1
|
Stamellou E, Sterzer V, Alam J, Roumeliotis S, Liakopoulos V, Dounousi E. Sex-Specific Differences in Kidney Function and Blood Pressure Regulation. Int J Mol Sci 2024; 25:8637. [PMID: 39201324 PMCID: PMC11354550 DOI: 10.3390/ijms25168637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
Premenopausal women generally exhibit lower blood pressure and a lower prevalence of hypertension than men of the same age, but these differences reverse postmenopause due to estrogen withdrawal. Sexual dimorphism has been described in different components of kidney physiology and pathophysiology, including the renin-angiotensin-aldosterone system, endothelin system, and tubular transporters. This review explores the sex-specific differences in kidney function and blood pressure regulation. Understanding these differences provides insights into potential therapeutic targets for managing hypertension and kidney diseases, considering the patient's sex and hormonal status.
Collapse
Affiliation(s)
- Eleni Stamellou
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany (J.A.)
- Department of Nephrology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Viktor Sterzer
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany (J.A.)
| | - Jessica Alam
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany (J.A.)
| | - Stefanos Roumeliotis
- 2nd Department of Nephrology, AHEPA University Hospital Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.R.); (V.L.)
| | - Vassilios Liakopoulos
- 2nd Department of Nephrology, AHEPA University Hospital Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.R.); (V.L.)
| | - Evangelia Dounousi
- Department of Nephrology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| |
Collapse
|
2
|
Wang Y, Yang C, Wen J, Ju L, Ren Z, Zhang T, Liu Y. Whole-exome sequencing combined with postoperative data identify c.1614dup (CAMKK2) as a novel candidate monogenic obesity variant. Front Endocrinol (Lausanne) 2024; 15:1334342. [PMID: 38469147 PMCID: PMC10925648 DOI: 10.3389/fendo.2024.1334342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/09/2024] [Indexed: 03/13/2024] Open
Abstract
Early-onset obesity is a rising health concern influenced by heredity. However, many monogenic obesity variants (MOVs) remain to be discovered due to differences in ethnicity and culture. Additionally, patients with known MOVs have shown limited weight loss after bariatric surgery, suggesting it can be used as a screening tool for new candidates. In this study, we performed whole-exome sequencing (WES) combined with postoperative data to detect candidate MOVs in a cohort of 62 early-onset obesity and 9 late-onset obesity patients. Our findings demonstrated that patients with early-onset obesity preferred a higher BMI and waist circumference (WC). We confirmed the efficacy of the method by identifying a mutation in known monogenic obesity gene, PCSK1, which resulted in less weight loss after surgery. 5 genes were selected for further verification, and a frameshift variant in CAMKK2 gene: NM_001270486.1, c.1614dup, (p. Gly539Argfs*3) was identified as a novel candidate MOV. This mutation influenced the improvement of metabolism after bariatric surgery. In conclusion, our data confirm the efficacy of WES combined with postoperative data in detecting novel candidate MOVs and c.1614dup (CAMKK2) might be a promising MOV, which needs further confirmation. This study enriches the human monogenic obesity mutation database and provides a scientific basis for clinically accurate diagnosis and treatment.
Collapse
Affiliation(s)
- Yan Wang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Medical Research Center, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Chao Yang
- West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jun Wen
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Lingling Ju
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Zhengyun Ren
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Tongtong Zhang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Medical Research Center, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Yanjun Liu
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
3
|
Abstract
This review summarizes the available data about genetic factors which can link ischemic stroke and sleep. Sleep patterns (subjective and objective measures) are characterized by heritability and comprise up to 38-46%. According to Mendelian randomization analysis, genetic liability for short sleep duration and frequent insomnia symptoms is associated with ischemic stroke (predominantly of large artery subtype). The potential genetic links include variants of circadian genes, genes encoding components of neurotransmitter systems, common cardiovascular risk factors, as well as specific genetic factors related to certain sleep disorders.
Collapse
Affiliation(s)
- Lyudmila Korostovtseva
- Sleep Laboratory, Research Department for Hypertension, Department for Cardiology, Almazov National Medical Research Centre, 2 Akkuratov Str., Saint Petersburg, 197341, Russia.
| |
Collapse
|
4
|
A Genome-Wide Association Study of a Korean Population Identifies Genetic Susceptibility to Hypertension Based on Sex-Specific Differences. Genes (Basel) 2021; 12:genes12111804. [PMID: 34828409 PMCID: PMC8622776 DOI: 10.3390/genes12111804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/13/2021] [Accepted: 11/13/2021] [Indexed: 12/24/2022] Open
Abstract
Genome-wide association studies have expanded our understanding of the genetic variation of hypertension. Hypertension and blood pressure are influenced by sex-specific differences; therefore, genetic variants may have sex-specific effects on phenotype. To identify the genetic factors influencing the sex-specific differences concerning hypertension, we conducted a heterogeneity analysis of a genome-wide association study (GWAS) on 13,926 samples from a Korean population. Using the Illumina exome chip data of the population, we performed GWASs of the male and female population independently and applied a statistical test that identified heterogeneous effects of the variants between the two groups. To gain information about the biological implication of the genetic heterogeneity, we used gene set enrichment analysis with GWAS catalog and pathway gene sets. The heterogeneity analysis revealed that the rs11066015 of ACAD10 was a significant locus that had sex-specific genetic effects on the development of hypertension. The rs2074356 of HECTD4 also showed significant genetic heterogeneity in systolic blood pressure. The enrichment analysis showed significant results that are consistent with the pathophysiology of hypertension. These results indicate a sex-specific genetic susceptibility to hypertension that should be considered in future genetic studies of hypertension.
Collapse
|
5
|
Luca CT, Crisan S, Cozma D, Negru A, Lazar MA, Vacarescu C, Trofenciuc M, Rachieru C, Craciun LM, Gaita D, Petrescu L, Mischie A, Iurciuc S. Arterial Hypertension: Individual Therapeutic Approaches-From DNA Sequencing to Gender Differentiation and New Therapeutic Targets. Pharmaceutics 2021; 13:pharmaceutics13060856. [PMID: 34207606 PMCID: PMC8229802 DOI: 10.3390/pharmaceutics13060856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this paper is to provide an accurate overview regarding the current recommended approach for antihypertensive treatment. The importance of DNA sequencing in understanding the complex implication of genetics in hypertension could represent an important step in understanding antihypertensive treatment as well as in developing new medical strategies. Despite a pool of data from studies regarding cardiovascular risk factors emphasizing a worse prognosis for female patients rather than male patients, there are also results indicating that women are more likely to be predisposed to the use of antihypertensive medication and less likely to develop uncontrolled hypertension. Moreover, lower systolic blood pressure values are associated with increased cardiovascular risk in women compared to men. The prevalence, awareness and, most importantly, treatment of hypertension is variable in male and female patients, since the mechanisms responsible for this pathology may be different and closely related to gender factors such as the renin–angiotensin system, sympathetic nervous activity, endothelin-1, sex hormones, aldosterone, and the immune system. Thus, gender-related antihypertensive treatment individualization may be a valuable tool in improving female patients’ prognosis.
Collapse
Affiliation(s)
- Constantin-Tudor Luca
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Simina Crisan
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Correspondence: (S.C.); (M.T.)
| | - Dragos Cozma
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Alina Negru
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Mihai-Andrei Lazar
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Cristina Vacarescu
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Mihai Trofenciuc
- Department of Cardiology, “Vasile Goldis” Western University of Arad, Bulevardul Revoluției 94, 310025 Arad, Romania
- Multidisciplinary Heart Research Center, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Correspondence: (S.C.); (M.T.)
| | - Ciprian Rachieru
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
- Internal Medicine Department, County Emergency Hospital, 5 Gheorghe Dima Street, 300079 Timisoara, Romania
- Advanced Research Center in Cardiovascular Pathology and Hemostaseology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Laura Maria Craciun
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
| | - Dan Gaita
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Lucian Petrescu
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Alexandru Mischie
- Invasive Cardiology Unit, Centre Hospitalier de Montluçon, 03100 Montluçon, France;
| | - Stela Iurciuc
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
- Angiogenesis Research Center, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| |
Collapse
|
6
|
Levy I, Szarek E, Maria AG, Starrost M, De La Luz Sierra M, Faucz FR, Stratakis CA. A phosphodiesterase 11 (Pde11a) knockout mouse expressed functional but reduced Pde11a: Phenotype and impact on adrenocortical function. Mol Cell Endocrinol 2021; 520:111071. [PMID: 33127481 PMCID: PMC7771190 DOI: 10.1016/j.mce.2020.111071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 01/23/2023]
Abstract
Phosphodiesterases catalyze the hydrolysis of cyclic nucleotides and maintain physiologic levels of intracellular concentrations of cyclic adenosine and guanosine mono-phosphate (cAMP and cGMP, respectively). Increased cAMP signaling has been associated with adrenocortical tumors and Cushing syndrome. Genetic defects in phosphodiesterase 11A (PDE11A) may lead to increased cAMP signaling and have been found to predispose to the development of adrenocortical, prostate, and testicular tumors. A previously reported Pde11a knockout (Pde11a-/-) mouse line was studied and found to express PDE11A mRNA and protein still, albeit at reduced levels; functional studies in various tissues showed increased cAMP levels and reduced PDE11A activity. Since patients with PDE11A defects and Cushing syndrome have PDE11A haploinsufficiency, it was particularly pertinent to study this hypomorphic mouse line. Indeed, Pde11a-/- mice failed to suppress corticosterone secretion in response to low dose dexamethasone, and in addition exhibited adrenal subcapsular hyperplasia with predominant fetal-like features in the inner adrenal cortex, mimicking other mouse models of increased cAMP signaling in the adrenal cortex. We conclude that a previously reported Pde11a-/- mouse showed continuing expression and function of PDE11A in most tissues. Nevertheless, Pde11a partial inactivation in mice led to an adrenocortical phenotype that was consistent with what we see in patients with PDE11A haploinsufficiency.
Collapse
Affiliation(s)
- Isaac Levy
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA; Endocrine and Diabetes Unit. Edmond and Lily Safra Children's Hospital, Tel-Hashomer. Ramat Gan. Sackler School of Medicine, Ramat-aviv, Israel
| | - Eva Szarek
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Andrea Gutierrez Maria
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Matthew Starrost
- Division of Veterinary Resources, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Maria De La Luz Sierra
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Fabio R Faucz
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Constantine A Stratakis
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Bardsley EN, Davis H, Ajijola OA, Buckler KJ, Ardell JL, Shivkumar K, Paterson DJ. RNA Sequencing Reveals Novel Transcripts from Sympathetic Stellate Ganglia During Cardiac Sympathetic Hyperactivity. Sci Rep 2018; 8:8633. [PMID: 29872217 PMCID: PMC5988725 DOI: 10.1038/s41598-018-26651-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular disease is the most prevalent age-related illness worldwide, causing approximately 15 million deaths every year. Hypertension is central in determining cardiovascular risk and is a strong predictive indicator of morbidity and mortality; however, there remains an unmet clinical need for disease-modifying and prophylactic interventions. Enhanced sympathetic activity is a well-established contributor to the pathophysiology of hypertension, however the cellular and molecular changes that increase sympathetic neurotransmission are not known. The aim of this study was to identify key changes in the transcriptome in normotensive and spontaneously hypertensive rats. We validated 15 of our top-scoring genes using qRT-PCR, and network and enrichment analyses suggest that glutamatergic signalling plays a key role in modulating Ca2+ balance within these ganglia. Additionally, phosphodiesterase activity was found to be altered in stellates obtained from the hypertensive rat, suggesting that impaired cyclic nucleotide signalling may contribute to disturbed Ca2+ homeostasis and sympathetic hyperactivity in hypertension. We have also confirmed the presence of these transcripts in human donor stellate samples, suggesting that key genes coupled to neurotransmission are conserved. The data described here may provide novel targets for future interventions aimed at treating sympathetic hyperactivity associated with cardiovascular disease and other dysautonomias.
Collapse
Affiliation(s)
- Emma N Bardsley
- Wellcome Trust OXION Initiative in Ion Channels and Disease, Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, OX1 3PT, UK.
| | - Harvey Davis
- Wellcome Trust OXION Initiative in Ion Channels and Disease, Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, OX1 3PT, UK
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA
| | - Keith J Buckler
- Wellcome Trust OXION Initiative in Ion Channels and Disease, Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, OX1 3PT, UK
| | - Jeffrey L Ardell
- UCLA Cardiac Arrhythmia Center, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA
| | - David J Paterson
- Wellcome Trust OXION Initiative in Ion Channels and Disease, Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, OX1 3PT, UK.
| |
Collapse
|
8
|
Russo A, Di Gaetano C, Cugliari G, Matullo G. Advances in the Genetics of Hypertension: The Effect of Rare Variants. Int J Mol Sci 2018; 19:E688. [PMID: 29495593 PMCID: PMC5877549 DOI: 10.3390/ijms19030688] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/19/2018] [Accepted: 02/26/2018] [Indexed: 12/22/2022] Open
Abstract
Worldwide, hypertension still represents a serious health burden with nine million people dying as a consequence of hypertension-related complications. Essential hypertension is a complex trait supported by multifactorial genetic inheritance together with environmental factors. The heritability of blood pressure (BP) is estimated to be 30-50%. A great effort was made to find genetic variants affecting BP levels through Genome-Wide Association Studies (GWAS). This approach relies on the "common disease-common variant" hypothesis and led to the identification of multiple genetic variants which explain, in aggregate, only 2-3% of the genetic variance of hypertension. Part of the missing genetic information could be caused by variants too rare to be detected by GWAS. The use of exome chips and Next-Generation Sequencing facilitated the discovery of causative variants. Here, we report the advances in the detection of novel rare variants, genes, and/or pathways through the most promising approaches, and the recent statistical tests that have emerged to handle rare variants. We also discuss the need to further support rare novel variants with replication studies within larger consortia and with deeper functional studies to better understand how new genes might improve patient care and the stratification of the response to antihypertensive treatments.
Collapse
Affiliation(s)
- Alessia Russo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy.
- Italian Institute for Genomic Medicine (IIGM, Formerly HuGeF), 10126 Turin, Italy.
| | - Cornelia Di Gaetano
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy.
- Italian Institute for Genomic Medicine (IIGM, Formerly HuGeF), 10126 Turin, Italy.
| | - Giovanni Cugliari
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy.
- Italian Institute for Genomic Medicine (IIGM, Formerly HuGeF), 10126 Turin, Italy.
| | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy.
- Italian Institute for Genomic Medicine (IIGM, Formerly HuGeF), 10126 Turin, Italy.
| |
Collapse
|