1
|
Blakely WF, Port M, Ostheim P, Abend M. Radiation Research Society Journal-based Historical Review of the Use of Biomarkers for Radiation Dose and Injury Assessment: Acute Health Effects Predictions. Radiat Res 2024; 202:185-204. [PMID: 38936821 DOI: 10.1667/rade-24-00121.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
A multiple-parameter based approach using radiation-induced clinical signs and symptoms, hematology changes, cytogenetic chromosomal aberrations, and molecular biomarkers changes after radiation exposure is used for biodosimetry-based dose assessment. In the current article, relevant milestones from Radiation Research are documented that forms the basis of the current consensus approach for diagnostics after radiation exposure. For example, in 1962 the use of cytogenetic chromosomal aberration using the lymphocyte metaphase spread dicentric assay for biodosimetry applications was first published in Radiation Research. This assay is now complimented using other cytogenetic chromosomal aberration assays (i.e., chromosomal translocations, cytokinesis-blocked micronuclei, premature chromosome condensation, γ-H2AX foci, etc.). Changes in blood cell counts represent an early-phase biomarker for radiation exposures. Molecular biomarker changes have evolved to include panels of organ-specific plasma proteomic and blood-based gene expression biomarkers for radiation dose assessment. Maturation of these assays are shown by efforts for automated processing and scoring, development of point-of-care diagnostics devices, service laboratories inter-comparison exercises, and applications for dose and injury assessments in radiation accidents. An alternative and complementary approach has been advocated with the focus to de-emphasize "dose" and instead focus on predicting acute or delayed health effects. The same biomarkers used for dose estimation (e.g., lymphocyte counts) can be used to directly predict the later developing severity degree of acute health effects without performing dose estimation as an additional or intermediate step. This review illustrates contributing steps toward these developments published in Radiation Research.
Collapse
Affiliation(s)
- William F Blakely
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | - Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
2
|
Winters TA, Cassatt DR, Harrison-Peters JR, Hollingsworth BA, Rios CI, Satyamitra MM, Taliaferro LP, DiCarlo AL. Considerations of Medical Preparedness to Assess and Treat Various Populations During a Radiation Public Health Emergency. Radiat Res 2023; 199:301-318. [PMID: 36656560 PMCID: PMC10120400 DOI: 10.1667/rade-22-00148.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023]
Abstract
During a radiological or nuclear public health emergency, given the heterogeneity of civilian populations, it is incumbent on medical response planners to understand and prepare for a potentially high degree of interindividual variability in the biological effects of radiation exposure. A part of advanced planning should include a comprehensive approach, in which the range of possible human responses in relation to the type of radiation expected from an incident has been thoughtfully considered. Although there are several reports addressing the radiation response for special populations (as compared to the standard 18-45-year-old male), the current review surveys published literature to assess the level of consideration given to differences in acute radiation responses in certain sub-groups. The authors attempt to bring clarity to the complex nature of human biology in the context of radiation to facilitate a path forward for radiation medical countermeasure (MCM) development that may be appropriate and effective in special populations. Consequently, the focus is on the medical (as opposed to logistical) aspects of preparedness and response. Populations identified for consideration include obstetric, pediatric, geriatric, males, females, individuals of different race/ethnicity, and people with comorbidities. Relevant animal models, biomarkers of radiation injury, and MCMs are highlighted, in addition to underscoring gaps in knowledge and the need for consistent and early inclusion of these populations in research. The inclusion of special populations in preclinical and clinical studies is essential to address shortcomings and is an important consideration for radiation public health emergency response planning. Pursuing this goal will benefit the population at large by considering those at greatest risk of health consequences after a radiological or nuclear mass casualty incident.
Collapse
Affiliation(s)
- Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Jenna R. Harrison-Peters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Brynn A. Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
- Current address: Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Carmen I. Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
3
|
Early Complications of Radioisotope Therapy with Lutetium-177 and Yttrium-90 in Patients with Neuroendocrine Neoplasms-A Preliminary Study. J Clin Med 2022; 11:jcm11040919. [PMID: 35207193 PMCID: PMC8874379 DOI: 10.3390/jcm11040919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Neuroendocrine neoplasms (NENs) constitute a heterogenous group of tumors originating from neuroendocrine cells scattered throughout the body. Peptide Receptor Radionuclide Therapy (PRRT) is a treatment of choice of unresectable metastasized progressive and well-differentiated NENs. The aim of the study was to assess early bone marrow and kidney injury after administration of Lutetium-177 or Lutetium-177 combined with Yttrium-90. Thirty-one patients received treatment with [177Lu]Lu-DOTATATE with the activity of 7.4 GBq. Eleven patients received tandem treatment with [90Y]Y-DOTATATE with the activity of 1.85 GBq + [177Lu]Lu-DOTATATE with the activity of 1.85 GBq. After PRRT a significant decrease in leukocyte, neutrophil, and lymphocyte counts was noted. Tandem treatment demonstrated a more marked decrease in white blood cell count compared to Lutetium-177 therapy only. Conversely, no significant influence on glomerular filtration was found in this assessment. However, PRRT triggered acute renal tubule dysfunction, regardless of the treatment type. Regarding the acute complications, PRRT appeared to be a safe modality in the treatment of patients with NEN.
Collapse
|
4
|
Muller L, Huang W, Jones JW, Farese AM, MacVittie TJ, Kane MA. Complementary Lipidomic, Proteomic, and Mass Spectrometry Imaging Approach to the Characterization of the Acute Effects of Radiation in the Non-human Primate Mesenteric Lymph Node after Partial-body Irradiation with Minimal Bone Marrow Sparing. HEALTH PHYSICS 2021; 121:372-383. [PMID: 34546218 DOI: 10.1097/hp.0000000000001470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
ABSTRACT Radiation sequelae is complex and characterized by multiple pathologies, which occur over time and nonuniformly throughout different organs. The study of the mesenteric lymph node (MLN) due to its importance in the gastrointestinal system is of particular interest. Other studies have shown an immediate post-irradiation reduction in cellularity due to the known effects of irradiation on lymphoid cell populations, but the molecular and functional mechanisms that lead to these cellular alterations remain limited. In this work, we show the use of lipidomic, proteomic, and mass spectrometry imaging in the characterization of the effects of acute radiation exposure on the MLN at different time points after ionizing radiation (IR) from 4 d to 21 d after 12 Gy partial body irradiation with 2.5% bone marrow sparing. The combined analyses showed a dysregulation of the lipid and protein composition in the MLN after IR. Protein expression was affected in numerous pathways, including pathways regulating lipids such as LXR/RXR activation and acute phase response. Lipid distribution and abundance was also affected by IR in the MLN, including an accumulation of triacylglycerides, a decrease in polyunsaturated glycerophospholipids, and changes in polyunsaturated fatty acids. Those changes were observed as early as 4 d after IR and were more pronounced for lipids with a higher concentration in the nodules and the medulla of the MLN. These results provide molecular insight into the MLN that can inform on injury mechanism in a non-human primate model of the acute radiation syndrome of the gastrointestinal tract. Those findings may contribute to the identification of therapeutic targets and the development of new medical countermeasures.
Collapse
Affiliation(s)
- Ludovic Muller
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Weiliang Huang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Jace W Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Ann M Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Thomas J MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Maureen A Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| |
Collapse
|
5
|
Cassatt DR, Gorovets A, Karimi-Shah B, Roberts R, Price PW, Satyamitra MM, Todd N, Wang SJ, Marzella L. A Trans-Agency Workshop on the Pathophysiology of Radiation-Induced Lung Injury. Radiat Res 2021; 197:415-433. [PMID: 34342637 DOI: 10.1667/rade-21-00127.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022]
Abstract
Research and development of medical countermeasures (MCMs) for radiation-induced lung injury relies on the availability of animal models with well-characterized pathophysiology, allowing effective bridging to humans. To develop useful animal models, it is important to understand the clinical condition, advantages and limitations of individual models, and how to properly apply these models to demonstrate MCM efficacy. On March 20, 2019, a meeting sponsored by the Radiation and Nuclear Countermeasures Program (RNCP) within the National Institute of Allergy and Infectious Diseases (NIAID) brought together medical, scientific and regulatory communities, including academic and industry subject matter experts, and government stakeholders from the Food and Drug Administration (FDA) and the Biomedical Advanced Research and Development Authority (BARDA), to identify critical research gaps, discuss current clinical practices for various forms of pulmonary damage, and consider available animal models for radiation-induced lung injury.
Collapse
Affiliation(s)
- David R Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), National Institutes of Health (NIH), Rockville, Maryland
| | - Alex Gorovets
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Banu Karimi-Shah
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Rosemary Roberts
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Paul W Price
- Office of Regulatory Affairs, Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), National Institutes of Health (NIH), Rockville, Maryland
| | - Nushin Todd
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Sue-Jane Wang
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Libero Marzella
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| |
Collapse
|
6
|
Wu T, Plett PA, Chua HL, Jacobsen M, Sandusky GE, MacVittie TJ, Orschell CM. Immune Reconstitution and Thymic Involution in the Acute and Delayed Hematopoietic Radiation Syndromes. HEALTH PHYSICS 2020; 119:647-658. [PMID: 32947490 PMCID: PMC7541734 DOI: 10.1097/hp.0000000000001352] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Lymphoid lineage recovery and involution after exposure to potentially lethal doses of ionizing radiation have not been well defined, especially the long-term effects in aged survivors and with regard to male/female differences. To examine these questions, male and female C57BL/6 mice were exposed to lethal radiation at 12 wk of age in a model of the Hematopoietic-Acute Radiation Syndrome, and bone marrow, thymus, spleen, and peripheral blood examined up to 24 mo of age for the lymphopoietic delayed effects of acute radiation exposure. Aged mice showed myeloid skewing and incomplete lymphocyte recovery in all lymphoid tissues. Spleen and peripheral blood both exhibited a monophasic recovery pattern, while thymus demonstrated a biphasic pattern. Naïve T cells in blood and spleen and all subsets of thymocytes were decreased in aged irradiated mice compared to age-matched non-irradiated controls. Of interest, irradiated males experienced significantly improved reconstitution of thymocyte subsets and peripheral blood elements compared to females. Bone marrow from aged irradiated survivors was significantly deficient in the primitive lymphoid-primed multipotent progenitors and common lymphoid progenitors, which were only 8-10% of levels in aged-matched non-irradiated controls. Taken together, these analyses define significant age- and sex-related deficiencies at all levels of lymphopoiesis throughout the lifespan of survivors of the Hematopoietic-Acute Radiation Syndrome and may provide a murine model suitable for assessing the efficacy of potential medical countermeasures and therapeutic strategies to alleviate the severe immune suppression that occurs after radiation exposure.
Collapse
Affiliation(s)
- Tong Wu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - P. Artur Plett
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Hui Lin Chua
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Max Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - George E. Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Thomas J. MacVittie
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| | | |
Collapse
|
7
|
MacVittie TJ, Farese AM, Parker GA, Bennett AW, Jackson W. Acute Radiation-induced Lung Injury in the Non-human Primate: A Review and Comparison of Mortality and Co-morbidities Using Models of Partial-body Irradiation with Marginal Bone Marrow Sparing and Whole Thorax Lung Irradiation. HEALTH PHYSICS 2020; 119:559-587. [PMID: 33009295 PMCID: PMC9440605 DOI: 10.1097/hp.0000000000001346] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The nonhuman primate, rhesus macaque, is a relevant animal model that has been used to determine the efficacy of medical countermeasures to mitigate major signs of morbidity and mortality of radiation-induced lung injury. Herein, a literature review of published studies showing the evolution of lethal lung injury characteristic of the delayed effects of acute radiation exposure between the two significantly different exposure protocols, whole thorax lung irradiation and partial-body irradiation with bone marrow sparing in the nonhuman primate, is provided. The selection of published data was made from the open literature. The primary studies conducted at two research sites benefitted from the similarity of major variables; namely, both sites used rhesus macaques of approximate age and body weight and radiation exposure by LINAC-derived 6 MV photons at dose rates of 0.80 Gy min and 1.00 Gy min delivered to the midline tissue via bilateral, anterior/posterior, posterior/anterior geometry. An advantage relative to sex difference resulted from the use of male and female macaques by the Maryland and the Washington sites, respectively. Subject-based medical management was used for all macaques. The primary studies (6) provided adequate data to establish dose response relationships within 180 d for the radiation-induced lung injury consequent to whole thorax lung irradiation (male vs. female) and partial-body irradiation with bone marrow sparing exposure protocols (male). The dose response relationships established by probit analyses vs. linear dose relationships were characterized by two main parameters or dependent variables, a slope and LD50/180. Respective LD50/180 values for the primary studies that used whole thorax lung irradiation for respective male and female nonhuman primates were 10.24 Gy [9.87, 10.52] (n = 76, male) and 10.28 Gy [9.68, 10.92] (n = 40, female) at two different research sites. The respective slopes were steep at 1.73 [0.841, 2.604] and 1.15 [0.65, 1.65] probits per linear dose. The LD50/180 value and slope derived from the dose response relationships for the partial-body irradiation with bone marrow sparing exposure was 9.94 Gy [9.35, 10.29] (n = 87) and 1.21 [0.70, 1.73] probits per linear dose. A secondary study (1) provided data on limited control cohort of nonhuman primates exposed to whole thorax lung irradiation. The data supported the incidence of clinical, radiographic, and histological indices of the dose-dependent lung injury in the nonhuman primates. Tertiary studies (6) provided data derived from collaboration with the noted primary and secondary studies on control cohorts of nonhuman primates exposed to whole thorax lung irradiation and partial-body irradiation with bone marrow sparing exposure. These studies provided a summary of histological evidence of fibrosis, inflammation and reactive/proliferative changes in pneumonocytes characteristic of lung injury and data on biomarkers for radiation-induced lung injury based on matrix-assisted laser desorption ionization-mass spectrometry imaging and gene expression approaches. The available database in young rhesus macaques exposed to whole thorax lung irradiation or partial-body irradiation with bone marrow sparing using 6 MV LINAC-derived radiation with medical management showed that the dose response relationships were equivalent relative to the primary endpoint all-cause mortality. Additionally, the latency, incidence, severity, and progression of the clinical, radiographic, and histological indices of lung injury were comparable. However, the differences between the exposure protocols are remarkable relative to the demonstrated time course between the multiple organ injury of the acute radiation syndrome and that of the delayed effects of acute radiation exposure, respectively.
Collapse
Affiliation(s)
| | - Ann M. Farese
- University of Maryland School of Medicine, Baltimore, MD
| | | | - Alexander W. Bennett
- Louisville, KY, formerly at University of Maryland School of Medicine, Baltimore, MD
| | | |
Collapse
|
8
|
Hasan HF, Elgazzar EM, Mostafa DM. Diminazene aceturate extenuate the renal deleterious consequences of angiotensin-II induced by γ-irradiation through boosting ACE2 signaling cascade. Life Sci 2020; 253:117749. [PMID: 32380079 DOI: 10.1016/j.lfs.2020.117749] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 10/24/2022]
Abstract
AIM This work aims to explore the role of diminazene aceturate (DIZE) in the enhancement of angiotensin-converting enzyme-2 (ACE2) to prevent the inflammatory and fibrotic response induced by γ-irradiation through activating the protective axis ACE2/angiotensin (1-7)/Mas receptor (ACE2/Ang(1-7)/Mas). METHODS Male rats were injected i.p. with 15 mg/kg DIZE daily for 7 days pre and post-irradiation, where 7.5 Gy of γ-radiation as a single dose was used. KEY FINDINGS Gamma radiation induced a significant elevation of renal biochemical parameters: urea, creatinine and blood urea nitrogen (BUN) in serum with a significant disturbance in oxidative stress markers: elevation in malondialdehyde (MDA) associated with a depletion of reduced glutathione (GSH) and superoxide dismutase (SOD). Beside elevation in the level of angiotensin II (AngII) that lead to remarkably increases in the levels of the renal inflammatory mediators: tumor necrosis factor-α (TNF-α), nuclear factor kappa B (NF-κB) and interleukin-1β (IL-1β) as well as renal fibrogenic markers: transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF), and hydroxyproline content in the renal tissues. DIZE caused marked expansion in the expression of ACE2 consequently decreased the expression of AngII and increased the expression of Ang(1-7) which through its Mas receptor ameliorates the biochemical and histopathological damage induced by radiation. SIGNIFICANCE DIZE-induced stimulation of ACE2 subdues the renal deleterious consequences induced by γ-radiation via activation of ACE2/Ang(1-7)/Mas axis in rats.
Collapse
Affiliation(s)
- Hesham Farouk Hasan
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Egypt.
| | - Eman M Elgazzar
- Health Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Dalia M Mostafa
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Egypt
| |
Collapse
|
9
|
Carter CL, Hankey KG, Booth C, Tudor GL, Parker GA, Jones JW, Farese AM, MacVittie TJ, Kane MA. Characterizing the Natural History of Acute Radiation Syndrome of the Gastrointestinal Tract: Combining High Mass and Spatial Resolution Using MALDI-FTICR-MSI. HEALTH PHYSICS 2019; 116:454-472. [PMID: 30681424 PMCID: PMC6384159 DOI: 10.1097/hp.0000000000000948] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The acute radiation syndrome of the gastrointestinal tract has been histologically characterized, but the molecular and functional mechanisms that lead to these cellular alterations remain enigmatic. Mass spectrometry imaging is the only technique that enables the simultaneous detection and cellular or regional localization of hundreds of biomolecules in a single experiment. This current study utilized matrix-assisted laser desorption/ionization mass spectrometry imaging for the molecular characterization of the first natural history study of gastrointestinal acute radiation syndrome in the nonhuman primate. Jejunum samples were collected at days 4, 8, 11, 15, and 21 following 12-Gy partial-body irradiation with 2.5% bone marrow sparing. Mass spectrometry imaging investigations identified alterations in lipid species that further understanding of the functional alterations that occur over time in the different cellular regions of the jejunum following exposure to high doses of irradiation. Alterations in phosphatidylinositol species informed on dysfunctional epithelial cell differentiation and maturation. Differences in glycosphingolipids of the villi epithelium that would influence the absorptive capacity and functional structure of the brush border membrane were detected. Dichotomous alterations in cardiolipins indicated altered structural and functional integrity of mitochondria. Phosphatidylglycerol species, known regulators of toll-like receptors, were detected and localized to regions in the lamina propria that contained distinct immune cell populations. These results provide molecular insight that can inform on injury mechanism in a nonhuman primate model of the acute radiation syndrome of the gastrointestinal tract. Findings may contribute to the identification of therapeutic targets and the development of new medical countermeasures.
Collapse
Affiliation(s)
- Claire L. Carter
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD USA
| | - Kim G. Hankey
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD USA
| | | | | | - George A. Parker
- Charles River Laboratories, Pathology Associates, Raleigh-Durham, North Carolina, USA
| | - Jace W. Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD USA
| | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD USA
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD USA
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD USA
| |
Collapse
|
10
|
Parker GA, Li N, Takayama K, Booth C, Tudor GL, Farese AM, MacVittie TJ. Histopathological Features of the Development of Intestine and Mesenteric Lymph Node Injury in a Nonhuman Primate Model of Partial-body Irradiation with Minimal Bone Marrow Sparing. HEALTH PHYSICS 2019; 116:426-446. [PMID: 30624355 PMCID: PMC6362996 DOI: 10.1097/hp.0000000000000932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Male rhesus macaques were subjected to partial-body irradiation at 10, 11, or 12 Gy with 5% bone marrow protection. Animals were euthanized when dictated by prospectively determined clinical parameters or at approximately 180 d following irradiation. Histological sections of jejunum, colon, and mesenteric lymph node were stained with hematoxylin and eosin as well as a battery of histochemical and immunohistochemical stains. The immediate postirradiation histopathological alterations in the jejunum and colon were based primarily on injury to rapidly proliferating crypt epithelial cells, though there was evidence of additional radiation-induced fibrogenic responses. There was substantial resolution of the radiation-related mucosal injury through the observation period, but microscopically visible defects in mucosal structure persisted to the end of the observation period. In the later stages of the observation period, the jejunum and colon had overt fibrosis that was most commonly located in the submucosa and serosa, with less microscopically discernible involvement of the mucosa. Mesenteric lymph nodes had an immediate postirradiation reduction in cellularity due to the known effects of irradiation on lymphoid cell populations. In later stages of the observation period the lymph nodes also developed fibrotic changes, possibly related to transmigration of immunomodulatory cells and/or signaling molecules from the radiation-damaged intestine.
Collapse
Affiliation(s)
- George A. Parker
- Charles River Laboratories/Pathology Associates, Durham, NC, USA
| | - Na Li
- Charles River Laboratories/Pathology Associates, Durham, NC, USA
| | - Kyle Takayama
- Charles River Laboratories/Pathology Associates, Durham, NC, USA
| | | | | | | | | |
Collapse
|
11
|
Parker GA, Li N, Takayama K, Farese AM, MacVittie TJ. Lung and Heart Injury in a Nonhuman Primate Model of Partial-body Irradiation with Minimal Bone Marrow Sparing: Histopathological Evidence of Lung and Heart Injury. HEALTH PHYSICS 2019; 116:383-400. [PMID: 30688698 PMCID: PMC6381599 DOI: 10.1097/hp.0000000000000936] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Male rhesus macaques were subjected to partial-body irradiation at 10, 11, or 12 Gy with 5% bone marrow protection. Animals were euthanized when dictated by prospectively determined clinical parameters or at approximately 180 d following irradiation. Histological sections of lung and heart were stained with hematoxylin and eosin as well as a battery of histochemical and immunohistochemical stains. Histopathological alterations in the lung were centered on fibrosis, inflammation, and reactive/proliferative changes in pneumocytes. These changes were noted in animals necropsied after approximately 85-100 d postirradiation and extending through the observation period. Interstitial and pleural fibrosis demonstrated by Masson's trichrome staining were associated with increased alpha smooth muscle actin and collagen 1 immunohistochemical staining. Areas of interstitial fibrosis had reduced microvascular density with CD31 immunohistochemical staining. Accumulations of CD163- and CD206-positive alveolar macrophages were present in areas of interstitial fibrosis. Unidentified cells termed "myxoid" cells in alveolar walls had histochemical and immunohistochemical staining characteristics of epithelial-, endothelial-, or pericyte-mesenchymal transition states that were developing myofibroblast features. Distinctive focal or multifocal alveolar-bronchiolar hyperplasia had microscopic features of preneoplastic proliferation. Delayed radiation-associated changes in the heart consisted primarily of myocardial fibrosis, with rare histological evidence of myofiber degeneration.
Collapse
Affiliation(s)
- George A. Parker
- Charles River Laboratories/Pathology Associates, Durham, NC, USA
| | - Na Li
- Charles River Laboratories/Pathology Associates, Durham, NC, USA
| | - Kyle Takayama
- Charles River Laboratories/Pathology Associates, Durham, NC, USA
| | - Ann M. Farese
- University of Maryland, School of Medicine, Dept. of Radiation Oncology, Baltimore, MD, USA
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Dept. of Radiation Oncology, Baltimore, MD, USA
| |
Collapse
|
12
|
Parker GA, Cohen EP, Li N, Takayama K, Farese AM, MacVittie TJ. Radiation Nephropathy in a Nonhuman Primate Model of Partial-Body Irradiation With Minimal Bone Marrow Sparing-Part 2: Histopathology, Mediators, and Mechanisms. HEALTH PHYSICS 2019; 116:409-425. [PMID: 30624348 PMCID: PMC6349488 DOI: 10.1097/hp.0000000000000935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Male rhesus macaques were subjected to partial-body irradiation at 10, 11, or 12 Gy with 5% bone marrow protection. Animals were euthanized when dictated by prospectively determined clinical parameters or at approximately 180 d following irradiation. Histological sections of kidney were stained with hematoxylin and eosin as well as a battery of histochemical and immunohistochemical stains. Histopathological alterations were centered on glomerular changes and fibrosis of glomeruli and the interstitial compartment. These changes were first noted in animals necropsied approximately 100 d postirradiation and continued in animals necropsied through the observation period. Glomerular changes included congestion, thrombosis, erythrocyte degeneration, capillary tuft dilation, fibrin deposition, altered quantity and dispersion pattern of von Willebrand factor, increased mesangial matrix, and mesangial deposits of material that stained positively with periodic acid-Schiff staining. Areas of interstitial and glomerular fibrosis, as demonstrated by Masson's trichrome staining, were topographically associated with increased immunohistochemical staining for connective tissue growth factor, alpha smooth muscle actin, and collagen 1, but there was little staining for transforming growth factor beta. Fibrotic glomeruli had reduced microvascularity as demonstrated by reduced CD31 immunohistochemical staining. Vascular congestion was commonly noted in the region of the corticomedullary junction, and proteinaceous casts were commonly noted in cortical and medullary tubules. Longitudinal analysis of histopathological alterations provided evidence defining the latency, severity, and progression of delayed radiation-induced kidney injury.
Collapse
Affiliation(s)
| | - Eric P Cohen
- University of Maryland, School of Medicine, Nephrology Division, Baltimore, MD
| | - Na Li
- Charles River Laboratories/Pathology Associates, Durham, NC
| | - Kyle Takayama
- Charles River Laboratories/Pathology Associates, Durham, NC
| | - Ann M Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Thomas J MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| |
Collapse
|
13
|
Cohen EP, Hankey KG, Farese AM, Parker GA, Jones JW, Kane MA, Bennett A, MacVittie TJ. Radiation Nephropathy in a Nonhuman Primate Model of Partial-body Irradiation with Minimal Bone Marrow Sparing-Part 1: Acute and Chronic Kidney Injury and the Influence of Neupogen. HEALTH PHYSICS 2019; 116:401-408. [PMID: 30608245 PMCID: PMC7323852 DOI: 10.1097/hp.0000000000000960] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Acute and chronic kidney injury may occur after accidental prompt radiation exposures. We have modeled their occurrence in a nonhuman primate model. Subjects who are exposed to more than 5-Gy prompt irradiation are apt to show blood cell cytopenias and be treated with granulocyte colony-stimulating factors such as Neupogen® or Neulasta® to mitigate the hematologic injury of the acute radiation syndrome. Neupogen or Neulasta are now approved by the US Food and Drug Administration for this indication. This will significantly increase the number of survivors of acute radiation exposures who will be at risk for delayed effects of radiation exposure, which includes acute and chronic kidney injury. The primary objectives of the present two companion manuscripts were to assess natural history of delayed radiation-induced renal injury in a nonhuman primate model of acute, high-dose, partial-body irradiation with 5% bone marrow sparing to include the clinical and histopathological evidence and the effect of Neupogen administration on morbidity and mortality. In this study, 88 nonhuman primates underwent 10- or 11-Gy partial-body irradiation with 5% bone marrow sparing, of which 36 were treated with Neupogen within 1, 3, or 5 d postirradiation. All animals were followed up to 180 d after irradiation. Renal function and histology end points showed early acute and later chronic kidney injury. These end points were not affected by use of Neupogen. We conclude that use of Neupogen to mitigate against the hematopoietic acute radiation syndrome has no impact on acute or chronic kidney injury.
Collapse
Affiliation(s)
- Eric P Cohen
- Department of Medicine, University of Maryland, School of Medicine, Baltimore, MD 21201
| | - Kim G Hankey
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD 21201
| | - Ann M Farese
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD 21201
| | - George A Parker
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD
| | | | | | - Alexander Bennett
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD 21201
| | - Thomas J MacVittie
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD 21201
| |
Collapse
|
14
|
Cryptotanshinone Ameliorates Radiation-Induced Lung Injury in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1908416. [PMID: 30915142 PMCID: PMC6402207 DOI: 10.1155/2019/1908416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/21/2018] [Accepted: 01/16/2019] [Indexed: 02/07/2023]
Abstract
Cryptotanshinone (CTS) was reported to repress a variety of systemic inflammation and alleviate cardiac fibrosis, but it is still unclear whether CTS could prevent radiation-induced lung injury (RILI). Here, we investigated the effects and underlying mechanisms of CTS on a RILI rat model. Our data revealed that CTS could efficiently preserve pulmonary function in RILI rats and reduce early pulmonary inflammation infiltration elicited, along with marked decreased levels of IL-6 and IL-10. Moreover, we found that CTS is superior to prednisone in attenuating collagen deposition and pulmonary fibrosis, in parallel with a marked drop of HYP (a collagen indicator) and α-SMA (a myofibroblast marker). Mechanistically, CTS inhibited profibrotic signals TGF-β1 and NOX-4 expressions, while enhancing the levels of antifibrotic enzyme MMP-1 in lung tissues. It is noteworthy that CTS treatment, in consistent with trichrome staining analysis, exhibited a clear advantage over PND in enhancing MMP-1 levels. However, CTS exhibited little effect on CTGF activation and on COX-2 suppression. Finally, CTS treatment significantly mitigated the radiation-induced activation of CCL3 and its receptor CCR1. In summary, CTS treatment could attenuate RILI, especially pulmonary fibrosis, in rats. The regulation on production and release of inflammatory or fibrotic factors IL-6, IL-10, TGF-β1, NOX-4, and MMP-1, especially MMP-1 and inhibition on CCL3/CCR1 activation, may partly attribute to its attenuating RILI effect.
Collapse
|
15
|
Cohen EP, Hankey KG, Bennett AW, Farese AM, Parker GA, MacVittie TJ. Acute and Chronic Kidney Injury in a Non-Human Primate Model of Partial-Body Irradiation with Bone Marrow Sparing. Radiat Res 2017; 188:661-671. [PMID: 29035153 DOI: 10.1667/rr24857.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The development of medical countermeasures against acute and delayed multi-organ injury requires animal models predictive of the human response to radiation and its treatment. Late chronic injury is a well-known feature of radiation nephropathy, but acute kidney injury has not been reported in an appropriate animal model. We have established a single-fraction partial-body irradiation model with minimal marrow sparing in non-human primates. Subject-based medical management was used including parenteral fluids according to prospective morbidity criteria. We show herein that 10 or 11 Gy exposures caused both acute and chronic kidney injury. Acute and chronic kidney injury appear to be dose-independent between 10 and 11 Gy. Acute kidney injury was identified during the first 50 days postirradiation and appeared to resolve before the occurrence of chronic kidney injury, which was progressively more severe up to 180 days postirradiation, which was the end of the study. These findings show that mitigation of the acute radiation syndrome by medical management will unmask delayed late effects that occur months after partial-body irradiation. They further emphasize that both acute and chronic changes in kidney function must be taken into account in the use and timing of mitigators and medical management for acute radiation syndrome and delayed effects of acute radiation exposure (DEARE).
Collapse
Affiliation(s)
| | - Kim G Hankey
- b Radiation Oncology, University of Maryland, School of Medicine, Baltimore, Maryland; and
| | - Alexander W Bennett
- b Radiation Oncology, University of Maryland, School of Medicine, Baltimore, Maryland; and
| | - Ann M Farese
- b Radiation Oncology, University of Maryland, School of Medicine, Baltimore, Maryland; and
| | | | - Thomas J MacVittie
- b Radiation Oncology, University of Maryland, School of Medicine, Baltimore, Maryland; and
| |
Collapse
|