1
|
Shi J, Su M. HMOX1 Participates in Pre-Eclampsia by Regulating the Proliferation, Apoptosis, and Angiogenesis Modulation Potential of Mesenchymal Stem Cells via VEGF. Biochem Genet 2024; 62:1248-1262. [PMID: 37573262 DOI: 10.1007/s10528-023-10474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/24/2023] [Indexed: 08/14/2023]
Abstract
Mesenchymal stem cells (MSCs) are involved in the pathogenesis of pre-eclampsia (PE). Heme oxygenase (HMOX) protects against placental cytotoxic injuries associated with PE. Here, we aimed to clarify the roles of HMOX1 in MSC proliferation and apoptosis, trophoblast cell migration, and regulation of angiogenesis, and assess its involvement in the pathogenesis of PE. HMOX1 and vascular endothelial growth factor (VEGF) expression levels in decidual tissues and decidua-derived MSCs (dMSCs) of healthy pregnant women and patients with PE were evaluated via quantitative reverse transcription-polymerase chain reaction and western blotting. Moreover, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and transwell assays were used to analyze the cell viability, apoptosis, and migration, respectively. The tube formation ability of human umbilical vein endothelial cells (HUVECs) was also evaluated. Compared to the healthy pregnant women, HMOX1 expression was upregulated in the decidual tissue and downregulated in the dMSCs of patients with PE. HMOX1 overexpression significantly increased dMSC proliferation, decreased cell apoptosis, and increased VEGF expression. Moreover, HMOX1-plasmid transfected dMSC culture supernatant promoted the migration of HTR-8/SVneo cells and improved angiogenesis by HUVECs. The opposite effects were observed in HMOX1-small interfering RNA-treated dMSCs cells. However, VEGF-siRNA reversed the effects of HMOX1-plasmid. HMOX1 is involved in the pathogenesis of PE by regulating the proliferation, apoptosis, and angiogenesis modulation potential of MSCs via VEGF, acting as a potential therapeutic target for PE.
Collapse
Affiliation(s)
- Juan Shi
- Obstetrical Department, Medical College of Nantong University, Nantong, 226001, China
| | - Min Su
- Obstetrical Department, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Nantong, 226001, China.
| |
Collapse
|
2
|
Santos LC, de Souza CA, Silva JF, Ocarino NM, Serakides R. Maternal hyperthyroidism alters the immunological mediators profile and population of natural killers cells in decidua of rats. Acta Histochem 2023; 125:152026. [PMID: 37058857 DOI: 10.1016/j.acthis.2023.152026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/16/2023]
Abstract
Decidual immunological mediators modulate placental formation, decidualization and fetal development. However, the effect of maternal hyperthyroidism on decidual immunology needs further research. The aim of this study was to evaluate the population of uterine natural killer cells (uNKs) and the expression of immunological mediators in the decidua of female rats throughout pregnancy. Wistar rats were used and hyperthyroidism was induced by daily administration of L-thyroxine (T4) throughout pregnancy. The population of uNK cells in decidua was evaluated by immunostaining Lectin DBA, as well as the expression of interferon γ (INFγ), macrophage migration inhibitory factor (MIF), interleukin 15 (IL-15) and inducible nitric oxide synthase (iNOS) at 7, 10, 12, 14 and 19 days of gestation (DG). Maternal hyperthyroidism reduced the DBA+ uNK cell population in the decidua at 7 (P < 0.05) and 10 (P < 0.01) DGs compared to that in the control group, while it increased in the basal decidua (P < 0.05) and metrial gland (P < 0.0001) at the 12th DG. Hyperthyroidism also increased immunostaining of IL-15 (P < 0.0001), INFγ (P < 0.05), and MIF (P < 0.05) in the 7th DG, and increased immunostaining of IL-15 (P < 0.0001) and MIF (P < 0.01) in the 10th DG. However, excess thyroxine reduced IL-15 expression in the metrial gland and/or basal decidua in the 12th (P < 0.05), 14th (P < 0.01), and 19th (P < 0.001) DGs, as was also observed for INFγ in the basal decidua (P<0.001) and metrial gland (P < 0.0001) in the 12th DG. Regarding iNOS, an antiinflammatory cytokine, lower expression was observed in the basal decidua of hyperthyroid animals at 7 and 12 DGs (P < 0.05), whereas an increase occurred in the 10th DG (P < 0.05). These data demonstrate that maternal hyperthyroidism in female rats, particularly between 7 and 10 DGs, reduces the population of DBA+ uNKs in the decidua and increases the expression of inflammatory cytokines, suggesting a more proinflammatory environment in early pregnancy caused by this gestational disease.
Collapse
Affiliation(s)
- Luciano Cardoso Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, 45662-900 Ilheus, Brazil
| | - Cíntia Almeida de Souza
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinaria, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, 45662-900 Ilheus, Brazil
| | - Natália Melo Ocarino
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinaria, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Rogéria Serakides
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinaria, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil.
| |
Collapse
|
3
|
Abel T, Moodley J, Khaliq OP, Naicker T. Vascular Endothelial Growth Factor Receptor 2: Molecular Mechanism and Therapeutic Potential in Preeclampsia Comorbidity with Human Immunodeficiency Virus and Severe Acute Respiratory Syndrome Coronavirus 2 Infections. Int J Mol Sci 2022; 23:ijms232213752. [PMID: 36430232 PMCID: PMC9691176 DOI: 10.3390/ijms232213752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
This review explored the role of vascular endothelial growth factor receptor-2 (VEGFR-2) in the synergy of preeclampsia (PE), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Downregulation of VEGFR-2 in PE promotes endothelial dysfunction and prevents endothelial cell (EC) migration, proliferation, and differentiation. The HIV-1 accessory protein, tat (trans-activator of transcription), prevents VEGFR-2 signaling via the vascular endothelial growth factor A (VEGF-A) ligand. Combined antiretroviral therapy (cART) may cause immune reconstitution, impaired decidualization, and endothelial injury, thus may be a risk factor for PE development. The VEGF/VEGFR-2 interaction may be associated with SARS-CoV-2-related pulmonary oedema. Endothelial dysfunction and heightened inflammation are both associated with PE, HIV, and SARS-CoV-2 infection; therefore, it is plausible that both characteristics may be exacerbated in the synergy of these events. In addition, this review explored microRNAs (miR) regulating VEGFR-2. An overexpression of miR-126 is evident in PE, HIV, and SARS-CoV-2 infection; thus, modulating the expression of miR-126 may be a therapeutic strategy. However, the involvement of microRNAs in PE, HIV, and SARS-CoV-2 infection needs further investigating. Since these conditions have been evaluated independently, this review attempts to predict their clinical manifestations in their synergy, as well as independently; thereby providing a platform for early diagnosis and therapeutic potential in PE, HIV, and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Tashlen Abel
- Women’s Health and HIV Research Group, Department of Obstetrics & Gynaecology, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Jagidesa Moodley
- Women’s Health and HIV Research Group, Department of Obstetrics & Gynaecology, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Olive P. Khaliq
- Department of Paediatrics and Child Health, Faculty of Health Sciences, The University of the Free State, Bloemfontein 9300, South Africa
| | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institution, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
- Correspondence:
| |
Collapse
|
4
|
Rong W, Shukun W, Xiaoqing W, Wenxin H, Mengyuan D, Chenyang M, Zhang H. Regulatory roles of non-coding RNAs and m6A modification in trophoblast functions and the occurrence of its related adverse pregnancy outcomes. Crit Rev Toxicol 2022; 52:681-713. [PMID: 36794364 DOI: 10.1080/10408444.2022.2144711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Adverse pregnancy outcomes, such as preeclampsia, gestational diabetes mellitus, fetal growth restriction, and recurrent miscarriage, occur frequently in pregnant women and might further induce morbidity and mortality for both mother and fetus. Increasing studies have shown that dysfunctions of human trophoblast are related to these adverse pregnancy outcomes. Recent studies also showed that environmental toxicants could induce trophoblast dysfunctions. Moreover, non-coding RNAs (ncRNAs) have been reported to play important regulatory roles in various cellular processes. However, the roles of ncRNAs in the regulation of trophoblast dysfunctions and the occurrence of adverse pregnancy outcomes still need to be further investigated, especially with exposure to environmental toxicants. In this review, we analyzed the regulatory mechanisms of ncRNAs and m6A methylation modification in the dysfunctions of trophoblast cells and the occurrence of adverse pregnancy outcomes and also summarized the harmful effects of environmental toxicants. In addition to DNA replication, mRNA transcription, and protein translation, ncRNAs and m6A modification might be considered as the fourth and fifth elements that regulate the genetic central dogma, respectively. Environmental toxicants might also affect these processes. In this review, we expect to provide a deeper scientific understanding of the occurrence of adverse pregnancy outcomes and to discover potential biomarkers for the diagnosis and treatment of these outcomes.
Collapse
Affiliation(s)
- Wang Rong
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Department of Toxicology, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Wan Shukun
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Wang Xiaoqing
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Huang Wenxin
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dai Mengyuan
- Department of Toxicology, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Mi Chenyang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
5
|
Human Trophoblast Cell-Derived Extracellular Vesicles Facilitate Preeclampsia by Transmitting miR-1273d, miR-4492, and miR-4417 to Target HLA-G. Reprod Sci 2022; 29:2685-2696. [PMID: 35503501 DOI: 10.1007/s43032-022-00939-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Extracellular vesicles (EVs) can intercellularly transmit a wide range of bioactive molecules, and these cargoes may potentially serve as therapeutic biomarkers for preeclampsia. Herein, the current study aims to elucidate the mechanism underlying the human trophoblast cell-derived EV-mediated miRNA-mRNA network that could potentially influence the development of preeclampsia based on microarray datasets from publicly available GEO databases. Preeclampsia-related genes were retrieved from the GeneCards and CTD databases, which were then subjected to GO and KEGG enrichment analyses in an effort to identify key pathways in preeclampsia. The obtained results suggested an important role of the immune- and inflammation-related pathways in preeclampsia. Infiltration proportion of 22 immune cells was subsequently analyzed using the CIBERSORT algorithm. Placental tissues of patients with preeclampsia presented with increased proportion of resting NK cells and resting dendritic cells, while there was a reduction in the proportion of activated NK cells. Differentially expressed mRNAs were additionally predicted in the preeclampsia-related datasets retrieved from the GEO database, and then intersected with preeclampsia-related genes to identify the key genes. HLA-G was indicated as a key target gene in the development of preeclampsia and further associated with hypoxia, immune, and inflammatory pathways. The upstream microRNAs (miRNAs/miRs) of the key genes were further predicted and intersected with differentially expressed miRNAs in the human trophoblast cell-derived EV-related datasets from the GEO database to obtain the key miRNAs. EVs secreted by human trophoblast cells under hypoxic conditions were associated with 3 key upstream miRNAs of HLA-G, namely miR-1273d, miR-4492, and miR-4417, which might be implicated in the development of preeclampsia via targeting of HLA-G. Collectively, our findings highlighted that EVs secreted by human trophoblast cells under hypoxic conditions transferred miR-1273d, miR-4492, and miR-4417, all of which targeted HLA-G, thus orchestrating immune- and inflammation-related pathways and consequently promoting the development of preeclampsia.
Collapse
|