1
|
Richalet JP, Hermand E, Lhuissier FJ. Cardiovascular physiology and pathophysiology at high altitude. Nat Rev Cardiol 2024; 21:75-88. [PMID: 37783743 DOI: 10.1038/s41569-023-00924-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 10/04/2023]
Abstract
Oxygen is vital for cellular metabolism; therefore, the hypoxic conditions encountered at high altitude affect all physiological functions. Acute hypoxia activates the adrenergic system and induces tachycardia, whereas hypoxic pulmonary vasoconstriction increases pulmonary artery pressure. After a few days of exposure to low oxygen concentrations, the autonomic nervous system adapts and tachycardia decreases, thereby protecting the myocardium against high energy consumption. Permanent exposure to high altitude induces erythropoiesis, which if excessive can be deleterious and lead to chronic mountain sickness, often associated with pulmonary hypertension and heart failure. Genetic factors might account for the variable prevalence of chronic mountain sickness, depending on the population and geographical region. Cardiovascular adaptations to hypoxia provide a remarkable model of the regulation of oxygen availability at the cellular and systemic levels. Rapid exposure to high altitude can have adverse effects in patients with cardiovascular diseases. However, intermittent, moderate hypoxia might be useful in the management of some cardiovascular disorders, such as coronary heart disease and heart failure. The aim of this Review is to help physicians to understand the cardiovascular responses to hypoxia and to outline some recommendations that they can give to patients with cardiovascular disease who wish to travel to high-altitude destinations.
Collapse
Affiliation(s)
- Jean-Paul Richalet
- Hypoxie et Poumon, Université Sorbonne Paris Nord, INSERM U1272, Paris, France.
| | - Eric Hermand
- Unité de Recherche Pluridisciplinaire Sport Santé Société, ULR 7369-URePSSS, Université Littoral Côte d'Opale, Université Artois, Université Lille, CHU Lille, Dunkirk, France
| | | |
Collapse
|
2
|
Lang M, Mendt S, Paéz V, Gunga HC, Bilo G, Merati G, Parati G, Maggioni MA. Cardiac Autonomic Modulation and Response to Sub-Maximal Exercise in Chilean Hypertensive Miners. Front Physiol 2022; 13:846891. [PMID: 35492599 PMCID: PMC9043845 DOI: 10.3389/fphys.2022.846891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/11/2022] [Indexed: 11/15/2022] Open
Abstract
Cardiac autonomic modulation in workers exposed to chronic intermittent hypoxia (CIH) has been poorly studied, especially considering hypertensive ones. Heart rate variability (HRV) has been proven as valuable tool to assess cardiac autonomic modulation under different conditions. The aim of this study is to investigate the cardiac autonomic response related to submaximal exercise (i.e., six-minute walk test, 6MWT) in hypertensive (HT, n = 9) and non-hypertensive (NT, n = 10) workers exposed for > 2 years to CIH. Participants worked on 7-on 7-off days shift between high altitude (HA: > 4.200 m asl) and sea level (SL: < 500 m asl). Data were recorded with electrocardiography (ECG) at morning upon awakening (10 min supine, baseline), then at rest before and after (5 min sitting, pre and post) the 6MWT, performed respectively on the first day of their work shift at HA, and after the second day of SL sojourn. Heart rate was higher at HA in both groups for each measurement (p < 0.01). Parasympathetic indices of HRV were lower in both groups at HA, either in time domain (RMSSD, p < 0.01) and in frequency domain (log HF, p < 0.01), independently from measurement's time. HRV indices in non-linear domain supported the decrease of vagal tone at HA and showed a reduced signal's complexity. ECG derived respiration frequency (EDR) was higher at HA in both groups (p < 0.01) with interaction group x altitude (p = 0.012), i.e., higher EDR in HT with respect to NT. No significant difference was found in 6MWT distance regarding altitude for both groups, whereas HT covered a shorter 6MWT distance compared to NT (p < 0.05), both at HA and SL. Besides, conventional arm-cuff blood pressure and oxygen blood saturation values (recorded before, at the end and after 5-min recovery from 6MWT), reported differences related to HA only. HA is the main factor affecting cardiac autonomic modulation, independently from hypertension. However, presence of hypertension was associated with a reduced physical performance independently from altitude, and with higher respiratory frequency at HA.
Collapse
Affiliation(s)
- Morin Lang
- Department of Rehabilitation Sciences and Human Movement, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
- Network for Extreme Environment Research (NEXER), University of Antofagasta, Antofagasta, Chile
| | - Stefan Mendt
- Charité—Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - Valeria Paéz
- Department of Rehabilitation Sciences and Human Movement, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Hanns-Christian, Gunga
- Charité—Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - Grzegorz Bilo
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Department of Cardiology, Istituto Auxologico Italiano, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Giampiero Merati
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
- IRCCS Don C. Gnocchi Foundation, Milan, Italy
| | - Gianfranco Parati
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Department of Cardiology, Istituto Auxologico Italiano, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Martina Anna Maggioni
- Charité—Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
3
|
Georges T, Menu P, Le Blanc C, Ferreol S, Dauty M, Fouasson-Chailloux A. Contribution of Hypoxic Exercise Testing to Predict High-Altitude Pathology: A Systematic Review. Life (Basel) 2022; 12:life12030377. [PMID: 35330129 PMCID: PMC8950822 DOI: 10.3390/life12030377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/20/2022] Open
Abstract
Altitude travelers are exposed to high-altitude pathologies, which can be potentially serious. Individual susceptibility varies widely and this makes it difficult to predict who will develop these complications. The assessment of physiological adaptations to exercise performed in hypoxia has been proposed to help predict altitude sickness. The purpose of this review is to evaluate the contribution of hypoxic exercise testing, achieved in normobaric conditions, in the prediction of severe high-altitude pathology. We performed a systematic review using the databases PubMed, Science Direct and Embase in October 2021 to collect studies reporting physiological adaptations under hypoxic exercise testing and its interest in predicting high-altitude pathology. Eight studies were eligible, concerning 3558 patients with a mean age of 46.9 years old, and a simulated mean altitude reaching of 5092 m. 597 patients presented an acute mountain sickness during their altitude travels. Three different protocols of hypoxic exercise testing were used. Acute mountain sickness was defined using Hackett’s score or the Lake Louise score. Ventilatory and cardiac responses to hypoxia, desaturation in hypoxia, cerebral oxygenation, core temperature, variation in body mass index and some perceived sensations were the highlighted variables associated with acute mountain sickness. A decision algorithm based on hypoxic exercise tests was proposed by one team. Hypoxic exercise testing provides promising information to help predict altitude complications. Its interest should be confirmed by different teams.
Collapse
Affiliation(s)
- Thomas Georges
- CHU Nantes, Service de Médecine Physique et Réadapatation Locomotrice et Respiratoire, 44093 Nantes, France; (T.G.); (P.M.); (C.L.B.); (S.F.); (M.D.)
| | - Pierre Menu
- CHU Nantes, Service de Médecine Physique et Réadapatation Locomotrice et Respiratoire, 44093 Nantes, France; (T.G.); (P.M.); (C.L.B.); (S.F.); (M.D.)
- CHU Nantes, Service de Médecine du Sport, 44093 Nantes, France
- Institut Régional de Médecine du Sport (IRMS), 44093 Nantes, France
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, F-44042 Nantes, France
| | - Camille Le Blanc
- CHU Nantes, Service de Médecine Physique et Réadapatation Locomotrice et Respiratoire, 44093 Nantes, France; (T.G.); (P.M.); (C.L.B.); (S.F.); (M.D.)
| | - Sophie Ferreol
- CHU Nantes, Service de Médecine Physique et Réadapatation Locomotrice et Respiratoire, 44093 Nantes, France; (T.G.); (P.M.); (C.L.B.); (S.F.); (M.D.)
| | - Marc Dauty
- CHU Nantes, Service de Médecine Physique et Réadapatation Locomotrice et Respiratoire, 44093 Nantes, France; (T.G.); (P.M.); (C.L.B.); (S.F.); (M.D.)
- CHU Nantes, Service de Médecine du Sport, 44093 Nantes, France
- Institut Régional de Médecine du Sport (IRMS), 44093 Nantes, France
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, F-44042 Nantes, France
| | - Alban Fouasson-Chailloux
- CHU Nantes, Service de Médecine Physique et Réadapatation Locomotrice et Respiratoire, 44093 Nantes, France; (T.G.); (P.M.); (C.L.B.); (S.F.); (M.D.)
- CHU Nantes, Service de Médecine du Sport, 44093 Nantes, France
- Institut Régional de Médecine du Sport (IRMS), 44093 Nantes, France
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, F-44042 Nantes, France
- Correspondence:
| |
Collapse
|
4
|
Muñoz S, Nazzal C, Jimenez D, Frenz P, Flores P, Alcantara-Zapata D, Marchetti N. Health Effects of Chronic Intermittent Hypoxia at a High Altitude among Chilean Miners: Rationale, Design, and Baseline Results of a Longitudinal Study. Ann Work Expo Health 2021; 65:908-918. [PMID: 34435202 DOI: 10.1093/annweh/wxab029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/09/2021] [Accepted: 03/31/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES This study aims to assess the health effects on mining workers of exposure to chronic intermittent hypoxia (CIH) at high- and very high-altitude mining compared with similar work at lower altitudes in Chile, and it also aims to constitute the baseline of a 5-year follow-up study. METHODS We designed a cross-sectional study to assess health conditions in 483 miners working at 2 levels of altitude exposure: 336 working at a very high or high altitude (HA; 247 above 3900-4400 m, and 89 at 3000-3900 m), and 147 below 2400 m. Subjects were randomly selected in two stages. First, a selection of mines from a census of mines in each altitude stratum was made. Secondly, workers with less than 2 years of employment at each of the selected mines were recruited. The main outcomes measured at the baseline were mountain sickness, sleep alterations, hypertension, body mass index, and neurocognitive functions. RESULTS Prevalence of acute mountain sickness (AMS) was 28.4% in the very high-altitude stratum (P = 0.0001 compared with the low stratum), and 71.7% experienced sleep disturbance (P = 0.02). The adjusted odds ratio for AMS was 9.2 (95% confidence interval: 5.2-16.3) when compared with the very high- and low-altitude groups. Motor processing speed and spatial working memory score were lower for the high-altitude group. Hypertension was lower in the highest-altitude subjects, which may be attributed to preoccupational screening even though this was not statistically significant. CONCLUSIONS Despite longer periods of acclimatization to CIH, subjects continue to present AMS and sleep disturbance. Compromise of executive functions was detected, including working memory at HA. Further rigorous research is warranted to understand long-term health impacts of high-altitude mining, and to provide evidence-based policy recommendations.
Collapse
Affiliation(s)
- Sergio Muñoz
- Department of Public Health-CIGES, Faculty of Medicine, Universidad de La Frontera, 01145 Av. Francisco Salazar, Casilla 54-D, Temuco, Chile
| | - Carolina Nazzal
- Program of Occupational Health, School of Public Health, Faculty of Medicine, University of Chile, 939 Av. Independencia, Santiago, Chile
| | - Daniel Jimenez
- Program of Occupational Health, School of Public Health, Faculty of Medicine, University of Chile, 939 Av. Independencia, Santiago, Chile
| | - Patricia Frenz
- Program of Occupational Health, School of Public Health, Faculty of Medicine, University of Chile, 939 Av. Independencia, Santiago, Chile
| | - Patricia Flores
- Faculty of Medicine, Psychiatry Department, Catholic University of Chile, 12351 Camino El Alba, Las Condes, Santiago, Chile.,Servicio de Neurología, Departamento de Medicina, Clínica Alemana-Universidad del Desarrollo, Avenida Vitacura 5951, Región Metropolitana de Santiago, Santiago de Chile, Chile
| | - Diana Alcantara-Zapata
- Program of Occupational Health, School of Public Health, Faculty of Medicine, University of Chile, 939 Av. Independencia, Santiago, Chile
| | - Nella Marchetti
- Program of Occupational Health, School of Public Health, Faculty of Medicine, University of Chile, 939 Av. Independencia, Santiago, Chile
| |
Collapse
|
5
|
Mallet RT, Burtscher J, Richalet JP, Millet GP, Burtscher M. Impact of High Altitude on Cardiovascular Health: Current Perspectives. Vasc Health Risk Manag 2021; 17:317-335. [PMID: 34135590 PMCID: PMC8197622 DOI: 10.2147/vhrm.s294121] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Globally, about 400 million people reside at terrestrial altitudes above 1500 m, and more than 100 million lowlanders visit mountainous areas above 2500 m annually. The interactions between the low barometric pressure and partial pressure of O2, climate, individual genetic, lifestyle and socio-economic factors, as well as adaptation and acclimatization processes at high elevations are extremely complex. It is challenging to decipher the effects of these myriad factors on the cardiovascular health in high altitude residents, and even more so in those ascending to high altitudes with or without preexisting diseases. This review aims to interpret epidemiological observations in high-altitude populations; present and discuss cardiovascular responses to acute and subacute high-altitude exposure in general and more specifically in people with preexisting cardiovascular diseases; the relations between cardiovascular pathologies and neurodegenerative diseases at altitude; the effects of high-altitude exercise; and the putative cardioprotective mechanisms of hypobaric hypoxia.
Collapse
Affiliation(s)
- Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
- Institute of Sport Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Jean-Paul Richalet
- Laboratoire Hypoxie & Poumon, UMR Inserm U1272, Université Sorbonne Paris Nord 13, Bobigny Cedex, F-93017, France
| | - Gregoire P Millet
- Department of Biomedical Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
- Institute of Sport Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, A-6020, Austria
- Austrian Society for Alpine and High-Altitude Medicine, Mieming, Austria
| |
Collapse
|
6
|
Richalet JP, Pillard F, LE Moal D, Rivière D, Oriol P, Poussel M, Chenuel B, Doutreleau S, Vergès S, Demanez S, Vergnion M, Boulet JM, Douard H, Dupré M, Mesland O, Remetter R, Lonsdorfer-Wolf E, Frey A, Vilcoq L, Nedelec Jaffuel A, Debeaumont D, Duperrex G, Lecoq F, Hédon C, Hayot M, Giardini G, Lhuissier FJ. Validation of a Score for the Detection of Subjects with High Risk for Severe High-Altitude Illness. Med Sci Sports Exerc 2021; 53:1294-1302. [PMID: 33433150 DOI: 10.1249/mss.0000000000002586] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE A decision tree based on a clinicophysiological score (severe high-altitude illness (SHAI) score) has been developed to detect subjects susceptible to SHAI. We aimed to validate this decision tree, to rationalize the prescription of acetazolamide (ACZ), and to specify the rule for a progressive acclimatization. METHODS Data were obtained from 641 subjects in 15 European medical centers before and during a sojourn at high altitude. Depending on the value of the SHAI score, advice was given and ACZ was eventually prescribed. The outcome was the occurrence of SHAI at high altitude as a function of the SHAI score, ACZ prescription, and use and fulfillment of the acclimatization rule. RESULTS The occurrence of SHAI was 22.6%, similar to what was observed 18 yr before (23.7%), whereas life-threatening forms of SHAI (high-altitude pulmonary and cerebral edema) were less frequent (2.6%-0.8%, P = 0.007). The negative predictive value of the decision tree based was 81%, suggesting that the procedure is efficient to detect subjects who will not suffer from SHAI, therefore limiting the use of ACZ. The maximal daily altitude gain that limits the occurrence of SHAI was established at 400 m. The occurrence of SHAI was reduced from 27% to 12% when the recommendations for ACZ use and 400-m daily altitude gain were respected (P < 0.001). CONCLUSIONS This multicenter study confirmed the interest of the SHAI score in predicting the individual risk for SHAI. The conditions for an optimized acclimatization (400-m rule) were also specified, and we proposed a rational decision tree for the prescription of ACZ, adapted to each individual tolerance to hypoxia.
Collapse
Affiliation(s)
| | - Fabien Pillard
- Université Paul Sabatier III, Faculté de Médecine Purpan, UMR INSERM U1048 Institut des maladies métaboliques et cardiovasculaires, Hôpital Pierre Paul Riquet, Unité de Médecine du Sport, Toulouse, FRANCE
| | - David LE Moal
- Université Sorbonne Paris Nord, UMR INSERM 1272 Hypoxie et poumon, Bobigny, FRANCE
| | - Daniel Rivière
- Université Paul Sabatier III, Faculté de Médecine Purpan, UMR INSERM U1048 Institut des maladies métaboliques et cardiovasculaires, Hôpital Pierre Paul Riquet, Unité de Médecine du Sport, Toulouse, FRANCE
| | - Philippe Oriol
- Institut Régional de Médecine et d'Ingénierie de Sport, Médecine du sport et Myologie, CHU Saint-Etienne, Saint-Etienne, FRANCE
| | - Mathias Poussel
- Centre Hospitalier Régional Universitaire de Nancy, Centre Universitaire de Médecine du Sport et Activité Physique Adaptée, Service des Explorations de la Fonction Respiratoire, Université de Lorraine, EA 3450 Développement, Adaptation et Handicap, Nancy, FRANCE
| | - Bruno Chenuel
- Centre Hospitalier Régional Universitaire de Nancy, Centre Universitaire de Médecine du Sport et Activité Physique Adaptée, Service des Explorations de la Fonction Respiratoire, Université de Lorraine, EA 3450 Développement, Adaptation et Handicap, Nancy, FRANCE
| | | | | | - Sophie Demanez
- Centre de physiologie de l'effort-CB Move Herve-Julémont, BELGIUM
| | - Michel Vergnion
- Centre de physiologie de l'effort-CB Move Herve-Julémont, BELGIUM
| | - Jean-Michel Boulet
- Hôpital cardiologique, Service maladies coronaires, tests d'effort et readaptation, Pessac, FRANCE
| | - Hervé Douard
- Hôpital cardiologique, Service maladies coronaires, tests d'effort et readaptation, Pessac, FRANCE
| | - Maryse Dupré
- Institut Régional de Médecine du Sport, CHU Nantes, PHU 10, Hôpital Saint Jacques, Nantes, FRANCE
| | - Olivier Mesland
- Institut Régional de Médecine du Sport, CHU Nantes, PHU 10, Hôpital Saint Jacques, Nantes, FRANCE
| | - Romain Remetter
- Centre Hospitalier Universitaire de Strasbourg, Service de Physiologie et EFR, Nouvel Hôpital Civil, Strasbourg, FRANCE
| | - Evelyne Lonsdorfer-Wolf
- Centre Hospitalier Universitaire de Strasbourg, Service de Physiologie et EFR, Nouvel Hôpital Civil, Strasbourg, FRANCE
| | - Alain Frey
- Centre Hospitalier Intercommunal Poissy/Saint-Germain, Service Médecine du Sport, Site Saint Germain, Saint-Germain en Laye, FRANCE
| | - Louis Vilcoq
- Centre Hospitalier Intercommunal Poissy/Saint-Germain, Service Médecine du Sport, Site Saint Germain, Saint-Germain en Laye, FRANCE
| | - Anne Nedelec Jaffuel
- Centre Hospitalier Intercommunal Poissy/Saint-Germain, Service Médecine du Sport, Site Saint Germain, Saint-Germain en Laye, FRANCE
| | - David Debeaumont
- Centre Hospitalo-Universitaire de Rouen, Hôpital Charles Nicolle, CIC-CRB 1404, Unité de physiologie respiratoire et de l'exercice, Rouen, FRANCE
| | - Guy Duperrex
- Hôpitaux du Pays du Mont Blanc, Consultation de Médecine et Traumatologie du Sport, Montagne, Sallanches, FRANCE
| | - François Lecoq
- Hôpitaux du Pays du Mont Blanc, Consultation de Médecine et Traumatologie du Sport, Montagne, Sallanches, FRANCE
| | - Christophe Hédon
- UMR INSERM U1046-CNRS 9214-PhyMedExp, Université de Montpellier, CHU Arnaud de Villeneuve, Montpellier, FRANCE
| | - Maurice Hayot
- UMR INSERM U1046-CNRS 9214-PhyMedExp, Université de Montpellier, CHU Arnaud de Villeneuve, Montpellier, FRANCE
| | - Guido Giardini
- Ospedale U. Parini-Azienda USL della Valle d'Aosta, Centro di Medicina e Neurologia di Montagna, Aosta, ITALY
| | | |
Collapse
|
7
|
Post-exercise cardiac autonomic and cardiovascular responses to heart rate-matched and work rate-matched hypoxic exercise. Eur J Appl Physiol 2021; 121:2061-2076. [PMID: 33811558 PMCID: PMC8192382 DOI: 10.1007/s00421-021-04678-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/28/2021] [Indexed: 12/30/2022]
Abstract
Purpose This study investigated the effect of performing hypoxic exercise at the same heart rate (HR) or work rate (WR) as normoxic exercise on post-exercise autonomic and cardiovascular responses. Methods Thirteen men performed three interval-type exercise sessions (5 × 5-min; 1-min recovery): normoxic exercise at 80% of the WR at the first ventilatory threshold (N), hypoxic exercise (FiO2 = 14.2%) at the same WR as N (H-WR) and hypoxic exercise at the same HR as N (H-HR). Autonomic and cardiovascular assessments were conducted before and after exercise, both at rest and during active squat–stand manoeuvres (SS). Results Compared to N, H-WR elicited a higher HR response (≈ 83% vs ≈ 75%HRmax, p < 0.001) and H-HR a reduced exercise WR (− 21.1 ± 9.3%, p < 0.001). Cardiac parasympathetic indices were reduced 15 min after exercise and recovered within 60 min in N and H-HR, but not after H-WR (p < 0.05). H-WR altered cardiac baroreflex sensitivity (cBRS) both at rest and during SS (specifically in the control of blood pressure fall during standing phases) in the first 60 min after the exercise bout (p < 0.05). Post-exercise hypotension (PEH) did not occur in H-HR (p > 0.05) but lasted longer in H-WR than in N (p < 0.05). Conclusions Moderate HR-matched hypoxic exercise mimicked post-exercise autonomic responses of normoxic exercise without resulting in significant PEH. This may relate to the reduced WR and the limited associated mechanical/metabolic strain. Conversely, WR-matched hypoxic exercise impacted upon post-exercise autonomic and cardiovascular responses, delaying cardiac autonomic recovery, temporarily decreasing cBRS and evoking prolonged PEH. Supplementary Information The online version contains supplementary material available at 10.1007/s00421-021-04678-5.
Collapse
|
8
|
Duke CB, Sallade TD, Starling J, Pant S, Sheets A, McElwee MK, Young DS, Taylor RA, Keyes LE. Hypertension and Acute Mountain Sickness in Himalayan Trekkers in Nepal: An Observational Cohort Study. Wilderness Environ Med 2020; 31:157-164. [PMID: 32205041 DOI: 10.1016/j.wem.2020.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 01/03/2020] [Accepted: 01/15/2020] [Indexed: 01/14/2023]
Abstract
INTRODUCTION A history of preexisting hypertension is common in people participating in mountain activities; however, the relationship between blood pressure (BP), preexisting hypertension, and acute mountain sickness (AMS) is not well studied. We sought to determine these relationships among trekkers in the Everest region of Nepal. METHODS This was a prospective observational cohort study of a convenience sample of adult, nonpregnant volunteers trekking in the Everest Base Camp region in Nepal. We recorded Lake Louise Scores for AMS and measured BP at 2860 m, 3400 m, and 4300 m. The primary outcome was AMS. RESULTS A total of 672 trekkers (including 60 with history of preexisting hypertension) were enrolled at 2860 m. We retained 529 at 3400 m and 363 at 4300 m. At 3400 m, 11% of participants had AMS, and 13% had AMS at 4300 m. We found no relationship between AMS and measured BP values (P>0.05), nor was there any relation of BP to AMS severity as measured by higher Lake Louise Scores (P>0.05). Preexisting hypertension (odds ratio [OR] 0.16; 95% CI 0.025-0.57), male sex (OR 0.59; 95% CI 0.37-0.96), and increased SpO2 (OR 0.93; 95% CI 0.87-0.98) were associated with reduced rates of AMS in multivariate analyses adjusting for known risk factors for AMS. CONCLUSIONS AMS is common in trekkers in Nepal, even at 3400 m. There is no relationship between measured BP and AMS. However, a medical history of hypertension may be associated with a lower risk of AMS. More work is needed to confirm this novel finding.
Collapse
Affiliation(s)
- Charles B Duke
- Department of Emergency Medicine, Yale School of Medicine, New Haven, CT
| | - T Douglas Sallade
- Department of Emergency Medicine, Geisinger Medical Center, Danville, PA
| | - Jennifer Starling
- Department of Emergency Medicine, University of Colorado and Colorado Permanente Medical Group, Saint Joseph Hospital, Denver, CO
| | - Sushil Pant
- Mountain Medicine Society of Nepal, Kathmandu, Nepal
| | | | - Matthew K McElwee
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN
| | - David S Young
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO
| | | | - Linda E Keyes
- University of Colorado Emergency Medicine and Boulder Emergency Physicians, Boulder, CO.
| |
Collapse
|
9
|
Niebauer JH, Niebauer J, Wille M, Burtscher M. Systemic Blood Pressure Variation During a 12-Hour Exposure to Normobaric Hypoxia (4500 m). High Alt Med Biol 2020; 21:194-199. [PMID: 32186921 DOI: 10.1089/ham.2019.0130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was aimed at evaluating a potential association between blood pressure variation and acute mountain sickness (AMS) during acute exposure to normobaric hypoxia. A total of 77 healthy subjects (43 males, 34 females) were exposed to a simulated altitude of 4500 m for 12 hours. Peripheral oxygen saturation, heart rate, systemic blood pressure, and Lake Louise AMS scores were recorded before and during (30 minutes, 3, 6, 9, and 12 hours) hypoxic exposure. Blood pressure dips were observed at 3-hour mark. However, systolic blood pressure fell more pronounced from baseline during the initial 30 minutes in normobaric hypoxia (-17.5 vs. -11.0 mmHg, p = 0.01) in subjects suffering from AMS (AMS+; n = 56) than in those remaining unaffected from AMS (AMS-; n = 21); values did not differ between groups over the subsequent time course. Our data may suggest a transient autonomic dysfunction resulting in a more pronounced blood pressure drop during initial hypoxic exposure in AMS+ compared with AMS- subjects.
Collapse
Affiliation(s)
| | - Josef Niebauer
- University Institute of Sports Medicine, Prevention and Rehabilitation, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Maria Wille
- Department of Sports Science, University of Innsbruck, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sports Science, University of Innsbruck, Innsbruck, Austria.,Austrian Society for Alpine- and High-Altitude Medicine, Innsbruck, Austria
| |
Collapse
|
10
|
Sepehrinezhad A, Dehghanian A, Rafati A, Ketabchi F. Impact of liver damage on blood-borne variables and pulmonary hemodynamic responses to hypoxia and hyperoxia in anesthetized rats. BMC Cardiovasc Disord 2020; 20:13. [PMID: 31931715 PMCID: PMC6956555 DOI: 10.1186/s12872-019-01297-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Liver disorders may be associated with normal pulmonary hemodynamic, hepatopulmonary syndrome (HPS), or portopulmonary hypertension (POPH). In this study, we aimed to investigate the effect of the severity of liver dysfunctions on blood-borne variables, and pulmonary hemodynamic during repeated ventilation with hyperoxic and hypoxic gases. METHODS Female Sprague Dawley rats were assigned into four groups of Sham (n = 7), portal vein ligation (PPVL, n = 7), common bile duct ligation (CBDL, n = 7), and combination of them (CBDL+ PPVL, n = 7). Twenty-eight days later, right ventricular systolic pressure (RVSP) and systemic blood pressure were recorded in anesthetized animals subjected to repeated maneuvers of hyperoxia (O2 50%) and hypoxia (O2 10%). Besides, we assessed blood parameters and liver histology. RESULTS Liver histology score, liver enzymes, WBC and plasma malondialdehyde in the CBDL+PPVL group were higher than those in the CBDL group. Also, the plasma platelet level in the CBDL+PPVL group was lower than those in the other groups. On the other hand, the serum estradiol in the CBDL group was higher than that in the CBDL+PPVL group. All the above parameters in the PPVL group were similar to those in the Sham group. During ventilation with hyperoxia gas, RVSP in the CBDL+PPVL group was higher than the ones in the other groups, and in the CBDL group, it was more than those in the PPVL and Sham groups. Hypoxic pulmonary vasoconstriction (HPV) was not detected in both CBDL+PPVL and CBDL groups, whereas, it retained in the PPVL group. CONCLUSION Severe liver damage increases RVSP in the CBDL+PPVL group linked to the high level of ROS, low levels of serum estradiol and platelets or a combination of them. Furthermore, the high RVSP at the noted group could present a reliable animal model for POPH in female rats.
Collapse
Affiliation(s)
- Ali Sepehrinezhad
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirreza Dehghanian
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Rafati
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Ketabchi
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Caravita S, Faini A, Baratto C, Bilo G, Macarlupu JL, Lang M, Revera M, Lombardi C, Villafuerte FC, Agostoni P, Parati G. Upward Shift and Steepening of the Blood Pressure Response to Exercise in Hypertensive Subjects at High Altitude. J Am Heart Assoc 2018; 7:e008506. [PMID: 29886423 PMCID: PMC6220550 DOI: 10.1161/jaha.117.008506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/27/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Acute exposure to high-altitude hypobaric hypoxia induces a blood pressure rise in hypertensive humans, both at rest and during exercise. It is unclear whether this phenomenon reflects specific blood pressure hyperreactivity or rather an upward shift of blood pressure levels. We aimed at evaluating the extent and rate of blood pressure rise during exercise in hypertensive subjects acutely exposed to high altitude, and how these alterations can be counterbalanced by antihypertensive treatment. METHODS AND RESULTS Fifty-five subjects with mild hypertension, double-blindly randomized to placebo or to a fixed-dose combination of an angiotensin-receptor blocker (telmisartan 80 mg) and a calcium-channel blocker (nifedipine slow release 30 mg), performed a cardiopulmonary exercise test at sea level and after the first night's stay at 3260 m altitude. High-altitude exposure caused both an 8 mm Hg upward shift (P<0.01) and a 0.4 mm Hg/mL/kg per minute steepening (P<0.05) of the systolic blood pressure/oxygen consumption relationship during exercise, independent of treatment. Telmisartan/nifedipine did not modify blood pressure reactivity to exercise (blood pressure/oxygen consumption slope), but downward shifted (P<0.001) the relationship between systolic blood pressure and oxygen consumption by 26 mm Hg, both at sea level and at altitude. Muscle oxygen delivery was not influenced by altitude exposure but was higher on telmisartan/nifedipine than on placebo (P<0.01). CONCLUSIONS In hypertensive subjects exposed to high altitude, we observed a hypoxia-driven upward shift and steepening of the blood pressure response to exercise. The effect of the combination of telmisartan/nifedipine slow release outweighed these changes and was associated with better muscle oxygen delivery. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01830530.
Collapse
Affiliation(s)
- Sergio Caravita
- Department of Cardiovascular, Neural and Metabolic Sciences, S. Luca Hospital IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Andrea Faini
- Department of Cardiovascular, Neural and Metabolic Sciences, S. Luca Hospital IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Claudia Baratto
- Department of Cardiovascular, Neural and Metabolic Sciences, S. Luca Hospital IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Grzegorz Bilo
- Department of Cardiovascular, Neural and Metabolic Sciences, S. Luca Hospital IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Josè Luis Macarlupu
- Laboratorio de Fisiologia Comparada, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Morin Lang
- Department de Ciencias de la Rehabilitación y del Movimiento Humano, Universidad de Antofagasta, Chile
| | - Miriam Revera
- Department of Cardiovascular, Neural and Metabolic Sciences, S. Luca Hospital IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Carolina Lombardi
- Department of Cardiovascular, Neural and Metabolic Sciences, S. Luca Hospital IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Francisco C Villafuerte
- Laboratorio de Fisiologia Comparada, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Italy
| | - Gianfranco Parati
- Department of Cardiovascular, Neural and Metabolic Sciences, S. Luca Hospital IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|