1
|
Plett PA, Chua HL, Wu T, Sampson CH, Guise TA, Wright L, Pagnotti GM, Feng H, Chin-Sinex H, Pike F, Cox GN, MacVittie TJ, Sandusky G, Orschell CM. Effect of Age at Time of Irradiation, Sex, Genetic Diversity, and Granulopoietic Cytokine Radiomitigation on Lifespan and Lymphoma Development in Murine H-ARS Survivors. Radiat Res 2024; 202:580-598. [PMID: 39099001 DOI: 10.1667/rade-24-00065.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/11/2024] [Indexed: 08/06/2024]
Abstract
Acute, high-dose radiation exposure results in life-threatening acute radiation syndrome (ARS) and debilitating delayed effects of acute radiation exposure (DEARE). The DEARE are a set of chronic multi-organ illnesses that can result in early death due to malignancy and other diseases. Animal models have proven essential in understanding the natural history of ARS and DEARE and licensure of medical countermeasures (MCM) according to the FDA Animal Rule. Our lab has developed models of hematopoietic (H)-ARS and DEARE in inbred C57BL/6J and Jackson Diversity Outbred (JDO) mice of both sexes and various ages and have used these models to identify mechanisms of radiation damage and effective MCMs. Herein, aggregate data from studies conducted over decades in our lab, consisting of 3,250 total-body lethally irradiated C57BL/6J young adult mice and 1,188 H-ARS survivors from these studies, along with smaller datasets in C57BL/6J pediatric and geriatric mice and JDO mice, were examined for lifespan and development of thymic lymphoma in survivors up to 3 years of age. Lifespan was found to be significantly shortened in H-ARS survivors compared to age-matched nonirradiated controls in all four models. Males and females exhibited similar lifespans except in the young adult C57BL/6J model where males survived longer than females after 16 months of age. The incidence of thymic lymphoma was increased in H-ARS survivors from the young adult and pediatric C57BL/6J models. Consistent with our findings in H-ARS, geriatric mice appeared more radioresistant than other models, with a lifespan and thymic lymphoma incidence more similar to nonirradiated controls than other models. Increased levels of multiple pro-inflammatory cytokines in DEARE bone marrow and serum correlated with shortened lifespan and malignancy, consistent with other animal models and human data. Of interest, G-CSF levels in bone marrow and serum 8-11 months after irradiation were significantly increased in females. Importantly, treatment with granulopoietic cytokine MCM for radiomitigation of H-ARS did not influence the long-term survival rate or incidence of thymic lymphoma in any model. Taken together, these findings indicate that the lifespan of H-ARS survivors was significantly decreased regardless of age at time of exposure or genetic diversity, and was unaffected by earlier treatment with granulopoietic cytokines for radiomitigation of H-ARS.
Collapse
Affiliation(s)
- P Artur Plett
- Department of Medicine, Divisions of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Hui Lin Chua
- Department of Medicine, Divisions of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Tong Wu
- Department of Medicine, Divisions of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Carol H Sampson
- Department of Medicine, Divisions of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Theresa A Guise
- Department of Medicine, Endocrinology,, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Endocrine Neoplasia & Hormonal Disorders, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Laura Wright
- Department of Medicine, Endocrinology,, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Gabriel M Pagnotti
- Department of Endocrine Neoplasia & Hormonal Disorders, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Hailin Feng
- Department of Medicine, Divisions of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Helen Chin-Sinex
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Francis Pike
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | | | - Thomas J MacVittie
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Christie M Orschell
- Department of Medicine, Divisions of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
2
|
Christy BA, Herzig MC, Wu X, Mohammadipoor A, McDaniel JS, Bynum JA. Cell Therapies for Acute Radiation Syndrome. Int J Mol Sci 2024; 25:6973. [PMID: 39000080 PMCID: PMC11241804 DOI: 10.3390/ijms25136973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
The risks of severe ionizing radiation exposure are increasing due to the involvement of nuclear powers in combat operations, the increasing use of nuclear power, and the existence of terrorist threats. Exposure to a whole-body radiation dose above about 0.7 Gy results in H-ARS (hematopoietic acute radiation syndrome), which is characterized by damage to the hematopoietic system; higher doses result in further damage to the gastrointestinal and nervous systems. Only a few medical countermeasures for ARS are currently available and approved for use, although others are in development. Cell therapies (cells or products produced by cells) are complex therapeutics that show promise for the treatment of radiation injury and have been shown to reduce mortality and morbidity in animal models. Since clinical trials for ARS cannot be ethically conducted, animal testing is extremely important. Here, we describe cell therapies that have been tested in animal models. Both cells and cell products appear to promote survival and lessen tissue damage after whole-body irradiation, although the mechanisms are not clear. Because radiation exposure often occurs in conjunction with other traumatic injuries, animal models of combined injury involving radiation and future countermeasure testing for these complex medical problems are also discussed.
Collapse
Affiliation(s)
- Barbara A Christy
- Blood and Shock Resuscitation, US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, TX 78234, USA
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Maryanne C Herzig
- Blood and Shock Resuscitation, US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, TX 78234, USA
| | - Xiaowu Wu
- Blood and Shock Resuscitation, US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, TX 78234, USA
| | - Arezoo Mohammadipoor
- Hemorrhage and Vascular Dysfunction, US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, TX 78234, USA
| | - Jennifer S McDaniel
- Blood and Shock Resuscitation, US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, TX 78234, USA
| | - James A Bynum
- Blood and Shock Resuscitation, US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, TX 78234, USA
- Department of Surgery, UT Health San Antonio, San Antonio, TX 78229, USA
- Trauma Research and Combat Casualty Care Collaborative, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
3
|
Rios CI, Garcia EE, Hogdahl TS, Homer MJ, Iyer NV, Laney JW, Loelius SG, Satyamitra MM, DiCarlo AL. Radiation and Chemical Program Research for Multi-Utility and Repurposed Countermeasures: A US Department of Health and Human Services Agencies Perspective. Disaster Med Public Health Prep 2024; 18:e35. [PMID: 38384183 PMCID: PMC10948027 DOI: 10.1017/dmp.2023.226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Although chemical and radiological agents cause toxicity through different mechanisms, the multiorgan injuries caused by these threats share similarities that convene on the level of basic biological responses. This publication will discuss these areas of convergence and explore "multi-utility" approaches that could be leveraged to address common injury mechanisms underlying actions of chemical and radiological agents in a threat-agnostic manner. In addition, we will provide an overview of the current state of radiological and chemical threat research, discuss the US Government's efforts toward medical preparedness, and identify potential areas for collaboration geared toward enhancing preparedness and response against radiological and chemical threats. We also will discuss previous regulatory experience to provide insight on how to navigate regulatory paths for US Food and Drug Administration (FDA) approval/licensure/clearance for products addressing chemical or radiological/nuclear threats. This publication follows a 2022 trans-agency meeting titled, "Overlapping Science in Radiation and Sulfur Mustard Exposures of Skin and Lung: Consideration of Models, Mechanisms, Organ Systems, and Medical Countermeasures," sponsored by the National Institute of Allergy and Infectious Diseases (NIAID), a part of the National Institutes of Health (NIH). Discussions from this meeting explored the overlapping nature of radiation and chemical injury and spurred increased interest in how preparedness for one threat leads to preparedness for the other. Herein, subject matter experts from the NIAID and the Biomedical Advanced Research and Development Authority (BARDA), a part of the Administration for Strategic Preparedness and Response (ASPR), summarize the knowledge gained from recently funded biomedical research, as well as insights from the 2022 meeting. These topics include identification of common areas for collaboration, potential use of biomarkers of injury to identify injuries caused by both hazards, and common and widely available treatments that could treat damage caused by radiological or chemical threats.
Collapse
Affiliation(s)
- Carmen I. Rios
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), US Department of Health and Human Services (HHS), Washington, DC, USA
| | - Efrain E. Garcia
- Chemical Medical Countermeasures (MCM) Program, Biomedical Advanced Research and Development Authority (BARDA), Administration for Strategic Preparedness and Response (ASPR), Washington, DC, USA
| | - Thomas S. Hogdahl
- Burn/Blast MCM Program, Biomedical Advanced Research and Development Authority (BARDA), Administration for Strategic Preparedness and Response (ASPR), Washington, DC, USA
| | - Mary J. Homer
- Radiological/Nuclear MCM Program, Division of Chemical, Biological, Radiological, and Nuclear Medical Countermeasures, Biomedical Advanced Research and Development Authority (BARDA), Administration for Strategic Preparedness and Response (ASPR), HHS, Washington, DC, USA
| | - Narayan V. Iyer
- Burn/Blast MCM Program, Biomedical Advanced Research and Development Authority (BARDA), Administration for Strategic Preparedness and Response (ASPR), Washington, DC, USA
| | - Judith W. Laney
- Chemical Medical Countermeasures (MCM) Program, Biomedical Advanced Research and Development Authority (BARDA), Administration for Strategic Preparedness and Response (ASPR), Washington, DC, USA
| | - Shannon G. Loelius
- Radiological/Nuclear MCM Program, Division of Chemical, Biological, Radiological, and Nuclear Medical Countermeasures, Biomedical Advanced Research and Development Authority (BARDA), Administration for Strategic Preparedness and Response (ASPR), HHS, Washington, DC, USA
| | - Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), US Department of Health and Human Services (HHS), Washington, DC, USA
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), US Department of Health and Human Services (HHS), Washington, DC, USA
| |
Collapse
|
4
|
Langevin B, Singh P, Plett PA, Sampson CH, Masters A, Gibbs A, Faria ED, Triesler S, Zodda A, Jackson IL, Orschell CM, Gopalakrishnan M, Pelus LM. Pharmacokinetics and Biodistribution of 16,16 dimethyl Prostaglandin E2 in Non-Irradiated and Irradiated Mice and Non-Irradiated Non-Human Primates. Radiat Res 2024; 201:7-18. [PMID: 38019093 PMCID: PMC11163368 DOI: 10.1667/rade-23-00040.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/23/2023] [Indexed: 11/30/2023]
Abstract
Exposure to high-dose ionizing radiation can lead to life-threatening injuries and mortality. Bone marrow is the most sensitive organ to radiation damage, resulting in the hematopoietic acute radiation syndrome (H-ARS) with the potential sequelae of infection, hemorrhage, anemia, and death if untreated. The development of medical countermeasures (MCMs) to protect or mitigate radiation injury is a medical necessity. In our well-established murine model of H-ARS we have demonstrated that the prostaglandin E2 (PGE2) analog 16,16 dimethyl-PGE2 (dmPGE2) has survival efficacy as both a radioprotectant and radiomitigator. The purpose of this study was to investigate the pharmacokinetics (PK) and biodistribution of dmPGE2 when used as a radioprotector in irradiated and non-irradiated inbred C57BL/6J mice, PK in irradiated and non-irradiated Jackson Diversity Outbred (JDO) mice, and the PK profile of dmPGE2 in non-irradiated non-human primates (NHPs). The C57BL/6J and JDO mice each received a single subcutaneous (SC) dose of 35 ug of dmPGE2 and were randomized to either receive radiation 30 min later or remain non-irradiated. Plasma and tissue PK profiles were established. The NHP were dosed with 0.1 mg/kg by SC administration and the PK profile in plasma was established. The concentration time profiles were analyzed by standard non-compartmental analysis and the metrics of AUC0-Inf, AUC60-480 (AUC from 60-480 min), Cmax, and t1/2 were evaluated. AUC60-480 represents the postirradiation time frame and was used to assess radiation effect. Overall, AUC0-Inf, Cmax, and t1/2 were numerically similar between strains (C57BL/6J and JDO) when combined, regardless of exposure status (AUC0-Inf: 112.50 ng·h/ml and 114.48 ng·h/ml, Cmax: 44.53 ng/ml and 63.96 ng/ml; t1/2: 1.8 h and 1.1 h, respectively). PK metrics were numerically lower in irradiated C57BL/6J mice than in non-irradiated mice [irradiation ratio: irradiated values/non-irradiated values = 0.71 for AUC60-480 (i.e., 29% lower), and 0.6 for t1/2]. In JDO mice, the radiation ratio was 0.53 for AUC60-480 (i.e., 47% lower), and 1.7 h for t1/2. The AUC0-Inf, Cmax, and t1/2 of the NHPs were 29.20 ng·h/ml, 7.68 ng/ml, and 3.26 h, respectively. Despite the numerical differences seen between irradiated and non-irradiated groups in PK parameters, the effect of radiation on PK can be considered minimal based on current data. The biodistribution in C57BL/6J mice showed that dmPGE2 per gram of tissue was highest in the lungs, regardless of exposure status. The radiation ratio for the different tissue AUC60-480 in C57BL/6J mice ranged between 0.5-1.1 (50% lower to 10% higher). Spleen, liver and bone marrow showed close to twice lower exposures after irradiation, whereas heart had a 10% higher exposure. Based on the clearance values from mice and NHP, the estimated allometric scaling coefficient was 0.81 (95% CI: 0.75, 0.86). While slightly higher than the current literature estimates of 0.75, this scaling coefficient can be considered a reasonable estimate and can be used to scale dmPGE2 dosing from animals to humans for future trials.
Collapse
Affiliation(s)
- Brooke Langevin
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Pratibha Singh
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - P. Artur Plett
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Carol H. Sampson
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Andi Masters
- Clinical Pharmacology Analytical Core, Indiana University School of Medicine, IU Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202
| | - Allison Gibbs
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Eduardo De Faria
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Sarah Triesler
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Andrew Zodda
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Isabel L. Jackson
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Christie M. Orschell
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Mathangi Gopalakrishnan
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Louis M. Pelus
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
5
|
Hollingsworth BA, Aldrich JT, Case CM, DiCarlo AL, Hoffman CM, Jakubowski AA, Liu Q, Loelius SG, PrabhuDas M, Winters TA, Cassatt DR. Immune Dysfunction from Radiation Exposure. Radiat Res 2023; 200:396-416. [PMID: 38152282 PMCID: PMC10751071 DOI: 10.1667/rade-22-00004.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The hematopoietic system is highly sensitive to ionizing radiation. Damage to the immune system may result in opportunistic infections and hemorrhage, which could lead to mortality. Inflammation triggered by tissue damage can also lead to additional local or widespread tissue damage. The immune system is responsible for tissue repair and restoration, which is made more challenging when it is in the process of self-recovery. Because of these challenges, the Radiation and Nuclear Countermeasures Program (RNCP) and the Basic Immunology Branch (BIB) under the Division of Allergy, Immunology, and Transplantation (DAIT) within the National Institute of Allergy and Infectious Diseases (NIAID), along with partners from the Biomedical Advanced Research and Development Authority (BARDA), and the Radiation Injury Treatment Network (RITN) sponsored a two-day meeting titled Immune Dysfunction from Radiation Exposure held on September 9-10, 2020. The intent was to discuss the manifestations and mechanisms of radiation-induced immune dysfunction in people and animals, identify knowledge gaps, and discuss possible treatments to restore immune function and enhance tissue repair after irradiation.
Collapse
Affiliation(s)
- Brynn A. Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
- Current address: Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | | | - Cullen M. Case
- Radiation Injury Treatment Network, Minneapolis, Minnesota
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Corey M. Hoffman
- Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC
| | | | - Qian Liu
- Basic Immunology Branch (BIB), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Shannon G. Loelius
- Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC
| | - Mercy PrabhuDas
- Basic Immunology Branch (BIB), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
6
|
Wu T, Pelus LM, Plett PA, Sampson CH, Chua HL, Fisher A, Feng H, Liu L, Li H, Ortiz M, Chittajallu S, Luo Q, Bhatwadekar AD, Meyer TB, Zhang X, Zhou D, Fischer KD, McKinzie DL, Miller SJ, Orschell CM. Further Characterization of Multi-Organ DEARE and Protection by 16,16 Dimethyl Prostaglandin E2 in a Mouse Model of the Hematopoietic Acute Radiation Syndrome. Radiat Res 2023; 199:468-489. [PMID: 37014943 PMCID: PMC10278147 DOI: 10.1667/rade-22-00208.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/15/2023] [Indexed: 04/06/2023]
Abstract
Survivors of acute radiation exposure suffer from the delayed effects of acute radiation exposure (DEARE), a chronic condition affecting multiple organs, including lung, kidney, heart, gastrointestinal tract, eyes, and brain, and often causing cancer. While effective medical countermeasures (MCM) for the hematopoietic-acute radiation syndrome (H-ARS) have been identified and approved by the FDA, development of MCM for DEARE has not yet been successful. We previously documented residual bone marrow damage (RBMD) and progressive renal and cardiovascular DEARE in murine survivors of H-ARS, and significant survival efficacy of 16,16-dimethyl prostaglandin E2 (dmPGE2) given as a radioprotectant or radiomitigator for H-ARS. We now describe additional DEARE (physiological and neural function, progressive fur graying, ocular inflammation, and malignancy) developing after sub-threshold doses in our H-ARS model, and detailed analysis of the effects of dmPGE2 administered before (PGE-pre) or after (PGE-post) lethal total-body irradiation (TBI) on these DEARE. Administration of PGE-pre normalized the twofold reduction of white blood cells (WBC) and lymphocytes seen in vehicle-treated survivors (Veh), and increased the number of bone marrow (BM) cells, splenocytes, thymocytes, and phenotypically defined hematopoietic progenitor cells (HPC) and hematopoietic stem cells (HSC) to levels equivalent to those in non-irradiated age-matched controls. PGE-pre significantly protected HPC colony formation ex vivo by >twofold, long term-HSC in vivo engraftment potential up to ninefold, and significantly blunted TBI-induced myeloid skewing. Secondary transplantation documented continued production of LT-HSC with normal lineage differentiation. PGE-pre reduced development of DEARE cardiovascular pathologies and renal damage; prevented coronary artery rarefication, blunted progressive loss of coronary artery endothelia, reduced inflammation and coronary early senescence, and blunted radiation-induced increase in blood urea nitrogen (BUN). Ocular monocytes were significantly lower in PGE-pre mice, as was TBI-induced fur graying. Increased body weight and decreased frailty in male mice, and reduced incidence of thymic lymphoma were documented in PGE-pre mice. In assays measuring behavioral and cognitive functions, PGE-pre reduced anxiety in females, significantly blunted shock flinch response, and increased exploratory behavior in males. No effect of TBI was observed on memory in any group. PGE-post, despite significantly increasing 30-day survival in H-ARS and WBC and hematopoietic recovery, was not effective in reducing TBI-induced RBMD or any other DEARE. In summary, dmPGE2 administered as an H-ARS MCM before lethal TBI significantly increased 30-day survival and ameliorated RBMD and multi-organ and cognitive/behavioral DEARE to at least 12 months after TBI, whereas given after TBI, dmPGE2 enhances survival from H-ARS but has little impact on RBMD or other DEARE.
Collapse
Affiliation(s)
- Tong Wu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Louis M. Pelus
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - P. Artur Plett
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Carol H. Sampson
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Hui Lin Chua
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Alexa Fisher
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Hailin Feng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Liqiong Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Hongge Li
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Miguel Ortiz
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Supriya Chittajallu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Qianyi Luo
- Department of Ophthalmology, and Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Ashay D. Bhatwadekar
- Department of Ophthalmology, and Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Timothy B. Meyer
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Xin Zhang
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 32611
| | - Daohong Zhou
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 32611
| | - Kathryn D. Fischer
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - David L. McKinzie
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Steven J. Miller
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Christie M. Orschell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
7
|
Wu T, Orschell CM. The delayed effects of acute radiation exposure (DEARE): characteristics, mechanisms, animal models, and promising medical countermeasures. Int J Radiat Biol 2023; 99:1066-1079. [PMID: 36862990 PMCID: PMC10330482 DOI: 10.1080/09553002.2023.2187479] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
PURPOSE Terrorist use of nuclear weapons and radiation accidents put the human population at risk for exposure to life-threatening levels of radiation. Victims of lethal radiation exposure face potentially lethal acute injury, while survivors of the acute phase are plagued with chronic debilitating multi-organ injuries for years after exposure. Developing effective medical countermeasures (MCM) for the treatment of radiation exposure is an urgent need that relies heavily on studies conducted in reliable and well-characterized animal models according to the FDA Animal Rule. Although relevant animal models have been developed in several species and four MCM for treatment of the acute radiation syndrome are now FDA-approved, animal models for the delayed effects of acute radiation exposure (DEARE) have only recently been developed, and there are no licensed MCM for DEARE. Herein, we provide a review of the DEARE including key characteristics of the DEARE gleaned from human data as well as animal, mechanisms common to multi-organ DEARE, small and large animal models used to study the DEARE, and promising new or repurposed MCM under development for alleviation of the DEARE. CONCLUSIONS Intensification of research efforts and support focused on better understanding of mechanisms and natural history of DEARE are urgently needed. Such knowledge provides the necessary first steps toward the design and development of MCM that effectively alleviate the life-debilitating consequences of the DEARE for the benefit of humankind worldwide.
Collapse
Affiliation(s)
- Tong Wu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christie M Orschell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
8
|
MacVittie TJ. Where are the medical countermeasures against the ARS and DEARE? A current topic relative to an animal model research platform, radiation exposure context, the acute and delayed effects of acute exposure, and the FDA animal rule. Int J Radiat Biol 2023:1-15. [PMID: 36811500 DOI: 10.1080/09553002.2023.2181999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
PURPOSE A question echoed by the National Biodefense Science Board (NBSB) in 2010, remains a reasonable question in 2023; 'Where are the Countermeasures?'. A critical path for development of medical countermeasures (MCM) against acute, radiation-induced organ-specific injury within the acute radiation syndrome (ARS) and the delayed effects of acute radiation exposure (DEARE) requires the recognition of problems and solutions inherent in the path to FDA approval under the Animal Rule. Keep Rule number one in mind, It's not easy. CONSIDERATIONS The current topic herein is focused on defining the nonhuman primate model(s) for efficient MCM development relative to consideration of prompt and delayed exposure in the context of the nuclear scenario. The rhesus macaque is a predictive model for human exposure of partial-body irradiation with marginal bone marrow sparing that allows definition of the multiple organ injury in the acute radiation syndrome (ARS) and the delayed effects of acute radiation exposure (DEARE). The continued definition of natural history is required to delineate an associative or causal interaction within the concurrent multi-organ injury characteristic of the ARS and DEARE. A more efficient development of organ specific MCM for both pre-exposure and post-exposure prophylaxis to include acute radiation-induced combined injury requires closing critical gaps in knowledge and urgent support to rectify the national shortage of nonhuman primates. The rhesus macaque is a validated, predictive model of the human response to prompt and delayed radiation exposure, medical management and MCM treatment. A rational approach to further development of the cynomolgus macaque as a comparable model is urgently required for continued development of MCM for FDA approval. CONCLUSION It is imperative to examine the key variables relative to animal model development and validation, The pharmacokinetics, pharmacodynamics and exposure profiles, of candidate MCM relative to route, administration schedule and optimal efficacy define the fully effective dose. The conduct of adequate and well-controlled pivotal efficacy studies as well as safety and toxicity studies support approval under the FDA Animal Rule and label definition for human use.
Collapse
Affiliation(s)
- Thomas J MacVittie
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Plett PA, Pelus LM, Orschell CM. Establishing a Murine Model of the Hematopoietic Acute Radiation Syndrome. Methods Mol Biol 2023; 2567:251-262. [PMID: 36255706 PMCID: PMC11192174 DOI: 10.1007/978-1-0716-2679-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The hematopoietic system is one of the most sensitive tissues to ionizing radiation, and radiation doses from 2 to 10 gray can result in death from bleeding and infection if left untreated. Reviewing the range of radiation doses reported in the literature that result in similar lethality highlights the need for a more consistent model that would allow a better comparison of the hematopoietic acute radiation syndrome (H-ARS) studies carried out in different laboratories. Developing a murine model of H-ARS to provide a platform suited for efficacy testing of medical countermeasures (MCM) against radiation should include a review of the Food and Drug Administration requirements outlined in the Animal Rule. The various aspects of a murine H-ARS model found to affect consistent performance will be described in this chapter including strain, sex, radiation type and dose, mouse restraint, and husbandry.
Collapse
Affiliation(s)
- P Artur Plett
- Department of Medicine/Hematology Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Louis M Pelus
- Department of Microbiology & Immunology and Department of Medicine/Hematology Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christie M Orschell
- Department of Medicine/Hematology Oncology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
10
|
Satyamitra MM, Taliaferro LP, Rios CI. Commentary on Animal Care in Radiation Medical Countermeasures Studies. Radiat Res 2022; 198:508-513. [PMID: 36351323 PMCID: PMC9812030 DOI: 10.1667/rade-22-00009.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/18/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Merriline M. Satyamitra
- Corresponding author: Merriline Satyamitra, PhD, DAIT, NIAID, NIH, 5601 Fishers Lane, Room 7A67, Bethesda, MD 20892;
| | | | | |
Collapse
|
11
|
Rios CI, Hollingsworth BA, DiCarlo AL, Esker JE, Satyamitra MM, Silverman TA, Winters TA, Taliaferro LP. Animal Care in Radiation Medical Countermeasures Studies. Radiat Res 2022; 198:514-535. [PMID: 36001810 PMCID: PMC9743977 DOI: 10.1667/rade-21-00211.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 07/26/2022] [Indexed: 12/14/2022]
Abstract
Animal models are necessary to demonstrate the efficacy of medical countermeasures (MCM) to mitigate/treat acute radiation syndrome and the delayed effects of acute radiation exposure and develop biodosimetry signatures for use in triage and to guide medical management. The use of animal models in radiation research allows for the simulation of the biological effects of exposure in humans. Robust and well-controlled animal studies provide a platform to address basic mechanistic and safety questions that cannot be conducted in humans. The U.S. Department of Health and Human Services has tasked the National Institute of Allergy and Infectious Diseases (NIAID) with identifying and funding early- through advanced-stage MCM development for radiation-induced injuries; and advancement of biodosimetry platforms and exploration of biomarkers for triage, definitive dose, and predictive purposes. Some of these NIAID-funded projects may transition to the Biomedical Advanced Research and Development Authority (BARDA), a component of the Office of the Assistant Secretary for Preparedness and Response in the U.S. Department of Health and Human Services, which is tasked with the advanced development of MCMs to include pharmacokinetic, exposure, and safety assessments in humans. Guided by the U.S. Food and Drug Administration's (FDA) Animal Rule, both NIAID and BARDA work closely with researchers to advance product and device development, setting them on a course for eventual licensure/approval/clearance of their approaches by the FDA. In August 2020, NIAID partnered with BARDA to conduct a workshop to discuss currently accepted animal care protocols and examine aspects of animal models that can influence outcomes of studies to explore MCM efficacy for potential harmonization. This report provides an overview of the two-day workshop, which includes a series of special topic presentations followed by panel discussions with subject-matter experts from academia, industry partners, and select governmental agencies.
Collapse
Affiliation(s)
- Carmen I. Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | | | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - John E. Esker
- Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), US Department of Health and Human Services (HHS), Washington, DC
| | - Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Toby A. Silverman
- Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), US Department of Health and Human Services (HHS), Washington, DC
| | - Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland,Corresponding author: Lanyn P. Taliaferro, PhD, DAIT, NIAID, NIH, 5601 Fishers Lane, Rockville, MD 20852;
| |
Collapse
|
12
|
Patterson AM, Vemula S, Plett PA, Sampson CH, Chua HL, Fisher A, Wu T, Sellamuthu R, Feng H, Katz BP, DesRosiers CM, Pelus LM, Cox GN, MacVittie TJ, Orschell CM. Age and Sex Divergence in Hematopoietic Radiosensitivity in Aged Mouse Models of the Hematopoietic Acute Radiation Syndrome. Radiat Res 2022; 198:221-242. [PMID: 35834823 PMCID: PMC9512046 DOI: 10.1667/rade-22-00071.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/11/2022] [Indexed: 11/03/2022]
Abstract
The hematopoietic system is highly sensitive to stress from both aging and radiation exposure, and the hematopoietic acute radiation syndrome (H-ARS) should be modeled in the geriatric context separately from young for development of age-appropriate medical countermeasures (MCMs). Here we developed aging murine H-ARS models, defining radiation dose response relationships (DRRs) in 12-month-old middle-aged and 24-month-old geriatric male and female C57BL/6J mice, and characterized diverse factors affecting geriatric MCM testing. Groups of approximately 20 mice were exposed to ∼10 different doses of radiation to establish radiation DRRs for estimation of the LD50/30. Radioresistance increased with age and diverged dramatically between sexes. The LD50/30 in young adult mice averaged 853 cGy and was similar between sexes, but increased in middle age to 1,005 cGy in males and 920 cGy in females, with further sex divergence in geriatric mice to 1,008 cGy in males but 842 cGy in females. Correspondingly, neutrophils, platelets, and functional hematopoietic progenitor cells were all increased with age and rebounded faster after irradiation. These effects were higher in aged males, and neutrophil dysfunction was observed in aged females. Upstream of blood production, hematopoietic stem cell (HSC) markers associated with age and myeloid bias (CD61 and CD150) were higher in geriatric males vs. females, and sex-divergent gene signatures were found in HSCs relating to cholesterol metabolism, interferon signaling, and GIMAP family members. Fluid intake per gram body weight decreased with age in males, and decreased after irradiation in all mice. Geriatric mice of substrain C57BL/6JN sourced from the National Institute on Aging were significantly more radiosensitive than C57BL/6J mice from Jackson Labs aged at our institution, indicating mouse source and substrain should be considered in geriatric radiation studies. This work highlights the importance of sex, vendor, and other considerations in studies relating to hematopoiesis and aging, identifies novel sex-specific functional and molecular changes in aging hematopoietic cells at steady state and after irradiation, and presents well-characterized aging mouse models poised for MCM efficacy testing for treatment of acute radiation effects in the elderly.
Collapse
Affiliation(s)
- Andrea M. Patterson
- Department of Medicine Indiana University School of Medicine Indianapolis, Indiana
| | - Sasidhar Vemula
- Department of Medicine Indiana University School of Medicine Indianapolis, Indiana
| | - P. Artur Plett
- Department of Medicine Indiana University School of Medicine Indianapolis, Indiana
| | - Carol H. Sampson
- Department of Medicine Indiana University School of Medicine Indianapolis, Indiana
| | - Hui Lin Chua
- Department of Medicine Indiana University School of Medicine Indianapolis, Indiana
| | - Alexa Fisher
- Department of Medicine Indiana University School of Medicine Indianapolis, Indiana
| | - Tong Wu
- Department of Medicine Indiana University School of Medicine Indianapolis, Indiana
| | - Rajendran Sellamuthu
- Department of Medicine Indiana University School of Medicine Indianapolis, Indiana
| | - Hailin Feng
- Department of Medicine Indiana University School of Medicine Indianapolis, Indiana
| | - Barry P. Katz
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana
| | - Colleen M. DesRosiers
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Louis M. Pelus
- Department of Medicine Indiana University School of Medicine Indianapolis, Indiana
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | - Christie M. Orschell
- Department of Medicine Indiana University School of Medicine Indianapolis, Indiana
| |
Collapse
|
13
|
Orschell CM, Wu T, Patterson AM. Impact of Age, Sex, and Genetic Diversity in Murine Models of the Hematopoietic Acute Radiation Syndrome (H-ARS) and the Delayed Effects of Acute Radiation Exposure (DEARE). CURRENT STEM CELL REPORTS 2022; 8:139-149. [PMID: 36798890 PMCID: PMC9928166 DOI: 10.1007/s40778-022-00214-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
Abstract
Purpose of review Malicious or accidental radiation exposure increases risk for the hematopoietic acute radiation syndrome (H-ARS) and the delayed effects of acute radiation exposure (DEARE). Radiation medical countermeasure (MCM) development relies on robust animal models reflective of all age groups and both sexes. This review details critical considerations in murine H-ARS and DEARE model development including divergent radiation responses dependent on age, sex, and genetic diversity. Recent findings Radioresistance increases with murine age from pediatrics through geriatrics. Between sexes, radioresistance is higher in male weanlings, pubescent females, and aged males, corresponding with accelerated myelopoiesis. Jackson diversity outbred (JDO) mice resemble non-human primates in radiation response for modeling human diversity. Weanlings and JDO models exhibit less DEARE than other models. Summary Highly characterized age-, sex- and diversity-conscious murine models of H-ARS and DEARE provide powerful and essential tools in MCM development for all radiation victims.
Collapse
Affiliation(s)
| | - Tong Wu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Andrea M. Patterson
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
14
|
MacVittie TJ, Farese AM. Recent advances in medical countermeasure development against acute radiation exposure based on the US FDA animal rule. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:S438-S453. [PMID: 34433144 DOI: 10.1088/1361-6498/ac20e0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Recent advances in medical countermeasures (MCMs) has been dependent on the Food and Drug Administration (FDA) animal rule (AR) and the final guidance document provided for industry on product development. The criteria outlined therein establish the path for approval under the AR. The guidance document, along with the funding and requirements from the federal agencies provided the basic considerations for animal model development in assessing radiation effects and efficacy against the potential lethal effects of acute radiation injury and the delayed effects of acute exposure. Animal models, essential for determining MCM efficacy, were developed and validated to assess organ-specific, potentially lethal, radiation effects against the gastrointestinal (GI) and hematopoietic acute radiation syndrome (H-ARS), and radiation-induced delayed effects to lung and associated comorbidities of prolonged immune suppression, GI, kidney and heart injury. Partial-body irradiation models where marginal bone marrow was spared resulted in the ability to evaluate the concomitant evolution of multiple organ injury in the acute and delayed effects in survivors of acute radiation exposure. There are no MCMs for prophylaxis against the major sequelae of the ARS or the delayed effects of acute exposure. Also lacking are MCMs that will mitigate the GI ARS consequent to potentially lethal exposure from a terrorist event or major radiation accident. Additionally, the gap in countermeasures for prophylaxis may extend to mixed neutron/gamma radiation if current modelling predicts prompt exposure from an improvised nuclear device. However, progress in the field of MCM development has been made due to federal and corporate funding, clarification of the critical criteria for efficacy within the FDA AR and the concomitant development and validation of additional animal models. These models provided for a strategic and tactical approach to determine radiation effects and MCM efficacy.
Collapse
Affiliation(s)
- Thomas J MacVittie
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, 21201, United States of America
| | - Ann M Farese
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, 21201, United States of America
| |
Collapse
|
15
|
Yadav M, Liu J, Song F, Mo X, Jacob NR, Xu-Welliver M, Chakravarti A, Jacob NK. Utility of circulating microRNA-150 for rapid evaluation of bone marrow depletion after radiation, and efficiency of bone marrow reconstitution. Int J Radiat Oncol Biol Phys 2021; 112:964-974. [PMID: 34767935 DOI: 10.1016/j.ijrobp.2021.10.150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Total body irradiation (TBI) is a common myeloablative preparative regimen used in acute myeloid and lymphoblastic leukemia patients prior to allogenic hematopoietic stem cell transplantation (HSCT). The inefficient clearance of tumor cells and radiation-induced toxicity to normal tissues is attributed to relapse and morbidity in a significant fraction of patients. Developing biomarkers that provide an individual's physiological response to radiation will allow personalized treatment and follow-up. We investigated the utility of circulating microRNA150-5p (miR150) for evaluation of radiation dose response. MATERIALS AND METHODS Age-, gender-, and strain-matched wild type and miR150 null (knock out, KO) mice were subjected to TBI and evaluated for the impact of circulating miR150 expression on survival and hematological endpoints. Dose- and time-dependent changes of the miR150 level in bone marrow were assessed using flow cytometry. The functional roles of miR150 in cellular response to radiation were evaluated using apoptosis assay. miR150 expression in leukemic cell lines and in blood collected from leukemia patients with diverse outcomes were evaluated by quantitative RT-PCR. RESULTS Absence of miR150 in mice conferred resistance to radiation injury and resulted in accelerated recovery of lymphoid and myeloid cells after ablative or partially ablative TBI in mice. Overexpression of miR150 resulted in a higher percentage of cells at G2/M phases of cell cycle which is associated with increased sensitivity and susceptibility to apoptotic cell death after radiation. Levels of circulating miR150 were found to be decreased after radiation in leukemia patients and exhibited an inverse correlation with recurrence. CONCLUSION Current study demonstrates the utility of a miR150-based blood test for rapid evaluation of the efficiency of marrow ablation and recovery following radiation and HSCT. The internally controlled blood test will potentially provide near real-time evaluation of functional marrow that will allow optimal dosing based on an individual's physiological response to radiation.
Collapse
Affiliation(s)
- Marshleen Yadav
- Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Joseph Liu
- Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Feifei Song
- Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Xiaokui Mo
- Center for Biostatistics, Ohio State University, Columbus, Ohio
| | - Nitya R Jacob
- Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Meng Xu-Welliver
- Ohio State University Comprehensive Cancer Center, Columbus, Ohio; Department of Radiation Oncology, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Arnab Chakravarti
- Ohio State University Comprehensive Cancer Center, Columbus, Ohio; Department of Radiation Oncology, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Naduparambil K Jacob
- Ohio State University Comprehensive Cancer Center, Columbus, Ohio; Department of Radiation Oncology, Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
16
|
Taliaferro LP, Cassatt DR, Horta ZP, Satyamitra MM. Meeting Report: A Poly-Pharmacy Approach to Mitigate Acute Radiation Syndrome. Radiat Res 2021; 196:436-446. [PMID: 34237144 PMCID: PMC8532024 DOI: 10.1667/rade-21-00048.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/03/2021] [Indexed: 11/03/2022]
Abstract
The National Institute of Allergy and Infectious Diseases, Radiation and Nuclear Countermeasures Program, was tasked by the United States Congress and the U.S. Department of Health and Human Services to identify and fund early-to-mid-stage development of medical countermeasures (MCMs) to treat radiation-induced injuries. In developing MCMs to treat various sub-syndromes (e.g., hematopoietic, gastrointestinal, lung), it is important to investigate whether a poly-pharmacy approach (i.e., drug cocktails) can provide additive benefits to mitigate injuries arising from the acute radiation syndrome (ARS). In addition, potential drug-drug interactions must be examined. For this reason, a workshop was held, which centered on understanding the current state of research investigating poly-pharmacy approaches to treat radiation injuries. The first session set the stage with an introduction to the concept of operations or support available for the response to a nuclear incident, as this is the key to any emergency response, including MCM availability and distribution. The second session followed the natural history of ARS in both humans and animal models to underscore the complexity of ARS and why a poly-pharmacy approach may be necessary. The third session featured talks from investigators conducting current MCM poly-pharmacy research. The meeting closed with a focus on regulatory considerations for the development of poly-pharmacy approaches or combination treatments for ARS.
Collapse
Affiliation(s)
- Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of
Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy
and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville,
Maryland
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of
Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy
and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville,
Maryland
| | | | - Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of
Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy
and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville,
Maryland
| |
Collapse
|
17
|
Satyamitra MM, Cassatt DR, Taliaferro LP. Meeting Commentary: A Poly-Pharmacy Approach to Mitigate Acute Radiation Syndrome (ARS). Radiat Res 2021; 196:423-428. [PMID: 34270773 PMCID: PMC8522554 DOI: 10.1667/rade-21-00053.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/23/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of
Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy
and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville,
Maryland
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of
Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy
and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville,
Maryland
| | - Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of
Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy
and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville,
Maryland
| |
Collapse
|
18
|
Patterson AM, Sellamuthu R, Plett PA, Sampson CH, Chua HL, Fisher A, Vemula S, Feng H, Katz BP, Tudor G, Miller SJ, MacVittie TJ, Booth C, Orschell CM. Establishing Pediatric Mouse Models of the Hematopoietic Acute Radiation Syndrome and the Delayed Effects of Acute Radiation Exposure. Radiat Res 2021; 195:307-323. [PMID: 33577641 DOI: 10.1667/rade-20-00259.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/19/2021] [Indexed: 11/03/2022]
Abstract
Medical countermeasures (MCMs) for hematopoietic acute radiation syndrome (H-ARS) should be evaluated in well-characterized animal models, with consideration of at-risk populations such as pediatrics. We have developed pediatric mouse models of H-ARS and delayed effects of acute radiation exposure (DEARE) for efficacy testing of MCMs against radiation. Male and female C57BL/6J mice aged 3, 4, 5, 6, 7 and 8 weeks old (±1 day) were characterized for baseline hematopoietic and gastrointestinal parameters, radiation response, efficacy of a known MCM, and DEARE at six and 12 months after total-body irradiation (TBI). Weanlings (age 3 weeks) were the most radiosensitive age group with an estimated LD50/30 of 712 cGy, while mice aged 4 to 8 weeks were more radioresistant with an estimated LD50/30 of 767-787 cGy. Female weanlings were more radiosensitive than males at 3 and 4 weeks old but became significantly more radioresistant after the pubertal age of 5 weeks. The most dramatic increase in body weight, RBC counts and intestinal circumference length occurred from 3 to 5 weeks of age. The established radiomitigator Neulasta® (pegfilgrastim) significantly increased 30-day survival in all age groups, validating these models for MCM efficacy testing. Analyses of DEARE among pediatric survivors revealed depressed weight gain in males six months post-TBI, and increased blood urea nitrogen at 12 months post-TBI which was more severe in females. Hematopoietic DEARE at six months post-TBI appeared to be less severe in survivors from the 3- and 4-week-old groups but was equally severe in all age groups by 12 months of age. Similar to our other acute radiation mouse models, there was no appreciable effect of Neulasta used as an H-ARS MCM on the severity of DEARE. In summary, these data characterize a pediatric mouse model useful for assessing the efficacy of MCMs against ARS and DEARE in children.
Collapse
Affiliation(s)
- Andrea M Patterson
- Department of a Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Rajendran Sellamuthu
- Department of a Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - P Artur Plett
- Department of a Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Carol H Sampson
- Department of a Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hui Lin Chua
- Department of a Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Alexa Fisher
- Department of a Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sasidhar Vemula
- Department of a Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hailin Feng
- Department of a Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Barry P Katz
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Steven J Miller
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Thomas J MacVittie
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Christie M Orschell
- Department of a Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
19
|
Patterson AM, Wu T, Chua HL, Sampson CH, Fisher A, Singh P, Guise TA, Feng H, Muldoon J, Wright L, Plett PA, Pelus LM, Orschell CM. Optimizing and Profiling Prostaglandin E2 as a Medical Countermeasure for the Hematopoietic Acute Radiation Syndrome. Radiat Res 2021; 195:115-127. [PMID: 33302300 DOI: 10.1667/rade-20-00181.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/04/2020] [Indexed: 12/18/2022]
Abstract
Identification of medical countermeasures (MCM) to mitigate radiation damage and/or protect first responders is a compelling unmet medical need. The prostaglandin E2 (PGE2) analog, 16,16 dimethyl-PGE2 (dmPGE2), has shown efficacy as a radioprotectant and radiomitigator that can enhance hematopoiesis and ameliorate intestinal mucosal cell damage. In this study, we optimized the time of administration of dmPGE2 for protection and mitigation against mortality from the hematopoietic acute radiation syndrome (H-ARS) in young adult mice, evaluated its activity in pediatric and geriatric populations, and investigated potential mechanisms of action. Windows of 30-day survival efficacy for single administration of dmPGE2 were defined as within 3 h prior to and 6-30 h after total-body γ irradiation (TBI). Radioprotective and radio-mitigating efficacy was also observed in 2-year-old geriatric mice and 6-week-old pediatric mice. PGE2 receptor agonist studies suggest that signaling through EP4 is primarily responsible for the radioprotective effects. DmPGE2 administration prior to TBI attenuated the drop in red blood cells and platelets, accelerated recovery of all peripheral blood cell types, and resulted in higher hematopoietic and mesenchymal stem cells in survivor bone marrow. Multiplex analysis of bone marrow cytokines together with RNA sequencing of hematopoietic stem cells indicated a pro-hematopoiesis cytokine milieu induced by dmPGE2, with IL-6 and G-CSF strongly implicated in dmPGE2-mediated radioprotective activity. In summary, we have identified windows of administration for significant radio-mitigation and radioprotection by dmPGE2 in H-ARS, demonstrated survival efficacy in special populations, and gained insight into radioprotective mechanisms, information useful towards development of dmPGE2 as a MCM for first responders, military personnel, and civilians facing radiation threats.
Collapse
Affiliation(s)
- Andrea M Patterson
- Department of a Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Tong Wu
- Department of a Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Hui Lin Chua
- Department of a Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Carol H Sampson
- Department of a Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Alexa Fisher
- Department of a Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Pratibha Singh
- Department of a Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Theresa A Guise
- Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Hailin Feng
- Department of a Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Jessica Muldoon
- Department of a Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Laura Wright
- Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - P Artur Plett
- Department of a Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Louis M Pelus
- Department of a Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Christie M Orschell
- Department of a Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
20
|
Yashavarddhan MH, Sharma AK, Chaudhary P, Bajaj S, Singh S, Shukla SK. Development of hematopoietic syndrome mice model for localized radiation exposure. Sci Rep 2021; 11:89. [PMID: 33420217 PMCID: PMC7794306 DOI: 10.1038/s41598-020-80075-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 12/03/2020] [Indexed: 11/09/2022] Open
Abstract
Current models to study the hematopoietic syndrome largely rely on the uniform whole-body exposures. However, in the radio-nuclear accidents or terrorist events, exposure can be non-uniform. The data available on the non-uniform exposures is limited. Thus, we have developed a mice model for studying the hematopoietic syndrome in the non-uniform or partial body exposure scenarios using the localized cobalt60 gamma radiation exposure. Femur region of Strain 'A' male mice was exposed to doses ranging from 7 to 20 Gy. The 30 day survival assay showed 19 Gy as LD100 and 17 Gy as LD50. We measured an array of cytokines and important stem cell markers such as IFN-γ, IL-3, IL-6, GM-CSF, TNF-α, G-CSF, IL-1α, IL-1β, CD 34 and Sca 1. We found significant changes in IL-6, GM-CSF, TNF-α, G-CSF, and IL-1β levels compared to untreated groups and amplified levels of CD 34 and Sca 1 positive population in the irradiated mice compared to the untreated controls. Overall, we have developed a mouse model of the hematopoietic acute radiation syndrome that might be useful for understanding of the non-uniform body exposure scenarios. This may also be helpful in the screening of drugs intended for individuals suffering from radiation induced hematopoietic syndrome.
Collapse
Affiliation(s)
- M H Yashavarddhan
- National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Sector-39, Noida, Uttar Pradesh, 201301, India
| | - Ajay Kumar Sharma
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Brig. S K Mazumdar Marg, Timarpur, Delhi, 110054, India
| | - Pankaj Chaudhary
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Sania Bajaj
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Brig. S K Mazumdar Marg, Timarpur, Delhi, 110054, India
| | - Sukhvir Singh
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Brig. S K Mazumdar Marg, Timarpur, Delhi, 110054, India
| | - Sandeep Kumar Shukla
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Brig. S K Mazumdar Marg, Timarpur, Delhi, 110054, India.
| |
Collapse
|
21
|
Bone marrow stromal cell therapy improves survival after radiation injury but does not restore endogenous hematopoiesis. Sci Rep 2020; 10:22211. [PMID: 33335275 PMCID: PMC7747726 DOI: 10.1038/s41598-020-79278-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022] Open
Abstract
The only available option to treat radiation-induced hematopoietic syndrome is allogeneic hematopoietic cell transplantation, a therapy unavailable to many patients undergoing treatment for malignancy, which would also be infeasible in a radiological disaster. Stromal cells serve as critical components of the hematopoietic stem cell niche and are thought to protect hematopoietic cells under stress. Prior studies that have transplanted mesenchymal stromal cells (MSCs) without co-administration of a hematopoietic graft have shown underwhelming rescue of endogenous hematopoiesis and have delivered the cells within 24 h of radiation exposure. Herein, we examine the efficacy of a human bone marrow-derived MSC therapy delivered at 3 h or 30 h in ameliorating radiation-induced hematopoietic syndrome and show that pancytopenia persists despite MSC therapy. Animals exposed to radiation had poorer survival and experienced loss of leukocytes, platelets, and red blood cells. Importantly, mice that received a therapeutic dose of MSCs were significantly less likely to die but experienced equivalent collapse of the hematopoietic system. The cause of the improved survival was unclear, as complete blood counts, splenic and marrow cellularity, numbers and function of hematopoietic stem and progenitor cells, and frequency of niche cells were not significantly improved by MSC therapy. Moreover, human MSCs were not detected in the bone marrow. MSC therapy reduced crypt dropout in the small intestine and promoted elevated expression of growth factors with established roles in gut development and regeneration, including PDGF-A, IGFBP-3, IGFBP-2, and IGF-1. We conclude that MSC therapy improves survival not through overt hematopoietic rescue but by positive impact on other radiosensitive tissues, such as the intestinal mucosa. Collectively, these data reveal that MSCs could be an effective countermeasure in cancer patients and victims of nuclear accidents but that MSCs alone do not significantly accelerate or contribute to recovery of the blood system.
Collapse
|
22
|
Patterson AM, Plett PA, Chua HL, Sampson CH, Fisher A, Feng H, Unthank JL, Miller SJ, Katz BP, MacVittie TJ, Orschell CM. Development of a Model of the Acute and Delayed Effects of High Dose Radiation Exposure in Jackson Diversity Outbred Mice; Comparison to Inbred C57BL/6 Mice. HEALTH PHYSICS 2020; 119:633-646. [PMID: 32932286 PMCID: PMC9374540 DOI: 10.1097/hp.0000000000001344] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Development of medical countermeasures against radiation relies on robust animal models for efficacy testing. Mouse models have advantages over larger species due to economics, ease of conducting aging studies, existence of historical databases, and research tools allowing for sophisticated mechanistic studies. However, the radiation dose-response relationship of inbred strains is inherently steep and sensitive to experimental variables, and inbred models have been criticized for lacking genetic diversity. Jackson Diversity Outbred (JDO) mice are the most genetically diverse strain available, developed by the Collaborative Cross Consortium using eight founder strains, and may represent a more accurate model of humans than inbred strains. Herein, models of the Hematopoietic-Acute Radiation Syndrome and the Delayed Effects of Acute Radiation Exposure were developed in JDO mice and compared to inbred C57BL/6. The dose response relationship curve in JDO mice mirrored the more shallow curves of primates and humans, characteristic of genetic diversity. JDO mice were more radioresistant than C57BL/6 and differed in sensitivity to antibiotic countermeasures. The model was validated with pegylated-G-CSF, which provided significantly enhanced 30-d survival and accelerated blood recovery. Long-term JDO survivors exhibited increased recovery of blood cells and functional bone marrow hematopoietic progenitors compared to C57BL/6. While JDO hematopoietic stem cells declined more in number, they maintained a greater degree of quiescence compared to C57BL/6, which is essential for maintaining function. These JDO radiation models offer many of the advantages of small animals with the genetic diversity of large animals, providing an attractive alternative to currently available radiation animal models.
Collapse
Affiliation(s)
- Andrea M. Patterson
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - P. Artur Plett
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Hui Lin Chua
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Carol H. Sampson
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Alexa Fisher
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Hailin Feng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Joseph L. Unthank
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Steve J. Miller
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Barry P. Katz
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Thomas J. MacVittie
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| | | |
Collapse
|
23
|
MacVittie TJ, Farese AM. Defining the Concomitant Multiple Organ Injury within the ARS and DEARE in an Animal Model Research Platform. HEALTH PHYSICS 2020; 119:519-526. [PMID: 32868706 DOI: 10.1097/hp.0000000000001327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Thomas J MacVittie
- University of Maryland School of Medicine 10 South Pine Street, MSTF 5-02A Baltimore, MD 21201
| | | |
Collapse
|
24
|
Wu T, Plett PA, Chua HL, Jacobsen M, Sandusky GE, MacVittie TJ, Orschell CM. Immune Reconstitution and Thymic Involution in the Acute and Delayed Hematopoietic Radiation Syndromes. HEALTH PHYSICS 2020; 119:647-658. [PMID: 32947490 PMCID: PMC7541734 DOI: 10.1097/hp.0000000000001352] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Lymphoid lineage recovery and involution after exposure to potentially lethal doses of ionizing radiation have not been well defined, especially the long-term effects in aged survivors and with regard to male/female differences. To examine these questions, male and female C57BL/6 mice were exposed to lethal radiation at 12 wk of age in a model of the Hematopoietic-Acute Radiation Syndrome, and bone marrow, thymus, spleen, and peripheral blood examined up to 24 mo of age for the lymphopoietic delayed effects of acute radiation exposure. Aged mice showed myeloid skewing and incomplete lymphocyte recovery in all lymphoid tissues. Spleen and peripheral blood both exhibited a monophasic recovery pattern, while thymus demonstrated a biphasic pattern. Naïve T cells in blood and spleen and all subsets of thymocytes were decreased in aged irradiated mice compared to age-matched non-irradiated controls. Of interest, irradiated males experienced significantly improved reconstitution of thymocyte subsets and peripheral blood elements compared to females. Bone marrow from aged irradiated survivors was significantly deficient in the primitive lymphoid-primed multipotent progenitors and common lymphoid progenitors, which were only 8-10% of levels in aged-matched non-irradiated controls. Taken together, these analyses define significant age- and sex-related deficiencies at all levels of lymphopoiesis throughout the lifespan of survivors of the Hematopoietic-Acute Radiation Syndrome and may provide a murine model suitable for assessing the efficacy of potential medical countermeasures and therapeutic strategies to alleviate the severe immune suppression that occurs after radiation exposure.
Collapse
Affiliation(s)
- Tong Wu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - P. Artur Plett
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Hui Lin Chua
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Max Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - George E. Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Thomas J. MacVittie
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| | | |
Collapse
|
25
|
DiCarlo AL, Perez Horta Z, Rios CI, Satyamitra MM, Taliaferro LP, Cassatt DR. Study logistics that can impact medical countermeasure efficacy testing in mouse models of radiation injury. Int J Radiat Biol 2020; 97:S151-S167. [PMID: 32909878 PMCID: PMC7987915 DOI: 10.1080/09553002.2020.1820599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/05/2019] [Accepted: 10/01/2019] [Indexed: 12/02/2022]
Abstract
PURPOSE To address confounding issues that have been noted in planning and conducting studies to identify biomarkers of radiation injury, develop animal models to simulate these injuries, and test potential medical countermeasures to mitigate/treat damage caused by radiation exposure. METHODS The authors completed an intensive literature search to address several key areas that should be considered before embarking on studies to assess efficacy of medical countermeasure approaches in mouse models of radiation injury. These considerations include: (1) study variables; (2) animal selection criteria; (3) animal husbandry; (4) medical management; and (5) radiation attributes. RESULTS It is important to select mouse strains that are capable of responding to the selected radiation exposure (e.g. genetic predispositions might influence radiation sensitivity and proclivity to certain phenotypes of radiation injury), and that also react in a manner similar to humans. Gender, vendor, age, weight, and even seasonal variations are all important factors to consider. In addition, the housing and husbandry of the animals (i.e. feed, environment, handling, time of day of irradiation and animal restraint), as well as the medical management provided (e.g. use of acidified water, antibiotics, routes of administration of drugs, consideration of animal numbers, and euthanasia criteria) should all be addressed. Finally, the radiation exposure itself should be tightly controlled, by ensuring a full understanding and reporting of the radiation source, dose and dose rate, shielding and geometry of exposure, while also providing accurate dosimetry. It is important to understand how all the above factors contribute to the development of radiation dose response curves for a given animal facility with a well-defined murine model. CONCLUSIONS Many potential confounders that could impact the outcomes of studies to assess efficacy of a medical countermeasure for radiation-induced injuries are addressed, and recommendations are made to assist investigators in carrying out research that is robust, reproducible, and accurate.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Zulmarie Perez Horta
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Carmen I Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Lanyn P Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - David R Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| |
Collapse
|
26
|
Koch AL, Rusnak M, Peachee K, Isaac A, McCart EA, Rittase WB, Olsen CH, Day RM, Symes AJ. Comparison of the effects of osmotic pump implantation with subcutaneous injection for administration of drugs after total body irradiation in mice. Lab Anim 2020; 55:142-149. [PMID: 32703063 DOI: 10.1177/0023677220939991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The increasing potential for radiation exposure from nuclear accidents or terrorist activities has intensified the need to develop pharmacologic countermeasures against injury from total body irradiation (TBI). Many initial experiments to develop and test these countermeasures utilize murine irradiation models. Yet, the route of drug administration can alter the response to irradiation injury. Studies have demonstrated that cutaneous injuries can exacerbate damage from radiation, and thus surgical implantation of osmotic pumps for drug delivery could adversely affect the survival of mice following TBI. However, daily handling and injections to administer drugs could also have negative consequences. This study compared the effects of subcutaneous needlesticks with surgical implantation of osmotic pumps on morbidity and mortality in a murine model of hematopoietic acute radiation syndrome (H-ARS). C57BL/6 mice were sham irradiated or exposed to a single dose of 7.7 Gy 60Co TBI. Mice were implanted with osmotic pumps containing sterile saline seven days prior to irradiation or received needlesticks for 14 days following irradiation or received no treatment. All irradiated groups exhibited weight loss. Fewer mice with osmotic pumps survived to 30 days post irradiation (37.5%) than mice receiving needlesticks or no treatment (70% and 80%, respectively), although this difference was not statistically significant. However, mice implanted with the pump lost significantly more weight than mice that received needlesticks or no treatment. These data suggest that surgical implantation of a drug-delivery device can adversely affect the outcome in a murine model of H-ARS.
Collapse
Affiliation(s)
- Amory L Koch
- Department of Laboratory Animal Resources, Uniformed Services University of the Health Sciences, USA
| | - Milan Rusnak
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, USA
| | - Katherine Peachee
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, USA
| | - Akira Isaac
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, USA
| | - Elizabeth A McCart
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, USA
| | - W Bradley Rittase
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, USA
| | - Cara H Olsen
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, USA
| | - Regina M Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, USA
| | - Aviva J Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, USA
| |
Collapse
|
27
|
Bunin DI, Bakke J, Green CE, Javitz HS, Fielden M, Chang PY. Romiplostim (Nplate ®) as an effective radiation countermeasure to improve survival and platelet recovery in mice. Int J Radiat Biol 2019; 96:145-154. [PMID: 31021662 DOI: 10.1080/09553002.2019.1605465] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Purpose: Rapid depletion of white blood cells, platelets, and reticulocytes are hallmarks of hematopoietic injury of acute radiation syndrome (H-ARS) and, if left untreated, can lead to severe health consequences including death. While the granulocyte colony stimulating factors (G-CSF) filgrastim (Neupogen®), pegfilgrastim (Neulasta®), and sargramostim (Leukine®) are approved to increase survival in patients exposed to a myelosuppressive dose of radiation, no medical countermeasure is currently available for treatment of the thrombocytopenia that also results following radiation exposure. Romiplostim (Nplate®), a thrombopoietin receptor agonist, is the first FDA-approved thrombopoiesis-stimulating protein for the treatment of low platelet (PLT) counts in adults with chronic immune thrombocytopenia. Herein, we present the results of an analysis in mice of romiplostim as a medical countermeasure to improve survival and PLT recovery following acute radiation.Materials and methods: Male and female C57BL/6J mice (11 - 12 weeks of age, n = 21/sex/group) were total body irradiated (TBI) with 6.8 Gy X-rays that reduces 30-day survival to 30% (LD70/30). Vehicle, romiplostim, and/or pegfilgrastim were administered subcutaneously beginning 24 h after TBI for 1-5 days. Evaluation parameters included 30-day survival, pharmacokinetics, and hematology.Results: Full or maximal efficacy with an ∼40% increase in survival was achieved after a single 30 µg/kg dose of romiplostim. No further survival benefit was seen with higher (100 µg/kg) or more frequent dosing (3 or 5 once daily doses at 30 µg/kg) of romiplostim or combined treatment with pegfilgrastim. Pharmacodynamic analysis revealed that the platelet nadir was not as low and recovery was faster in the irradiated mice treated with romiplostim when compared with irradiated control animals (Day 8 versus 10 nadir; Day 22 versus 29 recovery to near baseline). Platelet volume also increased more rapidly after romiplostim injection. Kinetic profiles of other hematology parameters were similar between TBI romiplostim-treated and control mice. Peak serum levels of romiplostim in TBI mice occurred 4 - 24 h (Tmax) after injection with a t1/2 of ∼24 h. Cmax values were at ∼6 ng/ml after 30 µg/kg ± TBI and ∼200 ng/ml after 300 µg/kg. A 10-fold higher romiplostim dose increased the AUClast values by ∼35-fold.Conclusion: A single injection of romiplostim administered 24 h after TBI is a promising radiation medical countermeasure that dramatically increased survival, with or without pegfilgrastim, and hastened PLT recovery in mice.
Collapse
Affiliation(s)
| | - James Bakke
- SRI Biosciences, SRI International, Menlo Park, CA, USA
| | - Carol E Green
- SRI Biosciences, SRI International, Menlo Park, CA, USA
| | | | | | - Polly Y Chang
- SRI Biosciences, SRI International, Menlo Park, CA, USA
| |
Collapse
|
28
|
Jones JW, Alloush J, Sellamuthu R, Chua HL, MacVittie TJ, Orschell CM, Kane MA. Effect of Sex on Biomarker Response in a Mouse Model of the Hematopoietic Acute Radiation Syndrome. HEALTH PHYSICS 2019; 116:484-502. [PMID: 30681425 PMCID: PMC6384137 DOI: 10.1097/hp.0000000000000961] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Sex is an important confounding variable in biomarker development that must be incorporated into biomarker discovery and validation. Additionally, understanding of sex as a biological variable is essential for effective translation of biomarkers in animal models to human populations. Toward these ends, we conducted high-throughput targeted metabolomics using liquid chromatography tandem mass spectrometry and multiplexed immunoassay analyses using a Luminex-based system in both male and female mice in a model of total-body irradiation at a radiation dose consistent with the hematopoietic acute radiation syndrome. Metabolomic and immunoassay analyses identified metabolites and cytokines that were significantly different in plasma from naive and irradiated C57BL/6 mice consisting of equal numbers of female and male mice at 3 d after 8.0 or 8.72 Gy, an approximate LD60-70/30 dose of total-body irradiation. An additional number of metabolites and cytokines had sex-specific responses after radiation. Analyses of sham-irradiated mice illustrate the presence of stress-related changes in several cytokines due simply to undergoing the irradiation procedure, absent actual radiation exposure. Basal differences in metabolite levels between female and male were also identified as well as time-dependent changes in cytokines up to 9 d postexposure. These studies provide data toward defining the influence of sex on plasma-based biomarker candidates in a well-defined mouse model of acute radiation syndrome.
Collapse
Affiliation(s)
- Jace W. Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Jenna Alloush
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | | | - Hui Lin Chua
- Indiana University School of Medicine, Indianapolis, IN
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | | | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| |
Collapse
|
29
|
Chua HL, Artur Plett P, Fisher A, Sampson CH, Vemula S, Feng H, Sellamuthu R, Wu T, MacVittie TJ, Orschell CM. Lifelong Residual bone Marrow Damage in Murine Survivors of the Hematopoietic Acute Radiation Syndrome (H-ARS): A Compilation of Studies Comprising the Indiana University Experience. HEALTH PHYSICS 2019; 116:546-557. [PMID: 30789496 PMCID: PMC6388630 DOI: 10.1097/hp.0000000000000950] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Accurate analyses of the delayed effects of acute radiation exposure in survivors of the hematopoietic acute radiation syndrome are hampered by low numbers of mice for examination due to high lethality from the acute syndrome, increased morbidity and mortality in survivors, high cost of husbandry for long-term studies, biological variability, and inconsistencies of models from different laboratories complicating meta-analyses. To address this, a compilation of 38 similar hematopoietic acute radiation syndrome studies conducted over a 7-y period in the authors' laboratory, comprising more than 1,500 irradiated young adult C57BL/6 mice and almost 600 day-30 survivors, was assessed for hematopoietic delayed effects of acute radiation exposure at various times up to 30 mo of age. Significant loss of long-term repopulating potential of phenotypically defined primitive hematopoietic stem cells was documented in hematopoietic acute radiation syndrome survivors, as well as significant decreases in all hematopoietic lineages in peripheral blood, prominent myeloid skew, significantly decreased bone marrow cellularity, and numbers of lineage-negative Sca-1+ cKit+ CD150+ cells (KSL CD150+; the phenotype known to be enriched for hematopoietic stem cells), and increased cycling of KSL CD150+ cells. Studies interrogating the phenotype of bone marrow cells capable of initiation of suspension cultures and engraftment in competitive transplantation assays documented the phenotype of hematopoietic stem cells in hematopoietic acute radiation syndrome survivors to be the same as that in nonirradiated age-matched controls. This compilation study adds rigor and validity to our initial findings of persistent hematopoietic dysfunction in hematopoietic acute radiation syndrome survivors that arises at the level of the hematopoietic stem cell and which affects all classes of hematopoietic cells for the life of the survivor.
Collapse
Affiliation(s)
- Hui Lin Chua
- : Indiana University School of Medicine, Indianapolis, IN, USA
| | - P. Artur Plett
- : Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexa Fisher
- : Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Sasidhar Vemula
- : Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hailin Feng
- : Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Tong Wu
- : Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
30
|
MacVittie TJ, Farese AM, Kane MA. ARS, DEARE, and Multiple-organ Injury: A Strategic and Tactical Approach to Link Radiation Effects, Animal Models, Medical Countermeasures, and Biomarker Development to Predict Clinical Outcome. HEALTH PHYSICS 2019; 116:297-304. [PMID: 30608246 PMCID: PMC8439279 DOI: 10.1097/hp.0000000000001045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
| | - Ann M Farese
- University of Maryland School of Medicine, Baltimore, MD
| | - Maureen A Kane
- University of Maryland School of Pharmacy, Baltimore, MD
| |
Collapse
|
31
|
Prado C, MacVittie TJ, Bennett AW, Kazi A, Farese AM, Prado K. Organ Doses Associated with Partial-Body Irradiation with 2.5% Bone Marrow Sparing of the Non-Human Primate: A Retrospective Study. Radiat Res 2017; 188:615-625. [PMID: 28985133 DOI: 10.1667/rr14804.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A partial-body irradiation model with approximately 2.5% bone marrow sparing (PBI/BM2.5) was established to determine the radiation dose-response relationships for the prolonged and delayed multi-organ effects of acute radiation exposure. Historically, doses reported to the entire body were assumed to be equal to the prescribed dose at some defined calculation point, and the dose-response relationship for multi-organ injury has been defined relative to the prescribed dose being delivered at this point, e.g., to a point at mid-depth at the level of the xiphoid of the non-human primate (NHP). In this retrospective-dose study, the true distribution of dose within the major organs of the NHP was evaluated, and these doses were related to that at the traditional dose-prescription point. Male rhesus macaques were exposed using the PBI/BM2.5 protocol to a prescribed dose of 10 Gy using 6-MV linear accelerator photons at a rate of 0.80 Gy/min. Point and organ doses were calculated for each NHP from computed tomography (CT) scans using heterogeneous density data. The prescribed dose of 10.0 Gy to a point at midline tissue assuming homogeneous media resulted in 10.28 Gy delivered to the prescription point when calculated using the heterogeneous CT volume of the NHP. Respective mean organ doses to the volumes of nine organs, including the heart, lung, bowel and kidney, were computed. With modern treatment planning systems, utilizing a three-dimensional reconstruction of the NHP's CT images to account for the variations in body shape and size, and using density corrections for each of the tissue types, bone, water, muscle and air, accurate determination of the differences in dose to the NHP can be achieved. Dose and volume statistics can be ascertained for any body structure or organ that has been defined using contouring tools in the planning system. Analysis of the dose delivered to critical organs relative to the total-body target dose will permit a more definitive analysis of organ-specific effects and their respective influence in multiple organ injury.
Collapse
Affiliation(s)
- C Prado
- a Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - T J MacVittie
- a Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - A W Bennett
- a Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - A Kazi
- b Veterans Administration, Maryland Health Care System, Baltimore, Maryland
| | - A M Farese
- a Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - K Prado
- a Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
32
|
Fish BL, Gao F, Narayanan J, Bergom C, Jacobs ER, Cohen EP, Moulder JE, Orschell CM, Medhora M. Combined Hydration and Antibiotics with Lisinopril to Mitigate Acute and Delayed High-dose Radiation Injuries to Multiple Organs. HEALTH PHYSICS 2016; 111:410-9. [PMID: 27682899 PMCID: PMC5065284 DOI: 10.1097/hp.0000000000000554] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The NIAID Radiation and Nuclear Countermeasures Program is developing medical agents to mitigate the acute and delayed effects of radiation that may occur from a radionuclear attack or accident. To date, most such medical countermeasures have been developed for single organ injuries. Angiotensin converting enzyme (ACE) inhibitors have been used to mitigate radiation-induced lung, skin, brain, and renal injuries in rats. ACE inhibitors have also been reported to decrease normal tissue complication in radiation oncology patients. In the current study, the authors have developed a rat partial-body irradiation (leg-out PBI) model with minimal bone marrow sparing (one leg shielded) that results in acute and late injuries to multiple organs. In this model, the ACE inhibitor lisinopril (at ~24 mg m d started orally in the drinking water at 7 d after irradiation and continued to ≥150 d) mitigated late effects in the lungs and kidneys after 12.5-Gy leg-out PBI. Also in this model, a short course of saline hydration and antibiotics mitigated acute radiation syndrome following doses as high as 13 Gy. Combining this supportive care with the lisinopril regimen mitigated overall morbidity for up to 150 d after 13-Gy leg-out PBI. Furthermore, lisinopril was an effective mitigator in the presence of the growth factor G-CSF (100 μg kg d from days 1-14), which is FDA-approved for use in a radionuclear event. In summary, by combining lisinopril (FDA-approved for other indications) with hydration and antibiotics, acute and delayed radiation injuries in multiple organs were mitigated.
Collapse
Affiliation(s)
- Brian L. Fish
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Feng Gao
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Jayashree Narayanan
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Carmen Bergom
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Elizabeth R. Jacobs
- Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295
| | - Eric P. Cohen
- Department of Medicine, Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - John E. Moulder
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Christie M. Orschell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
- Department of Medicine, Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| |
Collapse
|