897-5, 2-Chome, Shichijo-Nishimachi, Nara 630-8581, Japan
| | - Shinsaku Nagamatsu
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
- Department of Gastroenterology, Nara Prefecture General Medical Center, 897-5, 2-Chome, Shichijo-Nishimachi, Nara 630-8581, Japan
| | - Hideki Matsuo
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
- Department of Gastroenterology, Nara Prefecture General Medical Center, 897-5, 2-Chome, Shichijo-Nishimachi, Nara 630-8581, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| |
Collapse
|