1
|
Gutsol AA, Hale TM, Thibodeau JF, Holterman CE, Nasrallah R, Correa JWN, Touyz RM, Kennedy CRJ, Burger D, Hébert RL, Burns KD. Comparative Analysis of Hypertensive Tubulopathy in Animal Models of Hypertension and Its Relevance to Human Pathology. Toxicol Pathol 2023; 51:160-175. [PMID: 37632371 DOI: 10.1177/01926233231191128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
Assessment of hypertensive tubulopathy for more than fifty animal models of hypertension in experimental pathology employs criteria that do not correspond to lesional descriptors for tubular lesions in clinical pathology. We provide a critical appraisal of experimental hypertension with the same approach used to estimate hypertensive renal tubulopathy in humans. Four models with different pathogenesis of hypertension were analyzed-chronic angiotensin (Ang) II-infused and renin-overexpressing (TTRhRen) mice, spontaneously hypertensive (SHR), and Goldblatt two-kidney one-clip (2K1C) rats. Mouse models, SHR, and the nonclipped kidney in 2K1C rats had no regular signs of hypertensive tubulopathy. Histopathology in animals was mild and limited to variations in the volume density of tubular lumen and epithelium, interstitial space, and interstitial collagen. Affected kidneys in animals demonstrated lesion values that are significantly different compared with healthy controls but correspond to mild damage if compared with hypertensive humans. The most substantial human-like hypertensive tubulopathy was detected in the clipped kidney of 2K1C rats. For the first time, our study demonstrated the regular presence of chronic progressive nephropathy (CPN) in relatively young mice and rats with induced hypertension. Because CPN may confound the assessment of rodent models of hypertension, proliferative markers should be used to verify nonhypertensive tubulopathy.
Collapse
Affiliation(s)
- Alex A Gutsol
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Taben M Hale
- The University of Arizona, Phoenix, Arizona, USA
| | | | | | | | | | | | - Chris R J Kennedy
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | - Dylan Burger
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | - Richard L Hébert
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | - Kevin D Burns
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Labes R, Dong L, Mrowka R, Bachmann S, von Vietinghoff S, Paliege A. Annexin A1 exerts renoprotective effects in experimental crescentic glomerulonephritis. Front Physiol 2022; 13:984362. [PMID: 36311242 PMCID: PMC9605209 DOI: 10.3389/fphys.2022.984362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022] Open
Abstract
Non-resolving inflammation plays a critical role during the transition from renal injury towards end-stage renal disease. The glucocorticoid-inducible protein annexin A1 has been shown to function as key regulator in the resolution phase of inflammation, but its role in immune-mediated crescentic glomerulonephritis has not been studied so far. Methods: Acute crescentic glomerulonephritis was induced in annexin A1-deficient and wildtype mice using a sheep serum against rat glomerular basement membrane constituents. Animals were sacrificed at d5 and d10 after nephritis induction. Renal leukocyte abundance was studied by immunofluorescence and flow cytometry. Alterations in gene expression were determined by RNA-Seq and gene ontology analysis. Renal levels of eicosanoids and related lipid products were measured using lipid mass spectrometry. Results: Histological analysis revealed an increased number of sclerotic glomeruli and aggravated tubulointerstitial damage in the kidneys of annexin A1-deficient mice compared to the wildtype controls. Flow cytometry analysis confirmed an increased number of CD45+ leukocytes and neutrophil granulocytes in the absence of annexin A1. Lipid mass spectrometry showed elevated levels of prostaglandins PGE2 and PGD2 and reduced levels of antiinflammatory epoxydocosapentaenoic acid regioisomers. RNA-Seq with subsequent gene ontology analysis revealed induction of gene products related to leukocyte activation and chemotaxis as well as regulation of cytokine production and secretion. Conclusion: Intrinsic annexin A1 reduces proinflammatory signals and infiltration of neutrophil granulocytes and thereby protects the kidney during crescentic glomerulonephritis. The annexin A1 signaling cascade may therefore provide novel targets for the treatment of inflammatory kidney disease.
Collapse
Affiliation(s)
- Robert Labes
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lei Dong
- Nephrology Department, Tongji Hospital, Tongji College, Huazhong University of Science and Technology, Wuhan, China
| | - Ralf Mrowka
- Klinik für Innere Medizin III, AG Experimentelle Nephrologie, Universitätsklinikum Jena, Jena, Germany
| | - Sebastian Bachmann
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sibylle von Vietinghoff
- Nephrology Section, First Medical Clinic, University Clinic and Rheinische Friedrich-Wilhelms Universität Bonn, Bonn, Germany
| | - Alexander Paliege
- Division of Nephrology, Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- *Correspondence: Alexander Paliege,
| |
Collapse
|
3
|
Gutsol AA, Blanco P, Hale TM, Thibodeau JF, Holterman CE, Nasrallah R, Correa JWN, Afanasiev SA, Touyz RM, Kennedy CRJ, Burger D, Hébert RL, Burns KD. Comparative analysis of hypertensive nephrosclerosis in animal models of hypertension and its relevance to human pathology. Glomerulopathy. PLoS One 2022; 17:e0264136. [PMID: 35176122 PMCID: PMC8853553 DOI: 10.1371/journal.pone.0264136] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/03/2022] [Indexed: 01/09/2023] Open
Abstract
Current research on hypertension utilizes more than fifty animal models that rely mainly on stable increases in systolic blood pressure. In experimental hypertension, grading or scoring of glomerulopathy in the majority of studies is based on a wide range of opinion-based histological changes that do not necessarily comply with lesional descriptors for glomerular injury that are well-established in clinical pathology. Here, we provide a critical appraisal of experimental hypertensive glomerulopathy with the same approach used to assess hypertensive glomerulopathy in humans. Four hypertensive models with varying pathogenesis were analyzed–chronic angiotensin II infused mice, mice expressing active human renin in the liver (TTRhRen), spontaneously hypertensive rats (SHR), and Goldblatt two-kidney one-clip rats (2K1C). Analysis of glomerulopathy utilized the same criteria applied in humans–hyalinosis, focal segmental glomerulosclerosis (FSGS), ischemic, hypertrophic and solidified glomeruli, or global glomerulosclerosis (GGS). Data from animal models were compared to human reference values. Kidneys in TTRhRen mice, SHR and the nonclipped kidneys in 2K1C rats had no sign of hyalinosis, FSGS or GGS. Glomerulopathy in these groups was limited to variations in mesangial and capillary compartment volumes, with mild increases in collagen deposition. Histopathology in angiotensin II infused mice corresponded to mesangioproliferative glomerulonephritis, but not hypertensive glomerulosclerosis. The number of nephrons was significantly reduced in TTRhRen mice and SHR, but did not correlate with severity of glomerulopathy. The most substantial human-like glomerulosclerotic lesions, including FSGS, ischemic obsolescent glomeruli and GGS, were found in the clipped kidneys of 2K1C rats. The comparison of affected kidneys to healthy control in animals produces lesion values that are numerically impressive but correspond to mild damage if compared to humans. Animal studies should be standardized by employing the criteria and classifications established in human pathology to make experimental and human data fully comparable for comprehensive analysis and model improvements.
Collapse
Affiliation(s)
- Alex A. Gutsol
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
- * E-mail:
| | - Paula Blanco
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Taben M. Hale
- Basic Medical Sciences Faculty, University of Arizona, Tucson, AZ, United States of America
| | - Jean-Francois Thibodeau
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
| | - Chet E. Holterman
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
| | - Rania Nasrallah
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
| | - Jose W. N. Correa
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Amazonas, Manaus, Brazil
| | | | - Rhian M. Touyz
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Chris R. J. Kennedy
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Dylan Burger
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Richard L. Hébert
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kevin D. Burns
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
- Division of Nephrology, Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
4
|
Gutsol AA, Blanco P, Samokhina SI, Afanasiev SA, Kennedy CRJ, Popov SV, Burns KD. A novel method for comparison of arterial remodeling in hypertension: Quantification of arterial trees and recognition of remodeling patterns on histological sections. PLoS One 2019; 14:e0216734. [PMID: 31112562 PMCID: PMC6529011 DOI: 10.1371/journal.pone.0216734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/26/2019] [Indexed: 01/01/2023] Open
Abstract
Remodeling of spatially heterogeneous arterial trees is routinely quantified on tissue sections by averaging linear dimensions, with lack of comparison between different organs and models. The impact of experimental models or hypertension treatment modalities on organ-specific vascular remodeling remains undefined. A wide variety of arterial remodeling types has been demonstrated for hypertensive models, which include differences across organs. The purpose of this study was to reassess methods for measurement of arterial remodeling and to establish a morphometric algorithm for standard and comparable quantification of vascular remodeling in hypertension in different vascular beds. We performed a novel and comprehensive morphometric analysis of terminal arteries in the brain, heart, lung, liver, kidney, spleen, stomach, intestine, skin, skeletal muscle, and adrenal glands of control and Goldblatt hypertensive rats on routinely processed tissue sections. Mean dimensions were highly variable but grouping them into sequential 5 μm intervals permitted creation of reliable linear regression equations and complex profiles. Averaged arterial dimensions demonstrated seven remodeling patterns that were distinct from conventional inward-outward and hypertrophic-eutrophic definitions. Numerical modeling predicted at least nineteen variants of arterial spatial conformations. Recognition of remodeling variants was not possible using averaged dimensions, their ratios, or the remodeling and growth indices. To distinguish remodeling patterns, a three-dimensional modeling was established and tested. The proposed algorithm permits quantitative analysis of arterial remodeling in different organs and may be applicable for comparative studies between animal hypertensive models and human hypertension. Arterial wall tapering is the most important factor to consider in arterial morphometry, while perfusion fixation with vessel relaxation is not necessary. Terminal arteries in organs undergo the same remodeling pattern in Goldblatt rats, except for organs with hemodynamics affected by the arterial clip. The existing remodeling nomenclature should be replaced by a numerical classification applicable to any type of arterial remodeling.
Collapse
Affiliation(s)
- Alex A. Gutsol
- Kidney Research Centre, Ottawa Hospital Research Institute, ON, Canada
| | - Paula Blanco
- Department of Pathology and Laboratory Medicine, University of Ottawa, ON, Canada
| | | | | | | | | | - Kevin D. Burns
- Kidney Research Centre, Ottawa Hospital Research Institute, ON, Canada
- Division of Nephrology, Department of Medicine, University of Ottawa, ON, Canada
| |
Collapse
|
5
|
Fähling M, Paliege A, Jönsson S, Becirovic-Agic M, Melville JM, Skogstrand T, Hultström M. NFAT5 regulates renal gene expression in response to angiotensin II through Annexin-A2-mediated posttranscriptional regulation in hypertensive rats. Am J Physiol Renal Physiol 2018; 316:F101-F112. [PMID: 30332317 DOI: 10.1152/ajprenal.00361.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The aim was to identify new targets that regulate gene expression at the posttranscriptional level in angiotensin II (ANGII)-mediated hypertension. Heparin affinity chromatography was used to enrich nucleic acid-binding proteins from kidneys of two-kidney, one-clip (2K1C) hypertensive Wistar rats. The experiment was repeated with 14-day ANGII infusion using Alzet osmotic mini pumps, with or without ANGII receptor AT1a inhibition using losartan in the drinking water. Mean arterial pressure increased after 2K1C or ANGII infusion and was inhibited with losartan. Heparin affinity chromatography and mass spectrometry were used to identify Annexin-A2 (ANXA2) as having differential nucleic acid-binding activity. Total Annexin-A2 protein expression was unchanged, whereas nucleic acid-binding activity was increased in both kidneys of 2K1C and after ANGII infusion through AT1a stimulation. Costaining of Annexin-A2 with α-smooth muscle actin and aquaporin 2 showed prominent expression in the endothelia of larger arteries and the cells of the inner medullary collecting duct. The nuclear factor of activated T cells (NFAT) transcription factor was identified as a likely Annexin-A2 target using enrichment analysis on a 2K1C microarray data set and identifying several binding sites in the regulatory region of the mRNA. Expression analysis showed that ANGII increases NFAT5 protein but not mRNA level and, thus, indicated that NFAT5 is regulated by posttranscriptional regulation, which correlates with activation of the RNA-binding protein Annexin-A2. In conclusion, we show that ANGII increases Annexin-A2 nucleic acid-binding activity that correlates with elevated protein levels of the NFAT5 transcription factor. NFAT signaling appears to be a major contributor to renal gene regulation in high-renin states.
Collapse
Affiliation(s)
- Michael Fähling
- Institut für Vegetative Physiologie, Charité, Universitätsmedizin, Berlin , Germany
| | - Alexander Paliege
- Institut für Anatomie, Charité, Universitätsmedizin, Berlin , Germany
| | - Sofia Jönsson
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden
| | - Mediha Becirovic-Agic
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden
| | - Jacqueline M Melville
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden
| | - Trude Skogstrand
- Department of Biomedicine, University of Bergen , Bergen , Norway
| | - Michael Hultström
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden.,Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University , Uppsala , Sweden
| |
Collapse
|
6
|
Nephroprotective effects of nebivolol in 2K1C rats through regulation of the kidney ROS-ADMA-NO pathway. Pharmacol Rep 2018; 70:917-929. [DOI: 10.1016/j.pharep.2018.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/25/2018] [Accepted: 04/12/2018] [Indexed: 01/20/2023]
|
7
|
Martinez-Quinones P, McCarthy CG, Watts SW, Klee NS, Komic A, Calmasini FB, Priviero F, Warner A, Chenghao Y, Wenceslau CF. Hypertension Induced Morphological and Physiological Changes in Cells of the Arterial Wall. Am J Hypertens 2018; 31:1067-1078. [PMID: 29788246 DOI: 10.1093/ajh/hpy083] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/14/2018] [Indexed: 12/17/2022] Open
Abstract
Morphological and physiological changes in the vasculature have been described in the evolution and maintenance of hypertension. Hypertension-induced vascular dysfunction may present itself as a contributing, or consequential factor, to vascular remodeling caused by chronically elevated systemic arterial blood pressure. Changes in all vessel layers, from the endothelium to the perivascular adipose tissue (PVAT), have been described. This mini-review focuses on the current knowledge of the structure and function of the vessel layers, specifically muscular arteries: intima, media, adventitia, PVAT, and the cell types harbored within each vessel layer. The contributions of each cell type to vessel homeostasis and pathophysiological development of hypertension will be highlighted.
Collapse
Affiliation(s)
- Patricia Martinez-Quinones
- Department of Surgery, Medical College of Georgia at Augusta University, Augusta, Georgia
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Cameron G McCarthy
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Nicole S Klee
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Amel Komic
- Department of Surgery, Medical College of Georgia at Augusta University, Augusta, Georgia
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Fabiano B Calmasini
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Fernanda Priviero
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Alexander Warner
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Yu Chenghao
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Camilla F Wenceslau
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| |
Collapse
|
8
|
Favero G, Paini A, De Ciuceis C, Rodella LF, Moretti E, Porteri E, Rossini C, Ministrini S, Solaini L, Stefano C, Coschignano MA, Brami V, Petelca A, Nardin M, Valli I, Tiberio GAM, Bonomini F, Agabiti Rosei C, Portolani N, Rizzoni D, Rezzani R. Changes in extracellular matrix in subcutaneous small resistance arteries of patients with essential hypertension. Blood Press 2018. [PMID: 29523048 DOI: 10.1080/08037051.2018.1448256] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND In the development of hypertensive microvascular remodeling, a relevant role may be played by changes in extracellular matrix proteins. Aim of this study was the to evaluate some extracellular matrix components within the tunica media of subcutaneous small arteries in 9 normotensive subjects and 12 essential hypertensive patients, submitted to a biopsy of subcutaneous fat from the gluteal or the anterior abdominal region. PATIENTS AND METHODS Subcutaneous small resistance arteries were dissected and mounted on an isometric myograph, and the tunica media to internal lumen ratio was measured. In addition, fibronectin, laminin, transforming growth factor-beta-1 (TGF-β1) and emilin-1 contents within the tunica media were evaluated by immunofluorescence and relative immunomorphometrical analysis (immunopositivity % of area). The total collagen content and collagen subtypes within the tunica media were evaluated using both Sirius red staining (under polarized light) and immunofluorescence assay. RESULTS Normotensive controls had less total and type III collagen in respect with hypertensive patients. Fibronectin and TGF-β1 tunica media content was significantly greater in essential hypertensive patients, compared with normotensive controls, while laminin and emilin-1 tunica media content was lesser in essential hypertensive patients, compared with normotensive controls. A significant correlation was observed between fibronectin tunica media content and media to lumen ratio. CONCLUSIONS Our results indicate that, in small resistance arteries of patients with essential hypertension, a relevant fibrosis may be detected; fibronectin and TGF-β1 tunica media content is increased, while laminin and emilin-1 content is decreased; these changes might be involved in the development of small resistance artery remodeling in humans.
Collapse
Affiliation(s)
- Gaia Favero
- a Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Anna Paini
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Carolina De Ciuceis
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Luigi F Rodella
- a Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy.,c Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs- (ARTO)", University of Brescia , Brescia , Italy
| | - Enrico Moretti
- a Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Enzo Porteri
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Claudia Rossini
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Silvia Ministrini
- d Clinica Chirurgica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Leonardo Solaini
- d Clinica Chirurgica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Caletti Stefano
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | | | - Valeria Brami
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Alina Petelca
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Matteo Nardin
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Ilenia Valli
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Guido A M Tiberio
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Francesca Bonomini
- a Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy.,c Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs- (ARTO)", University of Brescia , Brescia , Italy
| | - Claudia Agabiti Rosei
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Nazario Portolani
- d Clinica Chirurgica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Damiano Rizzoni
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy.,e Division of Medicine , Istituto Clinico Città di Brescia , Brescia , Italy
| | - Rita Rezzani
- a Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy.,c Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs- (ARTO)", University of Brescia , Brescia , Italy
| |
Collapse
|
9
|
Shao W, Miyata K, Katsurada A, Satou R, Seth DM, Rosales CB, Prieto MC, Mitchell KD, Navar LG. Increased angiotensinogen expression, urinary angiotensinogen excretion, and tissue injury in nonclipped kidneys of two-kidney, one-clip hypertensive rats. Am J Physiol Renal Physiol 2016; 311:F278-90. [PMID: 27194718 DOI: 10.1152/ajprenal.00419.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 05/11/2016] [Indexed: 01/13/2023] Open
Abstract
In angiotensin II (ANG II)-dependent hypertension, there is an angiotensin type 1 receptor-dependent amplification mechanism enhancing intrarenal angiotensinogen (AGT) formation and secretion in the tubular fluid. To evaluate the role of increased arterial pressure, AGT mRNA, protein expression, and urinary AGT (uAGT) excretion and tissue injury were assessed in both kidneys of two-kidney, one-clip Sprague-Dawley hypertensive rats subjected to left renal arterial clipping (0.25-mm gap). By 18-21 days, systolic arterial pressure increased to 180 ± 3 mmHg, and uAGT increased. Water intake, body weights, 24-h urine volumes, and sodium excretion were similar. In separate measurements of renal function in anesthetized rats, renal plasma flow and glomerular filtration rate were similar in clipped and nonclipped kidneys and not different from those in sham rats, indicating that the perfusion pressure to the clipped kidneys remained within the autoregulatory range. The nonclipped kidneys exhibited increased urine flow and sodium excretion. The uAGT excretion was significantly greater in nonclipped kidneys compared with clipped and sham kidneys. AGT mRNA was 2.15-fold greater in the nonclipped kidneys compared with sham (1.0 ± 0.1) or clipped (0.98 ± 0.15) kidneys. AGT protein levels were also greater in the nonclipped kidneys. The nonclipped kidneys exhibited greater glomerular expansion and immune cell infiltration, medullary fibrosis, and cellular proliferation than the clipped kidneys. Because both kidneys have elevated ANG II levels, the greater tissue injury in the nonclipped kidneys indicates that an increased arterial pressure synergizes with increased intrarenal ANG II to stimulate AGT production and exert greater renal injury.
Collapse
Affiliation(s)
- Weijian Shao
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Kayoko Miyata
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Akemi Katsurada
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ryousuke Satou
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Dale M Seth
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Carla B Rosales
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Minolfa C Prieto
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Kenneth D Mitchell
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - L Gabriel Navar
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
10
|
Landolt L, Marti HP, Beisland C, Flatberg A, Eikrem OS. RNA extraction for RNA sequencing of archival renal tissues. Scandinavian Journal of Clinical and Laboratory Investigation 2016; 76:426-34. [PMID: 27173776 DOI: 10.1080/00365513.2016.1177660] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Next generation sequencing (NGS) and especially ribonucleic acid (RNA) sequencing is a powerful tool to acquire insights into molecular disease mechanisms. Therefore, it is of interest to optimize methods for RNA extraction from archival, formalin fixed and paraffin embedded (FFPE) tissues. This is challenging due to RNA degradation and chemical modifications. The aim of this study was to find the most appropriate method to extract RNA from FFPE renal tissue to enable NGS. METHOD We evaluated seven commercially available RNA extraction kits: High Pure FFPE RNA Isolation (Roche), ExpressArt Clear FFPE RNAready (Amsbio), miRNeasy FFPE, RNeasy FFPE (Qiagen), PureLink FFPE Total RNA (Invitrogen), RecoverAll Total Nucleic Acid Isolation (Ambion) and Absolutely RNA FFPE Kit (Agilent). RNA was obtained from tissue blocks of two healthy, male Wistar rats and from normal renal tissue of patients undergoing nephrectomy. Yield and quality of RNA extracted from rat whole kidney sections, human kidney core biopsies and laser capture microdissected (LCM) glomerular cross-sections were assessed: Analyses of RNA quantity were performed using NanoDrop and Qubit. RNA quality is reflected by DV200 values (% of RNA fragments >200 nucleotides) utilizing the Agilent 2100 BioAnalyzer. RNA of human LCM samples was subsequently sequenced using the Illumina TruSeq(®) RNA Access Library Preparation Kit. CONCLUSION Total RNA can be extracted from archival renal biopsies in sufficient quality and quantity from one human kidney biopsy section and from around 100 LCM glomerular cross-sections to enable successful RNA library preparation and sequencing using commercially available RNA extraction kits.
Collapse
Affiliation(s)
- Lea Landolt
- a Department of Clinical Medicine , University of Bergen
| | | | - Christian Beisland
- a Department of Clinical Medicine , University of Bergen ;,b Department of Urology , Haukeland University Hospital , Bergen
| | - Arnar Flatberg
- c Department of Cancer Research and Molecular Medicine , Norwegian University of Science and Technology , Trondheim , Norway
| | | |
Collapse
|
11
|
Distinct protein signature of hypertension-induced damage in the renal proteome of the two-kidney, one-clip rat model. J Hypertens 2016; 33:126-35. [PMID: 25304470 DOI: 10.1097/hjh.0000000000000370] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Hypertensive nephrosclerosis is one of the most frequent causes of chronic kidney failure. Proteome analysis potentially improves the pathophysiological understanding and diagnostic precision of this disorder. In the present exploratory study, we investigated experimental nephrosclerosis in the two-kidney, one-clip (2K1C) hypertensive rat model. METHODS The renal cortex proteome from juxtamedullary cortex and outer cortex of 2K1C male Wistar-Hannover rats (n = 4) was compared with the sham-operated controls (n = 6), using mass spectrometry-based quantitative proteomics. We combined a high abundant plasma protein depletion strategy with an extended liquid chromatographic gradient to improve peptide and protein identification. Immunohistology was used for independent confirmation of abundance. RESULTS We identified 1724 proteins, of which 1434 were quantified with at least two unique peptides. Comparative proteomics revealed 608 proteins, including the platelet-derived growth factor receptor-β signalling pathway, with different abundances between the non-clipped kidney of hypertensive 2K1C rats and the corresponding kidney of the normotensive controls (P < 0.05, absolute fold change ≥1.5). Among the most significantly altered proteins in the whole cortex were periostin, transgelin, and creatine kinase B-type. Relative abundance of periostin alone allowed clear classification of 2K1C and controls. Enrichment of periostin in 2K1C rats was verified by immunohistology, showing positivity especially around the fibrotic vessels. CONCLUSION The proteome is altered in hypertension-induced kidney damage. We propose periostin, especially in combination with transgelin and creatine kinase B-type, as possible proteomic classifier to distinguish hypertensive nephrosclerosis from the normal tissue. This classifier needs to be further validated with respect to early diagnosis of fibrosis, prognosis, and its potential as a novel molecular target for pharmacological interventions.
Collapse
|
12
|
Finne K, Marti HP, Leh S, Skogstrand T, Vethe H, Tenstad O, Berven FS, Scherer A, Vikse BE. Proteomic Analysis of Minimally Damaged Renal Tubular Tissue from Two-Kidney-One-Clip Hypertensive Rats Demonstrates Extensive Changes Compared to Tissue from Controls. Nephron Clin Pract 2016; 132:70-80. [PMID: 26745798 DOI: 10.1159/000442825] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/25/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Tubular atrophy and interstitial fibrosis mark the final stage in most forms of progressive kidney diseases. Little is known regarding changes in the tubular proteome. In this study, we investigated changes in the tubular proteome of normal or minimally damaged tubular tissue in the non-clipped kidney from rats with two-kidney one-clip (2K1C) hypertension. METHODS Formalin-fixed paraffin-embedded kidney sections from four 2K1C rats with hypertensive kidney damage and 6 sham rats were used. Tubulointerstitial tissue without discernable interstitial expansion or pronounced tubular alterations was microdissected and this was assumed to represent an early stage of chronic tubular damage in 2K1C. Samples were analyzed by mass spectrometry and relative protein abundances were compared between 2K1C and sham. RESULTS A total of 1,160 proteins were identified with at least 2 unique peptides, allowing for relative quantitation between samples. Among these, 151 proteins were more abundant, and 192 proteins were less abundant in 2K1C compared with sham. Transgelin, vimentin and creatine kinase B-type were among the proteins that were most increased in 2K1C. Ingenuity Pathway Analysis showed increased abundance of proteins related to Rho signaling and protein turnover (eIF2 signaling and protein ubiquitination), and decreased abundance of proteins related to fatty acid β-oxidation. CONCLUSION Tubular tissue from normal or minimally damaged hypertensive kidney damage demonstrate extensive proteomic changes with upregulation of pathways associated with progressive kidney damage, such as Rho signaling and protein turnover. Thus, proteomics presents itself to be a promising tool for the discovery of early damage markers from not yet morphologically visible tubular damage.
Collapse
|
13
|
Tveitarås MK, Skogstrand T, Leh S, Helle F, Iversen BM, Chatziantoniou C, Reed RK, Hultström M. Matrix Metalloproteinase-2 Knockout and Heterozygote Mice Are Protected from Hydronephrosis and Kidney Fibrosis after Unilateral Ureteral Obstruction. PLoS One 2015; 10:e0143390. [PMID: 26673451 PMCID: PMC4687651 DOI: 10.1371/journal.pone.0143390] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 11/04/2015] [Indexed: 01/16/2023] Open
Abstract
Matrix Metalloproteinase-2 (Mmp2) is a collagenase known to be important in the development of renal fibrosis. In unilateral ureteral obstruction (UUO) the obstructed kidney (OK) develops fibrosis, while the contralateral (CL) does not. In this study we investigated the effect of UUO on gene expression, fibrosis and pelvic remodeling in the kidneys of Mmp2 deficient mice (Mmp2-/-), heterozygous animals (Mmp2+/-) and wild-type mice (Mmp2+/+). Sham operated animals served as controls (Cntrl). UUO was prepared under isoflurane anaesthesia, and the animals were sacrificed after one week. UUO caused hydronephrosis, dilation of renal tubules, loss of parenchymal thickness, and fibrosis. Damage was most severe in Mmp2+/+ mice, while both Mmp2-/- and Mmp2+/- groups showed considerably milder hydronephrosis, no tubular necrosis, and less tubular dilation. Picrosirius red quantification of fibrous collagen showed 1.63±0.25% positivity in OK and 0.29±0.11% in CL (p<0.05) of Mmp2+/+, Mmp2-/- OK and Mmp2-/- CL exhibited only 0.49±0.09% and 0.23±0.04% (p<0.05) positivity, respectively. Mmp2+/- OK and Mmp2+/- CL showed 0.43±0.09% and 0.22±0.06% (p<0.05) positivity, respectively. Transcriptomic analysis showed that 26 genes (out of 48 examined) were differentially expressed by ANOVA (p<0.05). 25 genes were upregulated in Mmp2+/+ OK compared to Mmp2+/+ CL: Adamts1, -2, Col1a1, -2, -3a1, -4a1, -5a1, -5a2, Dcn, Fbln1, -5, Fmod, Fn1, Itga2, Loxl1, Mgp, Mmp2, -3, Nid1, Pdgfb, Spp1, Tgfb1, Timp2, Trf, Vim. In Mmp2-/- and Mmp2+/- 18 and 12 genes were expressed differentially between OK and CL, respectively. Only Mmp2 was differentially regulated when comparing Mmp2-/- OK and Mmp2+/- OK. Under stress, it appears that Mmp2+/- OK responds with less Mmp2 upregulation than Mmp2+/+ OK, suggesting that there is a threshold level of Mmp2 necessary for damage and fibrosis to occur. In conclusion, reduced Mmp2 expression during UUO protects mice against hydronephrosis and renal fibrosis.
Collapse
Affiliation(s)
- Maria K. Tveitarås
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Trude Skogstrand
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Sabine Leh
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Frank Helle
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Bjarne M. Iversen
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | - Rolf K. Reed
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Center for Cancer Biomarkers, CCBIO, University of Bergen, Bergen, Norway
| | - Michael Hultström
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medical Cellbiology, Uppsala University, Uppsala, Sweden
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Identification of a common molecular pathway in hypertensive renal damage. J Hypertens 2015; 33:584-96; discussion 596. [DOI: 10.1097/hjh.0000000000000395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Finne K, Vethe H, Skogstrand T, Leh S, Dahl TD, Tenstad O, Berven FS, Reed RK, Vikse BE. Proteomic analysis of formalin-fixed paraffin-embedded glomeruli suggests depletion of glomerular filtration barrier proteins in two-kidney, one-clip hypertensive rats. Nephrol Dial Transplant 2014; 29:2217-27. [PMID: 25129444 PMCID: PMC4240179 DOI: 10.1093/ndt/gfu268] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background It is well known that hypertension may cause glomerular damage, but the molecular mechanisms involved are still incompletely understood. Methods In the present study, we used formalin-fixed paraffin-embedded (FFPE) tissue to investigate changes in the glomerular proteome in the non-clipped kidney of two-kidney one-clip (2K1C) hypertensive rats, with special emphasis on the glomerular filtration barrier. 2K1C hypertension was induced in 6-week-old Wistar Hannover rats (n = 6) that were sacrificed 23 weeks later and compared with age-matched sham-operated controls (n = 6). Tissue was stored in FFPE tissue blocks and later prepared on tissue slides for laser microdissection. Glomeruli without severe morphological damage were isolated, and the proteomes were analysed using liquid chromatography–tandem mass spectrometry. Results 2K1C glomeruli showed reduced abundance of proteins important for slit diaphragm complex, such as nephrin, podocin and neph1. The podocyte foot process had a pattern of reduced abundance of transmembrane proteins but unchanged abundances of the podocyte cytoskeletal proteins synaptopodin and α-actinin-4. Lower abundance of important glomerular basement membrane proteins was seen. Possible glomerular markers of damage with increased abundance in 2K1C were transgelin, desmin and acyl-coenzyme A thioesterase 1. Conclusions Microdissection and tandem mass spectrometry could be used to investigate the proteome of isolated glomeruli from FFPE tissue. Glomerular filtration barrier proteins had reduced abundance in the non-clipped kidney of 2K1C hypertensive rats.
Collapse
Affiliation(s)
- Kenneth Finne
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Heidrun Vethe
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Trude Skogstrand
- Department of Clinical Medicine, University of Bergen, Bergen, Norway Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Sabine Leh
- Department of Clinical Medicine, University of Bergen, Bergen, Norway Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Tone D Dahl
- Department of Clinical Medicine, University of Bergen, Bergen, Norway Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Olav Tenstad
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Frode S Berven
- Department of Biomedicine, University of Bergen, Bergen, Norway The Norwegian Multiple Sclerosis National Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Rolf K Reed
- Department of Biomedicine, University of Bergen, Bergen, Norway Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - Bjørn Egil Vikse
- Department of Clinical Medicine, University of Bergen, Bergen, Norway Department of Medicine, Haukeland University Hospital, Bergen, Norway Department of Medicine, Haugesund Hospital, Haugesund, Norway
| |
Collapse
|
16
|
Hansen PBL. Functional and pharmacological consequences of the distribution of voltage-gated calcium channels in the renal blood vessels. Acta Physiol (Oxf) 2013; 207:690-9. [PMID: 23351056 DOI: 10.1111/apha.12070] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 11/26/2012] [Accepted: 01/22/2013] [Indexed: 12/15/2022]
Abstract
Calcium channel blockers are widely used to treat hypertension because they inhibit voltage-gated calcium channels that mediate transmembrane calcium influx in, for example, vascular smooth muscle and cardiomyocytes. The calcium channel family consists of several subfamilies, of which the L-type is usually associated with vascular contractility. However, the L-, T- and P-/Q-types of calcium channels are present in the renal vasculature and are differentially involved in controlling vascular contractility, thereby contributing to regulation of kidney function and blood pressure. In the preglomerular vascular bed, all the three channel families are present. However, the T-type channel is the only channel in cortical efferent arterioles which is in contrast to the juxtamedullary efferent arteriole, and that leads to diverse functional effects of L- and T-type channel inhibition. Furthermore, by different mechanisms, T-type channels may contribute to both constriction and dilation of the arterioles. Finally, P-/Q-type channels are involved in the regulation of human intrarenal arterial contractility. The calcium blockers used in the clinic affect not only L-type but also P-/Q- and T-type channels. Therefore, the distinct effect obtained by inhibiting a given subtype or set of channels under experimental settings should be considered when choosing a calcium blocker for treatment. T-type channels seem to be crucial for regulating the GFR and the filtration fraction. Use of blockers is expected to lead to preferential efferent vasodilation, reduction of glomerular pressure and proteinuria. Therefore, renovascular T-type channels might provide novel therapeutic targets, and may have superior renoprotective effects compared to conventional calcium blockers.
Collapse
Affiliation(s)
- P. B. L. Hansen
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense; Denmark
| |
Collapse
|
17
|
Juxtamedullary preglomerular vascular injury precedes glomerular and tubulointerstitial injuries during the development of hypertension. J Hypertens 2013; 31:42-3. [DOI: 10.1097/hjh.0b013e32835bc6b7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|