1
|
Collinot H, Balvay D, Autret G, Lagoutte I, Siauve N, Vaiman D, Salomon LJ. Dynamic contrast enhanced MRI demonstrate altered placental perfusion in the STOX1A preeclampsia mouse model. Placenta 2024; 158:69-77. [PMID: 39383640 DOI: 10.1016/j.placenta.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/19/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
INTRODUCTION Preeclampsia, a hypertensive disorder of pregnancy triggered by placental dysfunction, is reproduced in the murine STOX1A model, with hypertension, proteinuria, and abnormalities in umbilical and uterine Dopplers. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is an innovative technique that provides insights into tissue perfusion. The present study aims at analyzing placental perfusion using DCE-MRI to further characterize placental defects in the STOX1A model. METHODS Two study groups were formed: the "TgSTOX13 pregnancy group" from mating TgSTOX13 genotype males with wild-type females, and the "wild-type pregnancy group" from mating wild-type males with wild-type females. Blood pressure, urinary albumin to creatinine ratio, and fetal weights were measured and compared between the groups, while perfusion parameters were analyzed using both conventional compartmental (1C) and free-time point-Hermite (FTPH) models in the DCE analysis. RESULTS Seventeen pregnant mice in the "TgSTOX13 pregnancy group" and thirteen in the "wild-type pregnant group" were included in the analysis. During late gestation, the TgSTOX13 pregnancy group exhibited higher blood pressure, elevated albumin/creatinine ratio, and decreased fetal weights compared to the wild-type pregnancy group. In the DCE analysis utilizing the 1C model, blood flow (Fb) was significantly reduced by approximately 31.8 % in the TgSTOX13 pregnancy group compared to the wild-type pregnancy group (p < 0.01), a finding corroborated by the FTPH model with a reduction estimated at 31.5 % (p < 0.01). DISCUSSION Our investigation successfully utilized DCE MRI to assess placental perfusion in a mouse model of preeclampsia, revealing a significant reduction of approximately 30 % in the preeclamptic mice, mirroring human pathophysiology.
Collapse
Affiliation(s)
- Hélène Collinot
- Maternité Port-Royal, AP-HP, APHP Centre, Université Paris Cité, FHU PREMA, Paris, France; Université Paris Cité, INSERM, U1016, CNRS, UMR 8104, Institut Cochin, Equipe "From Gamete To Birth", Paris, France.
| | - Daniel Balvay
- Université Paris Cité, Inserm, PARCC, U970, F-75015, Paris, France.
| | - Gwennhael Autret
- Université Paris Cité, Inserm, PARCC, U970, F-75015, Paris, France.
| | - Isabelle Lagoutte
- Université Paris Cité, INSERM, U1016, CNRS, UMR 8104, Institut Cochin, Plateforme d'Imagerie du Vivant, Paris, France.
| | - Nathalie Siauve
- Université Paris Cité, Inserm, PARCC, U970, F-75015, Paris, France.
| | - Daniel Vaiman
- Université Paris Cité, INSERM, U1016, CNRS, UMR 8104, Institut Cochin, Equipe "From Gamete To Birth", Paris, France.
| | - Laurent J Salomon
- Maternité, Obstétrique, Médecine, Chirurgie et Imagerie Fœtales, Hôpital Necker-Enfants malades, APHP, et Plateforme LUMIERE, URP7328, Université Paris Cité, Paris, France.
| |
Collapse
|
2
|
Collins HE, Alexander BT, Care AS, Davenport MH, Davidge ST, Eghbali M, Giussani DA, Hoes MF, Julian CG, LaVoie HA, Olfert IM, Ozanne SE, Bytautiene Prewit E, Warrington JP, Zhang L, Goulopoulou S. Guidelines for assessing maternal cardiovascular physiology during pregnancy and postpartum. Am J Physiol Heart Circ Physiol 2024; 327:H191-H220. [PMID: 38758127 PMCID: PMC11380979 DOI: 10.1152/ajpheart.00055.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Maternal mortality rates are at an all-time high across the world and are set to increase in subsequent years. Cardiovascular disease is the leading cause of death during pregnancy and postpartum, especially in the United States. Therefore, understanding the physiological changes in the cardiovascular system during normal pregnancy is necessary to understand disease-related pathology. Significant systemic and cardiovascular physiological changes occur during pregnancy that are essential for supporting the maternal-fetal dyad. The physiological impact of pregnancy on the cardiovascular system has been examined in both experimental animal models and in humans. However, there is a continued need in this field of study to provide increased rigor and reproducibility. Therefore, these guidelines aim to provide information regarding best practices and recommendations to accurately and rigorously measure cardiovascular physiology during normal and cardiovascular disease-complicated pregnancies in human and animal models.
Collapse
Grants
- HL169157 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HD088590 NICHD NIH HHS
- HD083132 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- Jewish Heritage Fund for Excellence
- The Biotechnology and Biological Sciences Research Council
- P20GM103499 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- British Heart Foundation (BHF)
- R21 HD111908 NICHD NIH HHS
- Distinguished University Professor
- The Lister Insititute
- ES032920 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- Canadian Insitute's of Health Research Foundation Grant
- HL149608 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Royal Society (The Royal Society)
- U.S. Department of Defense (DOD)
- HL138181 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- MC_00014/4 UKRI | Medical Research Council (MRC)
- HD111908 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL163003 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- APP2002129 NHMRC Ideas Grant
- HL159865 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL131182 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL163818 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- NS103017 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- HL143459 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL138181 NHLBI NIH HHS
- 20CSA35320107 American Heart Association (AHA)
- RG/17/12/33167 British Heart Foundation (BHF)
- National Heart Foundation Future Leader Fellowship
- P20GM121334 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- HL146562-04S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL155295 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HD088590-06 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL147844 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- WVU SOM Synergy Grant
- R01 HL146562 NHLBI NIH HHS
- HL159447 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- ES034646-01 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- HL150472 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 2021T017 Dutch Heart Foundation Dekker Grant
- R01 HL163003 NHLBI NIH HHS
- Christenson professor In Active Healthy Living
- National Heart Foundation
- Dutch Heart Foundation Dekker
- WVU SOM Synergy
- Jewish Heritage
- Department of Health | National Health and Medical Research Council (NHMRC)
- Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)
Collapse
Affiliation(s)
- Helen E Collins
- University of Louisville, Louisville, Kentucky, United States
| | - Barbara T Alexander
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Alison S Care
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | - Mansoureh Eghbali
- University of California Los Angeles, Los Angeles, California, United States
| | | | | | - Colleen G Julian
- University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Holly A LaVoie
- University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - I Mark Olfert
- West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | | | | | - Junie P Warrington
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lubo Zhang
- Loma Linda University School of Medicine, Loma Linda, California, United States
| | | |
Collapse
|
3
|
Costa L, Bermudez-Guzman L, Benouda I, Laissue P, Morel A, Jiménez KM, Fournier T, Stouvenel L, Méhats C, Miralles F, Vaiman D. Linking genotype to trophoblast phenotype in preeclampsia and HELLP syndrome associated with STOX1 genetic variants. iScience 2024; 27:109260. [PMID: 38439971 PMCID: PMC10910284 DOI: 10.1016/j.isci.2024.109260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
Preeclampsia is a major hypertensive pregnancy disorder with a 50% heritability. The first identified gene involved in the disease is STOX1, a transcription factor, whose variant Y153H predisposes to the disease. Two rare mutations were also identified in Colombian women affected by the hemolysis, elevated liver enzyme, low platelet syndrome, a complication of preeclampsia (T188N and R364X). Here, we explore the effects of these variants in trophoblast cell models (BeWo) where STOX1 was previously invalidated. We firstly showed that STOX1 knockout alters response to oxidative stress, cell proliferation, and fusion capacity. Then, we showed that mutant versions of STOX1 trigger alterations in gene profiles, growth, fusion, and oxidative stress management. The results also reveal alterations of the STOX interaction with DNA when the mutations affected the DNA-binding domain of STOX1 (Y153H and T188N). We also reveal here that a major contributor of these effects appears to be the E2F3 transcription factor.
Collapse
Affiliation(s)
- Lorenzo Costa
- Institut Cochin, Team ‘From Gametes To Birth’, INSERM U1016, CNRS UMR8104, Université de Paris, 24 rue du Faubourg St Jacques, 75014 Paris, France
- Department of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | | | - Ikram Benouda
- Institut Cochin, Team ‘From Gametes To Birth’, INSERM U1016, CNRS UMR8104, Université de Paris, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Paul Laissue
- Biopas Laboratoires, Orphan Diseases Unit, BIOPAS GROUP, Bogotá 111111, Colombia
| | - Adrien Morel
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Karen Marcela Jiménez
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Thierry Fournier
- Université Paris Cité, INSERM, UMR-S1139, Pathophysiology & Pharmacotoxicology of the Human Placenta, Pre- & Post-natal Microbiota (3PHM), 75006 Paris, France
| | - Laurence Stouvenel
- Institut Cochin, Team ‘From Gametes To Birth’, INSERM U1016, CNRS UMR8104, Université de Paris, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Céline Méhats
- Institut Cochin, Team ‘From Gametes To Birth’, INSERM U1016, CNRS UMR8104, Université de Paris, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Francisco Miralles
- Institut Cochin, Team ‘From Gametes To Birth’, INSERM U1016, CNRS UMR8104, Université de Paris, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Daniel Vaiman
- Institut Cochin, Team ‘From Gametes To Birth’, INSERM U1016, CNRS UMR8104, Université de Paris, 24 rue du Faubourg St Jacques, 75014 Paris, France
| |
Collapse
|
4
|
Al Darwish FM, Meijerink L, Coolen BF, Strijkers GJ, Bekker M, Lely T, Terstappen F. From Molecules to Imaging: Assessment of Placental Hypoxia Biomarkers in Placental Insufficiency Syndromes. Cells 2023; 12:2080. [PMID: 37626890 PMCID: PMC10452979 DOI: 10.3390/cells12162080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Placental hypoxia poses significant risks to both the developing fetus and the mother during pregnancy, underscoring the importance of early detection and monitoring. Effectively identifying placental hypoxia and evaluating the deterioration in placental function requires reliable biomarkers. Molecular biomarkers in placental tissue can only be determined post-delivery and while maternal blood biomarkers can be measured over time, they can merely serve as proxies for placental function. Therefore, there is an increasing demand for non-invasive imaging techniques capable of directly assessing the placental condition over time. Recent advancements in imaging technologies, including photoacoustic and magnetic resonance imaging, offer promising tools for detecting and monitoring placental hypoxia. Integrating molecular and imaging biomarkers may revolutionize the detection and monitoring of placental hypoxia, improving pregnancy outcomes and reducing long-term health complications. This review describes current research on molecular and imaging biomarkers of placental hypoxia both in human and animal studies and aims to explore the benefits of an integrated approach throughout gestation.
Collapse
Affiliation(s)
- Fatimah M. Al Darwish
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (B.F.C.); (G.J.S.)
| | - Lotte Meijerink
- Department of Obstetrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (L.M.); (M.B.); (T.L.); (F.T.)
| | - Bram F. Coolen
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (B.F.C.); (G.J.S.)
| | - Gustav J. Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (B.F.C.); (G.J.S.)
| | - Mireille Bekker
- Department of Obstetrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (L.M.); (M.B.); (T.L.); (F.T.)
| | - Titia Lely
- Department of Obstetrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (L.M.); (M.B.); (T.L.); (F.T.)
| | - Fieke Terstappen
- Department of Obstetrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (L.M.); (M.B.); (T.L.); (F.T.)
| |
Collapse
|
5
|
Chatre L, Ducat A, Spradley FT, Palei AC, Chéreau C, Couderc B, Thomas KC, Wilson AR, Amaral LM, Gaillard I, Méhats C, Lagoutte I, Jacques S, Miralles F, Batteux F, Granger JP, Ricchetti M, Vaiman D. Increased NOS coupling by the metabolite tetrahydrobiopterin (BH4) reduces preeclampsia/IUGR consequences. Redox Biol 2022; 55:102406. [PMID: 35964341 PMCID: PMC9389306 DOI: 10.1016/j.redox.2022.102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
Preeclampsia (PE) is a high-prevalence pregnancy disease characterized by placental insufficiency, gestational hypertension, and proteinuria. Overexpression of the A isoform of the STOX1 transcription factor (STOX1A) recapitulates PE in mice, and STOX1A overexpressing trophoblasts recapitulate PE patients hallmarks in terms of gene expression and pathophysiology. STOX1 overexpression induces nitroso-redox imbalance and mitochondrial hyper-activation. Here, by a thorough analysis on cell models, we show that STOX1 overexpression in trophoblasts alters inducible nitric oxide synthase (iNOS), nitric oxide (NO) content, the nitroso-redox balance, the antioxidant defense, and mitochondrial function. This is accompanied by specific alterations of the Krebs cycle leading to reduced l-malate content. By increasing NOS coupling using the metabolite tetrahydrobiopterin (BH4) we restore this multi-step pathway in vitro. Moving in vivo on two different rodent models (STOX1 mice and RUPP rats, alike early onset and late onset preeclampsia, respectively), we show by transcriptomics that BH4 directly reverts STOX1-deregulated gene expression including glutathione metabolism, oxidative phosphorylation, cholesterol metabolism, inflammation, lipoprotein metabolism and platelet activation, successfully treating placental hypotrophy, gestational hypertension, proteinuria and heart hypertrophy. In the RUPP rats we show that the major fetal issue of preeclampsia, Intra Uterine Growth Restriction (IUGR), is efficiently corrected. Our work posits on solid bases BH4 as a novel potential therapy for preeclampsia.
Collapse
Affiliation(s)
- Laurent Chatre
- Institut Pasteur, Department of Developmental & Stem Cell Biology, Stem Cell & Development, 25-28 Rue du Dr. Roux, Paris, France; UMR 3738 CNRS, 25 Rue du Dr. Roux, Paris, 75015, France
| | - Aurélien Ducat
- Institut Cochin U1016, INSERM UMR8104 CNRS, 24, rue du Fg St Jacques, Paris, France
| | - Frank T Spradley
- Department of Surgery, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Ana C Palei
- Department of Surgery, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Christiane Chéreau
- Institut Cochin U1016, INSERM UMR8104 CNRS, 24, rue du Fg St Jacques, Paris, France
| | - Betty Couderc
- Institut Cochin U1016, INSERM UMR8104 CNRS, 24, rue du Fg St Jacques, Paris, France
| | - Kamryn C Thomas
- Department of Surgery, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Anna R Wilson
- Department of Surgery, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Lorena M Amaral
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Irène Gaillard
- Institut Cochin U1016, INSERM UMR8104 CNRS, 24, rue du Fg St Jacques, Paris, France
| | - Céline Méhats
- Institut Cochin U1016, INSERM UMR8104 CNRS, 24, rue du Fg St Jacques, Paris, France
| | - Isabelle Lagoutte
- Institut Cochin U1016, INSERM UMR8104 CNRS, 24, rue du Fg St Jacques, Paris, France
| | - Sébastien Jacques
- Institut Cochin U1016, INSERM UMR8104 CNRS, 24, rue du Fg St Jacques, Paris, France
| | - Francisco Miralles
- Institut Cochin U1016, INSERM UMR8104 CNRS, 24, rue du Fg St Jacques, Paris, France
| | - Frédéric Batteux
- Institut Cochin U1016, INSERM UMR8104 CNRS, 24, rue du Fg St Jacques, Paris, France
| | - Joey P Granger
- Department of Physiology & Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Miria Ricchetti
- Institut Pasteur, Department of Developmental & Stem Cell Biology, Stem Cell & Development, 25-28 Rue du Dr. Roux, Paris, France; UMR 3738 CNRS, 25 Rue du Dr. Roux, Paris, 75015, France; Institut Pasteur, Molecular Mechanisms of Pathological and Physiological Ageing, 25-28 Rue du Dr. Roux, Paris, France
| | - Daniel Vaiman
- Institut Cochin U1016, INSERM UMR8104 CNRS, 24, rue du Fg St Jacques, Paris, France.
| |
Collapse
|
6
|
Evaluation of placental oxygenation in fetal growth restriction using blood oxygen level-dependent magnetic resonance imaging. Placenta 2022; 126:40-45. [PMID: 35750000 DOI: 10.1016/j.placenta.2022.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Abnormalities in placental function can lead to fetal growth restriction (FGR), but there is no consensus on their evaluation. Using blood oxygen level-dependent magnetic resonance imaging (BOLD MRI), we compared placental oxygenation between FGR cases and previously reported normal pregnancies. METHODS Eight singleton pregnant women (>32 weeks of gestation) diagnosed with fetal growth failure during pregnancy were recruited. BOLD MRI was consecutively performed under normoxia (21% O2), hyperoxia (100% O2), and normoxia for 4 min each. Each placental time-activity curve was evaluated to calculate the peak score (peakΔR2*) and the time from the start of maternal oxygen administration to the time of peakΔR2* (time to peakΔR2*). In six of the eight FGR cases, placental FGR-related pathological findings were evaluated after delivery. RESULTS The parameter peakΔR2* was significantly decreased in the FGR group (8 ± 3 vs 6 ± 1, p < 0.001), but there was no significant difference in time to peakΔR2* (458 ± 74 s vs 468 ± 57 s, p = 0.750). The findings in the six FGR cases assessed for placental pathologies included chorangiosis in two cases, avascular chorions in two cases, placental infarction in two cases, and syncytial knot formation in one case. DISCUSSION The peakΔR2* values were lower in the FGR group than in the normal pregnancy group. This suggests that oxygenation of the placenta is decreased in the FGR group compared to the normal group, and this may be related to FGR. Placental pathology also revealed findings possibly related to FGR, suggesting that low peakΔR2* values in the FGR group may reflect placental dysfunction.
Collapse
|
7
|
Bakrania BA, George EM, Granger JP. Animal models of preeclampsia: investigating pathophysiology and therapeutic targets. Am J Obstet Gynecol 2022; 226:S973-S987. [PMID: 33722383 PMCID: PMC8141071 DOI: 10.1016/j.ajog.2020.10.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/01/2020] [Accepted: 10/19/2020] [Indexed: 02/03/2023]
Abstract
Animal models have been critical in investigating the pathogenesis, mediators, and even therapeutic options for a number of diseases, including preeclampsia. Preeclampsia is the leading cause of maternal and fetal morbidity and mortality worldwide. The placenta is thought to play a central role in the pathogenesis of this disease because it releases antiangiogenic and proinflammatory factors into the maternal circulation, resulting in the maternal syndrome. Despite the deleterious effects preeclampsia has been shown to have on the mother and baby during pregnancy and postpartum, there is still no effective treatment for this disease. Although clinical studies in patients are crucial to identify the involvement of pathogenic factors in preeclampsia, there are obvious limitations that prevent detailed investigation of the quantitative importance of time-dependent mechanisms involved in this syndrome. Animal models allow investigators to perform proof-of-concept studies and examine whether certain factors found in women with preeclampsia mediate hypertension and other manifestations of this disease. In this brief review, we summarize some of the more widely studied models used to investigate pathophysiological mechanisms that are thought to be involved in preeclampsia. These include models of placental ischemia, angiogenic imbalance, and maternal immune activation. Infusion of preeclampsia-related factors into animals has been widely studied to understand the specific mediators of this disease. These models have been included, in addition to a number of genetic models involved in overexpression of the renin-angiotensin system, complement activation, and trophoblast differentiation. Together, these models cover multiple mechanisms of preeclampsia from trophoblast dysfunction and impaired placental vascularization to the excess circulating placental factors and clinical manifestation of this disease. Most animal studies have been performed in rats and mice; however, we have also incorporated nonhuman primate models in this review. Preclinical animal models not only have been instrumental in understanding the pathophysiology of preeclampsia but also continue to be important tools in the search for novel therapeutic options for the treatment of this disease.
Collapse
Affiliation(s)
- Bhavisha A Bakrania
- Cardiovascular-Renal Research Center, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - Eric M George
- Cardiovascular-Renal Research Center, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - Joey P Granger
- Cardiovascular-Renal Research Center, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS.
| |
Collapse
|
8
|
Correia Y, Scheel J, Gupta S, Wang K. Placental mitochondrial function as a driver of angiogenesis and placental dysfunction. Biol Chem 2021; 402:887-909. [PMID: 34218539 DOI: 10.1515/hsz-2021-0121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022]
Abstract
The placenta is a highly vascularized and complex foetal organ that performs various tasks, crucial to a healthy pregnancy. Its dysfunction leads to complications such as stillbirth, preeclampsia, and intrauterine growth restriction. The specific cause of placental dysfunction remains unknown. Recently, the role of mitochondrial function and mitochondrial adaptations in the context of angiogenesis and placental dysfunction is getting more attention. The required energy for placental remodelling, nutrient transport, hormone synthesis, and the reactive oxygen species leads to oxidative stress, stemming from mitochondria. Mitochondria adapt to environmental changes and have been shown to adjust their oxygen and nutrient use to best support placental angiogenesis and foetal development. Angiogenesis is the process by which blood vessels form and is essential for the delivery of nutrients to the body. This process is regulated by different factors, pro-angiogenic factors and anti-angiogenic factors, such as sFlt-1. Increased circulating sFlt-1 levels have been linked to different preeclamptic phenotypes. One of many effects of increased sFlt-1 levels, is the dysregulation of mitochondrial function. This review covers mitochondrial adaptations during placentation, the importance of the anti-angiogenic factor sFlt-1in placental dysfunction and its role in the dysregulation of mitochondrial function.
Collapse
Affiliation(s)
- Yolanda Correia
- Aston Medical School, College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Julia Scheel
- Department of Systems Biology and Bioinformatics, University of Rostock, D-18051 Rostock, Germany
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, D-18051 Rostock, Germany
| | - Keqing Wang
- Aston Medical School, College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| |
Collapse
|
9
|
Waker CA, Kaufman MR, Brown TL. Current State of Preeclampsia Mouse Models: Approaches, Relevance, and Standardization. Front Physiol 2021; 12:681632. [PMID: 34276401 PMCID: PMC8284253 DOI: 10.3389/fphys.2021.681632] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Preeclampsia (PE) is a multisystemic, pregnancy-specific disorder and a leading cause of maternal and fetal death. PE is also associated with an increased risk for chronic morbidities later in life for mother and offspring. Abnormal placentation or placental function has been well-established as central to the genesis of PE; yet much remains to be determined about the factors involved in the development of this condition. Despite decades of investigation and many clinical trials, the only definitive treatment is parturition. To better understand the condition and identify potential targets preclinically, many approaches to simulate PE in mice have been developed and include mixed mouse strain crosses, genetic overexpression and knockout, exogenous agent administration, surgical manipulation, systemic adenoviral infection, and trophoblast-specific gene transfer. These models have been useful to investigate how biological perturbations identified in human PE are involved in the generation of PE-like symptoms and have improved the understanding of the molecular mechanisms underpinning the human condition. However, these approaches were characterized by a wide variety of physiological endpoints, which can make it difficult to compare effects across models and many of these approaches have aspects that lack physiological relevance to this human disorder and may interfere with therapeutic development. This report provides a comprehensive review of mouse models that exhibit PE-like symptoms and a proposed standardization of physiological characteristics for analysis in murine models of PE.
Collapse
Affiliation(s)
- Christopher A Waker
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Melissa R Kaufman
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Thomas L Brown
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
10
|
Clarke GD, Li J, Kuo AH, Moody AJ, Nathanielsz PW. Cardiac magnetic resonance imaging: insights into developmental programming and its consequences for aging. J Dev Orig Health Dis 2021; 12:203-219. [PMID: 33349289 PMCID: PMC7987688 DOI: 10.1017/s2040174420001233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases (CVD) are important consequences of adverse perinatal conditions such as fetal hypoxia and maternal malnutrition. Cardiac magnetic resonance imaging (CMR) can produce a wealth of physiological information related to the development of the heart. This review outlines the current state of CMR technologies and describes the physiological biomarkers that can be measured. These phenotypes include impaired ventricular and atrial function, maladaptive ventricular remodeling, and the proliferation of myocardial steatosis and fibrosis. The discussion outlines the applications of CMR to understanding the developmental pathways leading to impaired cardiac function. The use of CMR, both in animal models of developmental programming and in human studies, is described. Specific examples are given in a baboon model of intrauterine growth restriction (IUGR). CMR offers great potential as a tool for understanding the sequence of dysfunctional adaptations of developmental origin that can affect the human cardiovascular system.
Collapse
Affiliation(s)
- G D Clarke
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - J Li
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - A H Kuo
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - A J Moody
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - P W Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
11
|
Parchem JG, Kanasaki K, Lee SB, Kanasaki M, Yang JL, Xu Y, Earl KM, Keuls RA, Gattone VH, Kalluri R. STOX1 deficiency is associated with renin-mediated gestational hypertension and placental defects. JCI Insight 2021; 6:141588. [PMID: 33301424 PMCID: PMC7934881 DOI: 10.1172/jci.insight.141588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/03/2020] [Indexed: 11/17/2022] Open
Abstract
The pathogenesis of preeclampsia and other hypertensive disorders of pregnancy remains poorly defined despite the substantial burden of maternal and neonatal morbidity associated with these conditions. In particular, the role of genetic variants as determinants of disease susceptibility is understudied. Storkhead-box protein 1 (STOX1) was first identified as a preeclampsia risk gene through family-based genetic linkage studies in which loss-of-function variants were proposed to underlie increased preeclampsia susceptibility. We generated a genetic Stox1 loss-of-function mouse model (Stox1 KO) to evaluate whether STOX1 regulates blood pressure in pregnancy. Pregnant Stox1-KO mice developed gestational hypertension evidenced by a significant increase in blood pressure compared with WT by E17.5. While severe renal, placental, or fetal growth abnormalities were not observed, the Stox1-KO phenotype was associated with placental vascular and extracellular matrix abnormalities. Mechanistically, we found that gestational hypertension in Stox1-KO mice resulted from activation of the uteroplacental renin-angiotensin system. This mechanism was supported by showing that treatment of pregnant Stox1-KO mice with an angiotensin II receptor blocker rescued the phenotype. Our study demonstrates the utility of genetic mouse models for uncovering links between genetic variants and effector pathways implicated in the pathogenesis of hypertensive disorders of pregnancy.
Collapse
Affiliation(s)
- Jacqueline G Parchem
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Texas, USA
| | - Keizo Kanasaki
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Soo Bong Lee
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Megumi Kanasaki
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Joyce L Yang
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Yong Xu
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Kadeshia M Earl
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rachel A Keuls
- Development, Disease Models & Therapeutics Graduate Program, Center for Cell and Gene Therapy, and Stem Cells and Regenerative Medicine Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Vincent H Gattone
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Dunk CE, van Dijk M, Choudhury R, Wright TJ, Cox B, Leavey K, Harris LK, Jones RL, Lye SJ. Functional Evaluation of STOX1 (STORKHEAD-BOX PROTEIN 1) in Placentation, Preeclampsia, and Preterm Birth. Hypertension 2020; 77:475-490. [PMID: 33356399 DOI: 10.1161/hypertensionaha.120.15619] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Revaluation of the association of the STOX1 (STORKHEAD_BOX1 PROTEIN 1) transcription factor mutation (Y153H, C allele) with the early utero-vascular origins of placental pathology is warranted. To investigate if placental STOX1 Y153H genotype affects utero-vascular remodeling-compromised in both preterm birth and preeclampsia-we utilized extravillous trophoblast (EVT) explant and placental decidual coculture models, transfection of STOX1 wild-type and mutant plasmids into EVT-like trophoblast cell lines, and a cohort of 75 placentas from obstetric pathologies. Primary EVT and HTR8/SVneo cells carrying STOX1 Y153H secreted lower levels of IL (interleukin) 6, and IL-8, and higher CXCL16 (chemokine [C-X-C motif] ligand 16) and TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) than wild-type EVT and Swan71 cells. Media from wild-type EVT or Swan71 cells transfected with wild-type STOX1 stimulated: endothelial chemokine expression, angiogenesis, and decidual natural killer cell and monocyte migration. In contrast, Y153H EVT conditioned medium, Swan71 transfected with the Y153H plasmid, or HTR8/SVneo media had no effect. Genotyping of placental decidual cocultures demonstrated association of the placental STOX1 CC allele with failed vascular remodeling. Decidual GG NODAL R165H increased in failed cocultures carrying the placental CC alleles of STOX1. Multivariate analysis of the placental cohort showed that the STOX1 C allele correlated with premature birth, with or without severe early-onset preeclampsia, and small for gestational age babies. In conclusion, placental STOX1 Y153H is a precipitating factor in preterm birth and placental preeclampsia due to defects in early utero-placental development.
Collapse
Affiliation(s)
- Caroline E Dunk
- From the Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, Canada (C.E.D., S.J.L.)
| | - Marie van Dijk
- Reproductive Biology Laboratory, Amsterdam University Medical Centers, the Netherlands (M.V.D.)
| | - Ruhul Choudhury
- Maternal and Fetal Health Research Centre, Faculty of Biology Medicine and Health (R.C., L.K.H., R.L.J.), University of Manchester, United Kingdom.,Academic Health Science Centre, St Mary's Hospital, Manchester, United Kingdom (R.C., L.K.H., R.L.J.)
| | - Thomas J Wright
- Department of Ophthalmology, Kensington Eye Institute (T.J.W.), University of Toronto, Canada
| | - Brian Cox
- Department of Physiology, Faculty of Medicine (B.C., K.L., S.J.L.), University of Toronto, Canada
| | - Katherine Leavey
- Department of Physiology, Faculty of Medicine (B.C., K.L., S.J.L.), University of Toronto, Canada
| | - Lynda K Harris
- Maternal and Fetal Health Research Centre, Faculty of Biology Medicine and Health (R.C., L.K.H., R.L.J.), University of Manchester, United Kingdom.,Division of Pharmacy and Optometry (L.K.H.), University of Manchester, United Kingdom.,Academic Health Science Centre, St Mary's Hospital, Manchester, United Kingdom (R.C., L.K.H., R.L.J.)
| | - Rebecca L Jones
- Maternal and Fetal Health Research Centre, Faculty of Biology Medicine and Health (R.C., L.K.H., R.L.J.), University of Manchester, United Kingdom.,Academic Health Science Centre, St Mary's Hospital, Manchester, United Kingdom (R.C., L.K.H., R.L.J.)
| | - Stephen J Lye
- From the Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, Canada (C.E.D., S.J.L.).,Department of Physiology, Faculty of Medicine (B.C., K.L., S.J.L.), University of Toronto, Canada.,Department of Obstetrics and Gynaecology, Faculty of Medicine (S.J.L.), University of Toronto, Canada
| |
Collapse
|
13
|
Jiménez KM, Morel A, Parada-Niño L, Alejandra González-Rodriguez M, Flórez S, Bolívar-Salazar D, Becerra-Bayona S, Aguirre-García A, Gómez-Murcia T, Fernanda Castillo L, Carlosama C, Ardila J, Vaiman D, Serrano N, Laissue P. Identifying new potential genetic biomarkers for HELLP syndrome using massive parallel sequencing. Pregnancy Hypertens 2020; 22:181-190. [PMID: 33059327 DOI: 10.1016/j.preghy.2020.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/20/2020] [Accepted: 09/05/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Preeclampsia (PE) is a frequently occurring multisystemic disease affecting ~5% of pregnancies. PE patients may develop HELLP syndrome (haemolysis, elevated liver enzymes, and low platelet), a mother and foetus life-threatening condition. Research into HELLP's genetic origin has been relatively unsuccessful, mainly because normal placental function and blood pressure regulation involve the fine-regulation of hundreds of genes. OBJECTIVE To identify new genes and mutations constituting potential biomarkers for HELLP syndrome. STUDY DESIGN The present case-control study involved whole-exome sequencing of 79 unrelated HELLP women. Candidate variants were screened in a control population constituted by 176 individuals. Stringent bioinformatics filters were used for selecting potentially etiological sequence variants in a subset of 487 genes. We used robust in silico mutation modelling for predicting the potential effect on protein structure. RESULTS We identified numerous sequence variants in genes related to angiogenesis/coagulation/blood pressure regulation, cell differentiation/communication/adhesion, cell cycle and transcriptional gene regulation, extracellular matrix biology, lipid metabolism and immunological response. Five sequence variants generated premature stop codons in genes playing an essential role in placental physiology (STOX1, PDGFD, IGF2, MMP1 and DNAH11). Six variants (ERAP1- p.Ile915Thr, ERAP2- p.Leu837Ser, COMT-p.His192Gln, CSAD-p.Pro418Ser, CDH1- p.Ala298Thr and CCR2-p.Met249Lys) led to destabilisation of protein structure as they had significant energy and residue interaction-related changes. We identified at least two mutations in 57% of patients, arguing in favour of a polygenic origin for the HELLP syndrome. CONCLUSION Our results provide novel evidence regarding PE/HELLP's genetic origin, leading to new biomarkers, having potential clinical usefulness, being proposed.
Collapse
Affiliation(s)
- Karen Marcela Jiménez
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Adrien Morel
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Laura Parada-Niño
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - María Alejandra González-Rodriguez
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Stephanie Flórez
- Hospital Universitario Mayor Méderi, Universidad del Rosario, Bogotá, Colombia
| | - David Bolívar-Salazar
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | | | - Angel Aguirre-García
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia; Hospital Universitario Mayor Méderi, Universidad del Rosario, Bogotá, Colombia
| | - Tatiana Gómez-Murcia
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia; Hospital Universitario Mayor Méderi, Universidad del Rosario, Bogotá, Colombia
| | - Luisa Fernanda Castillo
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Carolina Carlosama
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Javier Ardila
- Hospital Universitario Mayor Méderi, Universidad del Rosario, Bogotá, Colombia
| | - Daniel Vaiman
- Inserm U1016, CNRS UMR8104, Institut Cochin, équipe FGTB, 24, rue du faubourg Saint-Jacques, 75014 Paris, France
| | - Norma Serrano
- Research Centre, Fundación Cardiovascular de Colombia (FCV), Bucaramanga, Colombia
| | - Paul Laissue
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia; Inserm U1016, CNRS UMR8104, Institut Cochin, équipe FGTB, 24, rue du faubourg Saint-Jacques, 75014 Paris, France; Orphan Diseases Group, Biopas Laboratoires, Bogotá, Colombia.
| |
Collapse
|
14
|
Ducat A, Couderc B, Bouter A, Biquard L, Aouache R, Passet B, Doridot L, Cohen MB, Ribaux P, Apicella C, Gaillard I, Palfray S, Chen Y, Vargas A, Julé A, Frelin L, Cocquet J, San Martin CR, Jacques S, Busato F, Tost J, Méhats C, Laissue P, Vilotte JL, Miralles F, Vaiman D. Molecular Mechanisms of Trophoblast Dysfunction Mediated by Imbalance between STOX1 Isoforms. iScience 2020; 23:101086. [PMID: 32371375 PMCID: PMC7200942 DOI: 10.1016/j.isci.2020.101086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/16/2020] [Accepted: 04/15/2020] [Indexed: 12/16/2022] Open
Abstract
STOX1 is a transcription factor involved in preeclampsia and Alzheimer disease. We show that the knock-down of the gene induces rather mild effect on gene expression in trophoblast cell lines (BeWo). We identified binding sites of STOX1 shared by the two major isoforms, STOX1A and STOX1B. Profiling gene expression of cells overexpressing either STOX1A or STOX1B, we identified genes downregulated by both isoforms, with a STOX1 binding site in their promoters. Among those, STOX1-induced Annexin A1 downregulation led to abolished membrane repair in BeWo cells. By contrast, overexpression of STOX1A or B has opposite effects on trophoblast fusion (acceleration and inhibition, respectively) accompanied by syncytin genes deregulation. Also, STOX1A overexpression led to abnormal regulation of oxidative and nitrosative stress. In sum, our work shows that STOX1 isoform imbalance is a cause of gene expression deregulation in the trophoblast, possibly leading to placental dysfunction and preeclampsia.
Collapse
Affiliation(s)
- Aurélien Ducat
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Betty Couderc
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Anthony Bouter
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, 33600 Pessac, France
| | - Louise Biquard
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Rajaa Aouache
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Bruno Passet
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | - Ludivine Doridot
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Marie-Benoîte Cohen
- Department of Gynecology Obstetrics, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Pascale Ribaux
- Department of Gynecology Obstetrics, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Clara Apicella
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Irène Gaillard
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Sophia Palfray
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Yulian Chen
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Alexandra Vargas
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Amélie Julé
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Léo Frelin
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, 33600 Pessac, France
| | - Julie Cocquet
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Camino Ruano San Martin
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Sébastien Jacques
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Florence Busato
- Laboratory for Epigenetics and Environment, Institut de Biologie François Jacob, Commissariat àl'Energie Atomique, Evry 91057, France
| | - Jorg Tost
- Laboratory for Epigenetics and Environment, Institut de Biologie François Jacob, Commissariat àl'Energie Atomique, Evry 91057, France
| | - Céline Méhats
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Paul Laissue
- Biopas Laboratoires, BIOPAS GROUP, Bogotá, Colombia
| | - Jean-Luc Vilotte
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | - Francisco Miralles
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Daniel Vaiman
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France.
| |
Collapse
|
15
|
Gatford KL, Andraweera PH, Roberts CT, Care AS. Animal Models of Preeclampsia: Causes, Consequences, and Interventions. Hypertension 2020; 75:1363-1381. [PMID: 32248704 DOI: 10.1161/hypertensionaha.119.14598] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preeclampsia is a common pregnancy complication, affecting 2% to 8% of pregnancies worldwide, and is an important cause of both maternal and fetal morbidity and mortality. Importantly, although aspirin and calcium are able to prevent preeclampsia in some women, there is no cure apart from delivery of the placenta and fetus, often necessitating iatrogenic preterm birth. Preclinical models of preeclampsia are widely used to investigate the causes and consequences of preeclampsia and to evaluate safety and efficacy of potential preventative and therapeutic interventions. In this review, we provide a summary of the published preclinical models of preeclampsia that meet human diagnostic criteria, including the development of maternal hypertension, together with new-onset proteinuria, maternal organ dysfunction, and uteroplacental dysfunction. We then discuss evidence from preclinical models for multiple causal factors of preeclampsia, including those implicated in early-onset and late-onset preeclampsia. Next, we discuss the impact of exposure to a preeclampsia-like environment for later maternal and progeny health. The presence of long-term impairment, particularly cardiovascular outcomes, in mothers and progeny after an experimentally induced preeclampsia-like pregnancy, implies that later onset or reduced severity of preeclampsia will improve later maternal and progeny health. Finally, we summarize published intervention studies in preclinical models and identify gaps in knowledge that we consider should be targets for future research.
Collapse
Affiliation(s)
- Kathryn L Gatford
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| | - Prabha H Andraweera
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| | - Claire T Roberts
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| | - Alison S Care
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| |
Collapse
|
16
|
Laissue P, Vaiman D. Exploring the Molecular Aetiology of Preeclampsia by Massive Parallel Sequencing of DNA. Curr Hypertens Rep 2020; 22:31. [PMID: 32172383 DOI: 10.1007/s11906-020-01039-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW This manuscript aims to review (for the first time) studies describing NGS sequencing of preeclampsia (PE) women's DNA. RECENT FINDINGS Describing markers for the early detection of PE is an essential task because, although associated molecular dysfunction begins early on during pregnancy, the disease's clinical signs usually appear late in pregnancy. Although several biochemical biomarkers have been proposed, their use in clinical environments is still limited, thereby encouraging research into PE's genetic origin. Hundreds of genes involved in numerous implantation- and placentation-related biological processes may be coherent candidates for PE aetiology. Next-generation sequencing (NGS) offers new technical possibilities for PE studying, as it enables large genomic regions to be analysed at affordable cost. This technique has facilitated the description of genes contributing to the molecular origin of a significant amount of monogenic and complex diseases. Regarding PE, NGS of DNA has been used in familial and isolated cases, thereby enabling new genes potentially related to the phenotype to be proposed. For a better understanding of NGS, technical aspects, applications and limitations are presented initially. Thereafter, NGS studies of DNA in familial and non-familial cases are described, including pitfalls and positive findings. The information given here should enable scientists and clinicians to analyse and design new studies permitting the identification of novel clinically useful molecular PE markers.
Collapse
Affiliation(s)
- Paul Laissue
- Biopas Laboratoires, Biopas Group, Bogotá, Colombia. .,Inserm U1016, CNRS UMR8104, Institut Cochin, équipe FGTB, 24, rue du faubourg Saint-Jacques, 75014, Paris, France. .,CIGGUR Genetics Group, School of Medicine and Health Sciences, El Rosario University, Bogotá, Colombia.
| | - Daniel Vaiman
- Inserm U1016, CNRS UMR8104, Institut Cochin, équipe FGTB, 24, rue du faubourg Saint-Jacques, 75014, Paris, France
| |
Collapse
|
17
|
Sørensen A, Hutter J, Seed M, Grant PE, Gowland P. T2*-weighted placental MRI: basic research tool or emerging clinical test for placental dysfunction? ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2020; 55:293-302. [PMID: 31452271 DOI: 10.1002/uog.20855] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Affiliation(s)
- A Sørensen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark
| | - J Hutter
- Center for Medical Engineering, King's College London, London, UK
| | - M Seed
- Department of Cardiology, The Hospital for Sick Children, Toronto, Canada
| | - P E Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA
| | - P Gowland
- Sir Peter Mansfield Imaging Centre, Nottingham University, Nottingham, UK
| |
Collapse
|
18
|
He Y, Chen L, Liu C, Han Y, Liang C, Xie Q, Zhou J, Cheng Z. Aspirin modulates STOX1 expression and reverses STOX1-induced insufficient proliferation and migration of trophoblast cells. Pregnancy Hypertens 2020; 19:170-176. [PMID: 32018223 DOI: 10.1016/j.preghy.2019.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND A major cause of preeclampsia is the placental ischemia caused by insufficient trophoblast cells, invading into the spiral artery. Storkhead-box protein 1 (STOX1) is highly associated with preeclampsia. Meanwhile, low-dose aspirin for patients with preeclampsia is effective in reducing the incidence of preeclampsia. The aim of the present study was to explore the underlying mechanism, and the relationship between STOX1 and aspirin in preeclampsia. METHODS The human choriocarcinoma cell line JEG-3 was employed to mimic trophoblast cells and establish a model for trophoblast cells overexpressing STOX1 and knockdown of JEG cell lines, which were treated with aspirin afterwards. Cell counting kit-8 (CCK-8) assay was utilized to estimate cell proliferation and optimal concentration of aspirin for further experiments. Meanwhile, transwell assay was used to detect migration, and flow cytometry was used to measure apoptosis. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blotting were applied to analyze the expression levels of STOX1 and related genes. RESULTS Overexpression of STOX1 inhibited proliferation of JEG-3 cells through epidermal growth factor (EGF), vascular EGF (VEGF), and transforming growth factor beta 1 (TGF-β1) proteins, while suppressed migration through MMP2, MMP9, and E-cadherin proteins. In contrast, apoptosis of JEG-3 cells was elevated by STOX1 through Bcl-2, Bax, and Cox-2 proteins. Furthermore, we found that aspirin modulated the expression level of STOX1 and reversed proliferation and migration of STOX1-induced insufficient trophoblast cells. CONCLUSION The present study suggested that inhibition of the expression of STOX1 could promote the effects of aspirin in the treatment of preeclampsia.
Collapse
Affiliation(s)
- Yuanying He
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchangzhong Road, Shanghai 200072, China.
| | - Li Chen
- Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China
| | - Chunhong Liu
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchangzhong Road, Shanghai 200072, China
| | - Ying Han
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchangzhong Road, Shanghai 200072, China
| | - Chao Liang
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchangzhong Road, Shanghai 200072, China
| | - Qigui Xie
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchangzhong Road, Shanghai 200072, China.
| | - Jianhong Zhou
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchangzhong Road, Shanghai 200072, China.
| | - Zhongping Cheng
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchangzhong Road, Shanghai 200072, China.
| |
Collapse
|
19
|
Yang X, Li F, Xin D, Huang Z, Xue J, Wang B, Da Y, Xing W, Zhu Y. Investigation of the STOX1 polymorphism on lumbar disc herniation. Mol Genet Genomic Med 2019; 8:e1038. [PMID: 31724315 PMCID: PMC6978251 DOI: 10.1002/mgg3.1038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 09/20/2019] [Accepted: 10/16/2019] [Indexed: 01/17/2023] Open
Abstract
Background Lumbar disc herniation (LDH) is a common musculoskeletal disorder affliction and associated with several genes polymorphism. Storkhead box 1 (STOX1) gene is a transcriptional factor related with several signaling pathways including inflammatory pathway. However, little is known about single‐nucleotide polymorphisms (SNPs) of STOX1 associated with LDH risk. Methods We conducted a case–control study among 508 LDH cases and well‐matched 508 controls, and six candidate SNPs in STOX1 were genotyped by Agena MassARRAY. Chi‐squared test, genetic model, and haploview analysis were used to evaluate associations. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by unconditional logistic regression. Results In the allelic model analysis, we found the minor allele “T” of rs7903209 and “A” of rs4472827 were associated with an increased risk of LDH (p = .029, p = .016). Furthermore, in the genotype model analysis, rs7903209 polymorphism was associated with the increased susceptibility of LDH based on dominant (p = .033) and additive model (p = .024); and rs4472827 variant was found to play a harmful role in the LDH risk based on genotype (p = .014), dominant (p = .012), and additive model (p = .015). In the haplotype analysis, the haplotype “GT” in block (rs10998461 and rs10998468) decreased LDH risk (OR = 0.7, 95% CI = 0.52–0.93, p = .016). Functional assessment indicated that rs7903209 and rs4472827 polymorphisms may influence the expression of STOX1. Conclusion Our results provide evidence for polymorphisms of rs7903209 and rs4472827 in STOX1 associated with LDH risk in Chinese Han population.
Collapse
Affiliation(s)
- Xuejun Yang
- The Second Affiliated Hospital of Inner, Mongolia Medical University, Hohhot, China
| | - Feng Li
- The Second Affiliated Hospital of Inner, Mongolia Medical University, Hohhot, China
| | - Daqi Xin
- The Second Affiliated Hospital of Inner, Mongolia Medical University, Hohhot, China
| | - Zhi Huang
- The Second Affiliated Hospital of Inner, Mongolia Medical University, Hohhot, China
| | - Jianmin Xue
- Inner Mongolia Medical University, Hohhot, China
| | - Bo Wang
- Inner Mongolia Medical University, Hohhot, China
| | - Yifeng Da
- Inner Mongolia Medical University, Hohhot, China
| | - Wenhua Xing
- The Second Affiliated Hospital of Inner, Mongolia Medical University, Hohhot, China
| | - Yong Zhu
- The Second Affiliated Hospital of Inner, Mongolia Medical University, Hohhot, China
| |
Collapse
|
20
|
Miralles F, Collinot H, Boumerdassi Y, Ducat A, Duché A, Renault G, Marchiol C, Lagoutte I, Bertholle C, Andrieu M, Jacques S, Méhats C, Vaiman D. Long-term cardiovascular disorders in the STOX1 mouse model of preeclampsia. Sci Rep 2019; 9:11918. [PMID: 31417152 PMCID: PMC6695383 DOI: 10.1038/s41598-019-48427-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
Adverse long-term cardiovascular (CV) consequences of PE are well established in women. However, the mechanism responsible for that risk remains unknown. Here, we mated wild-type female mice of the FVB/N strain to STOX1A-overexpressing mice to mimic severe PE and investigated the long-term consequences on the maternal cardiovascular system. Ultrasonography parameters were analyzed in mice before pregnancy and at 3 and 6 months post-pregnancy. At 6 months post-pregnancy, cardiac stress test induced by dobutamine injection revealed an abnormal ultrasonography Doppler profile in mice with previous PE. Eight months post-pregnancy, the heart, endothelial cells (ECs) and plasma of females were analyzed and compared to controls. The heart of mice with PE showed left-ventricular hypertrophy associated with altered histology (fibrosis). Transcriptomic analysis revealed the deregulation of 1149 genes in purified ECs and of 165 genes in the hearts, many being involved in heart hypertrophy. In ECs, the upregulated genes were associated with inflammation and cellular stress. Systems biology analysis identified interleukin 6 (IL-6) as a hub gene connecting these pathways. Plasma profiling of 33 cytokines showed that, 8 of them (Cxcl13, Cxcl16, Cxcl11, IL-16, IL-10, IL-2, IL-4 and Ccl1) allowed to discriminate mice with previous PE from controls. Thus, PE triggers female long-term CV consequences on the STOX1 mouse model.
Collapse
Affiliation(s)
- Francisco Miralles
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Team "From Gametes To Birth", 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Hélène Collinot
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Team "From Gametes To Birth", 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Yasmine Boumerdassi
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Team "From Gametes To Birth", 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Aurélien Ducat
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Team "From Gametes To Birth", 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Angéline Duché
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Genom'IC Platform, Bâtiment Gustave Roussy, 27 rue du faubourg Saint Jacques, 75014, Paris, France
| | - Gilles Renault
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, PIV Platform, 22 rue Méchain, 75014, Paris, France
| | - Carmen Marchiol
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, PIV Platform, 22 rue Méchain, 75014, Paris, France
| | - Isabelle Lagoutte
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, PIV Platform, 22 rue Méchain, 75014, Paris, France
| | - Céline Bertholle
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, CYBIO Platform, 27 rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Muriel Andrieu
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, CYBIO Platform, 27 rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Sébastien Jacques
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Genom'IC Platform, Bâtiment Gustave Roussy, 27 rue du faubourg Saint Jacques, 75014, Paris, France
| | - Céline Méhats
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Team "From Gametes To Birth", 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Daniel Vaiman
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Team "From Gametes To Birth", 24 rue du Faubourg St Jacques, 75014, Paris, France.
| |
Collapse
|
21
|
Quintero-Ronderos P, Jiménez KM, Esteban-Pérez C, Ojeda DA, Bello S, Fonseca DJ, Coronel MA, Moreno-Ortiz H, Sierra-Díaz DC, Lucena E, Barbaux S, Vaiman D, Laissue P. FOXD1 mutations are related to repeated implantation failure, intra-uterine growth restriction and preeclampsia. Mol Med 2019; 25:37. [PMID: 31395028 PMCID: PMC6688323 DOI: 10.1186/s10020-019-0104-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
Background Human reproductive disorders consist of frequently occurring dysfunctions including a broad range of phenotypes affecting fertility and women’s health during pregnancy. Several female-related diseases have been associated with hypofertility/infertility phenotypes, such as recurrent pregnancy loss (RPL). Other occurring diseases may be life-threatening for the mother and foetus, such as preeclampsia (PE) and intra-uterine growth restriction (IUGR). FOXD1 was defined as a major molecule involved in embryo implantation in mice and humans by regulating endometrial/placental genes. FOXD1 mutations in human species have been functionally linked to RPL’s origin. Methods FOXD1 gene mutation screening, in 158 patients affected by PE, IUGR, RPL and repeated implantation failure (RIF), by direct sequencing and bioinformatics analysis. Plasmid constructs including FOXD1 mutations were used to perform in vitro gene reporter assays. Results Nine non-synonymous sequence variants were identified. Functional experiments revealed that p.His267Tyr and p.Arg57del led to disturbances of promoter transcriptional activity (C3 and PlGF genes). The FOXD1 p.Ala356Gly and p.Ile364Met deleterious mutations (previously found in RPL patients) have been identified in the present work in women suffering PE and IUGR. Conclusions Our results argue in favour of FOXD1 mutations’ central role in RPL, RIF, IUGR and PE pathogenesis via C3 and PlGF regulation and they describe, for the first time, a functional link between FOXD1 and implantation/placental diseases. FOXD1 could therefore be used in clinical environments as a molecular biomarker for these diseases in the near future. Keywords Recurrent pregnancy loss, Preeclampsia, Intra-uterine growth restriction, FOXD1 Electronic supplementary material The online version of this article (10.1186/s10020-019-0104-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paula Quintero-Ronderos
- Center For Research in Genetics and Genomics-CIGGUR. GENIUROS Research Group. School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Karen Marcela Jiménez
- Center For Research in Genetics and Genomics-CIGGUR. GENIUROS Research Group. School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Clara Esteban-Pérez
- Fertility and Sterility Colombian Center, Department of Reproductive Genetics, Bogotá, Colombia
| | - Diego A Ojeda
- Center For Research in Genetics and Genomics-CIGGUR. GENIUROS Research Group. School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia.,Clinical Neurosciences and Psychiatry, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK., Southampton, United Kingdom
| | - Sandra Bello
- Center For Research in Genetics and Genomics-CIGGUR. GENIUROS Research Group. School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Dora Janeth Fonseca
- Center For Research in Genetics and Genomics-CIGGUR. GENIUROS Research Group. School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - María Alejandra Coronel
- Center For Research in Genetics and Genomics-CIGGUR. GENIUROS Research Group. School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Harold Moreno-Ortiz
- Fertility and Sterility Colombian Center, Department of Reproductive Genetics, Bogotá, Colombia
| | - Diana Carolina Sierra-Díaz
- Center For Research in Genetics and Genomics-CIGGUR. GENIUROS Research Group. School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Elkin Lucena
- Fertility and Sterility Colombian Center, Department of Reproductive Genetics, Bogotá, Colombia
| | - Sandrine Barbaux
- Inserm U1016, CNRS UMR8104, Institut Cochin, équipe FGTB, 24, rue du faubourg Saint-Jacques, 75014, Paris, France
| | - Daniel Vaiman
- Inserm U1016, CNRS UMR8104, Institut Cochin, équipe FGTB, 24, rue du faubourg Saint-Jacques, 75014, Paris, France
| | - Paul Laissue
- Center For Research in Genetics and Genomics-CIGGUR. GENIUROS Research Group. School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
22
|
Sammar M, Drobnjak T, Mandala M, Gizurarson S, Huppertz B, Meiri H. Galectin 13 (PP13) Facilitates Remodeling and Structural Stabilization of Maternal Vessels during Pregnancy. Int J Mol Sci 2019; 20:ijms20133192. [PMID: 31261864 PMCID: PMC6651626 DOI: 10.3390/ijms20133192] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022] Open
Abstract
Galectins regulate cell growth, proliferation, differentiation, apoptosis, signal transduction, mRNA splicing, and interactions with the extracellular matrix. Here we focus on the galectins in the reproductive system, particularly on a group of six galectins that first appears in anthropoid primates in conjunction with the evolution of highly invasive placentation and long gestation. Of these six, placental protein 13 (PP13, galectin 13) interacts with glycoproteins and glycolipids to enable successful pregnancy. PP13 is related to the development of a major obstetric syndrome, preeclampsia, a life-threatening complication of pregnancy which affects ten million pregnant women globally. Preeclampsia is characterized by hypertension, proteinuria, and organ failure, and is often accompanied by fetal loss and major newborn disabilities. PP13 facilitates the expansion of uterine arteries and veins during pregnancy in an endothelial cell-dependent manner, via the eNOS and prostaglandin signaling pathways. PP13 acts through its carbohydrate recognition domain that binds to sugar residues of extracellular and connective tissue molecules, thus inducing structural stabilization of vessel expansion. Further, decidual PP13 aggregates may serve as a decoy that induces white blood cell apoptosis, contributing to the mother's immune tolerance to pregnancy. Lower first trimester PP13 level is one of the biomarkers to predict the subsequent risk to develop preeclampsia, while its molecular mutations/polymorphisms that are associated with reduced PP13 expression are accompanied by higher rates of preeclampsia We propose a targeted PP13 replenishing therapy to fight preeclampsia in carriers of these mutations.
Collapse
Affiliation(s)
- Marei Sammar
- Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College, 2161002 Karmiel, Israel.
| | - Tijana Drobnjak
- Faculty of Pharmaceutical Sciences, School of Health Science, University of Iceland, 107 Reykjavik, Iceland
| | - Maurizio Mandala
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87030 Rende, Italy
| | - Sveinbjörn Gizurarson
- Faculty of Pharmaceutical Sciences, School of Health Science, University of Iceland, 107 Reykjavik, Iceland
| | - Berthold Huppertz
- Department of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Hamutal Meiri
- Hylabs Ltd., Rehovot, 7670606 and TeleMarpe Ltd., 6908742 Tel Aviv, Israel
| |
Collapse
|
23
|
Xu Y, Sun Z, Wang Q, Wang T, Liu Y, Yu F. Stox1 induced the proliferation and cell cycle arrest in pulmonary artery smooth muscle cells via AKT signaling pathway. Vascul Pharmacol 2019; 120:106568. [PMID: 31207359 DOI: 10.1016/j.vph.2019.106568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by the vascular remodeling that also involves proliferation and migration of pulmonary artery smooth muscle cells (PASMCs). Overexpression of Storkhead box (STOX1) regulates genes involved hypoxia, redox balance, nitric oxide, and energy metabolism. In this study, we supposed Stox1 adjusted cells proliferation and migration in PASMCs development and played an important role in the pulmonary arterial vascular remodeling. METHODS Hemodynamic assay and Right ventricular morphometric assay were used to check the rat model of PAH. HE staining was used to examine the arterial wall thickness. Masson staining showed that the deposition of collagen was significantly increased in PAH. In addition, Stox1 were assessed by immunofluorescence and immunohistochemistry staining. The effect of Stox1 on PASMCs was assessed by cell counting Kit-8 assay (CCK-8 assay), Scratch-Wound assay, EdU staining assay, Cell cycle analysis and Western blot. RESULTS Right ventricular systolic pressure (RVSP) and right ventricular were significantly increased in hypoxia group and monocrotaline group compared to control group. The expression of Stox1 was increased in lung tissues in PAH rats. In vitro, the expression of Stox1 was up-regulated with time-dependent manner in hypoxia condition. Meanwhile, Stxo1 promoted the proliferation and migration in hypoxia-treated PASMCs. Moreover, we found that hypoxia promoted the expression of PCNA, Cyclin E and Cyclin A, increased more cells from G0/G1 phase to S phase and induced the activation of AKT proteins, which was significantly attenuated by inhibition of Stox1 expression in PASMCs. CONCLUSION These findings indicated that Stox1 induced proliferation of PASMCs and the effect is, at least in part, mediated through AKT signaling pathway.
Collapse
Affiliation(s)
- Yi Xu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, No.24,Tong Jia Xiang, Nanjing 210009, PR China; Department of Pharmacy, The First People's Hospital of Lianyungang, No.182,TongguanNorth Road, Lianyungang 222002, PR China
| | - Zengxian Sun
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, No.24,Tong Jia Xiang, Nanjing 210009, PR China; Department of Pharmacy, The First People's Hospital of Lianyungang, No.182,TongguanNorth Road, Lianyungang 222002, PR China
| | - Qian Wang
- Anesthesiology Department, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Tianyan Wang
- Department of Pharmacy, The First People's Hospital of Lianyungang, No.182,TongguanNorth Road, Lianyungang 222002, PR China
| | - Yun Liu
- Department of Pharmacy, The First People's Hospital of Lianyungang, No.182,TongguanNorth Road, Lianyungang 222002, PR China.
| | - Feng Yu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, No.24,Tong Jia Xiang, Nanjing 210009, PR China.
| |
Collapse
|
24
|
Erlandsson L, Ducat A, Castille J, Zia I, Kalapotharakos G, Hedström E, Vilotte JL, Vaiman D, Hansson SR. Alpha-1 microglobulin as a potential therapeutic candidate for treatment of hypertension and oxidative stress in the STOX1 preeclampsia mouse model. Sci Rep 2019; 9:8561. [PMID: 31189914 PMCID: PMC6561956 DOI: 10.1038/s41598-019-44639-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 05/21/2019] [Indexed: 01/22/2023] Open
Abstract
Preeclampsia is a human placental disorder affecting 2–8% of pregnancies worldwide annually, with hypertension and proteinuria appearing after 20 weeks of gestation. The underlying cause is believed to be incomplete trophoblast invasion of the maternal spiral arteries during placentation in the first trimester, resulting in oxidative and nitrative stress as well as maternal inflammation and organ alterations. In the Storkhead box 1 (STOX1) preeclampsia mouse model, pregnant females develop severe and early onset manifestations as seen in human preeclampsia e.g. gestational hypertension, proteinuria, and organ alterations. Here we aimed to evaluate the therapeutic potential of human recombinant alpha-1 microglobulin (rA1M) to alleviate the manifestations observed. Human rA1M significantly reduced the hypertension during gestation and significantly reduced the level of hypoxia and nitrative stress in the placenta. In addition, rA1M treatment reduced cellular damage in both placenta and kidneys, thereby protecting the tissue and improving their function. This study confirms that rA1M has the potential as a therapeutic drug in preeclampsia, and likely also in other pathological conditions associated with oxidative stress, by preserving normal organ function.
Collapse
Affiliation(s)
- Lena Erlandsson
- Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
| | - Aurélien Ducat
- INSERM U1016, CNRS UMR8104, Faculté de Médecine, Institut Cochin, Paris, France
| | - Johann Castille
- INRA-AgroParisTech, UMR1313 Génétique Animale et Biologie Intégrative, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Isac Zia
- Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Erik Hedström
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Jean-Luc Vilotte
- INRA-AgroParisTech, UMR1313 Génétique Animale et Biologie Intégrative, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Daniel Vaiman
- INSERM U1016, CNRS UMR8104, Faculté de Médecine, Institut Cochin, Paris, France
| | - Stefan R Hansson
- Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|