1
|
Horseman TS, Parajuli B, Frank AM, Weaver A, Schauer DA, Moran S, Anderson JA, Holmes-Hampton GP, Burmeister DM. MICROBIOME AND INFLAMMASOME ALTERATIONS FOUND DURING RADIATION DOSE FINDING IN A SINCLAIR MINIPIG MODEL OF GASTROINTESTINAL ACUTE RADIATION SYNDROME. Shock 2024; 62:556-564. [PMID: 39012765 PMCID: PMC11446529 DOI: 10.1097/shk.0000000000002422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024]
Abstract
ABSTRACT Both abdominal radiotherapy and a nuclear event can result in gastrointestinal symptoms, including acute radiation syndrome (GI-ARS). GI-ARS is characterized by compromised intestinal barrier integrity increasing the risk for infectious complications. Physiologically relevant animal models are crucial for elucidating host responses and therapeutic targets. We aimed to determine the radiation dose requirements for creating GI-ARS in the Sinclair minipig. Male, sexually mature swine were randomly divided into sham (n = 6) and three lower hemibody radiation dosage groups of 8, 10, and 12 Gy (n = 5/group) delivered using linear accelerator-derived x-rays (1.9 Gy/min). Animals were monitored for GI-ARS symptoms for 14 days with rectal swab and blood collection at days 0-3, 7, 10, and 14 followed by necropsy for western blotting and histology. Dose-dependent increases in weight loss, diarrhea severity, and mortality (log-rank test, P = 0.041) were seen. Villi length was significantly reduced in all irradiated animals compared to controls ( P < 0.001). Serum citrulline decreased and bacterial translocation increased after irradiation compared to controls. Increased NLRP3 levels in post-mortem jejunum were seen ( P = 0.0043) as well as increased IL-1β levels in the 12 Gy group ( P = 0.041). Radiation dose and survival were associated with significant gut microbial community shifts in beta diversity. Moreover, decedents had increased Porphyromonas, Campylobacter, Bacteroides , Parvimonas , and decreased Fusobacterium and decreased Aerococcus, Lactobacillus, Prevotella, and Streptococcus . Our novel Sinclair minipig model showed dose-dependent clinical symptoms of GI-ARS. These findings provide invaluable insights into the intricate interplay between GI-ARS, intestinal inflammation, and gut microbiota alterations offering potential targets for therapeutic and diagnostic interventions after radiation exposure.
Collapse
Affiliation(s)
- Timothy S. Horseman
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Babita Parajuli
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Andrew M. Frank
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Alia Weaver
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - David A. Schauer
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sean Moran
- Biomedical Instrumentation Center, Proteomics Core, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Joseph A. Anderson
- Comparative Pathology Division, Department of Laboratory Animal Resources, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Gregory P. Holmes-Hampton
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - David M. Burmeister
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
2
|
Eraqi WA, El-Sabbagh WA, Aziz RK, Elshahed MS, Youssef NH, Elkenawy NM. Gastroprotective and microbiome-modulating effects of ubiquinol in rats with radiation-induced enteropathy. Anim Microbiome 2024; 6:40. [PMID: 39030597 PMCID: PMC11264694 DOI: 10.1186/s42523-024-00320-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/02/2024] [Indexed: 07/21/2024] Open
Abstract
Radiation enteritis is a frequently encountered issue for patients receiving radiotherapy and has a significant impact on cancer patients' quality of life. The gut microbiota plays a pivotal role in intestinal function, yet the impact of irradiation on gut microorganisms is not fully understood. This study explores the gastroprotective effect and gut microbiome-modulating potential of ubiquinol (Ubq), the reduced form of the powerful antioxidant CoQ-10. For this purpose, male albino rats were randomly assigned to four groups: Control, IRR (acute 7 Gy γ-radiation), Ubq_Post (Ubq for 7 days post-irradiation), and Ubq_Pre/Post (Ubq for 7 days pre and 7 days post-irradiation). The fecal microbiomes of all groups were profiled by 16S rRNA amplicon sequencing followed by bioinformatics and statistical analysis. Histopathological examination of intestinal tissue indicated severe damage in the irradiated group, which was mitigated by ubiquinol with enhanced regeneration, goblet cells, and intestinal alkaline phosphatase expression. Compared to the irradiated group, the Ubq-treated groups had a significant recovery of intestinal interleukin-1β, caspase-3, nitric oxide metabolites, and thio-barbituric reactive substances to near-healthy levels. Ubq_Pre/Post group displayed elevated peroxisome proliferator-activated receptor (PPAR-γ) level, suggesting heightened benefits. Serum insulin reduction in irradiated rats improved post-Ubq treatment, with a possible anti-inflammatory effect on the pancreatic tissue. Fecal microbiota profiling revealed a dysbiosis state with a reduction of bacterial diversity post-irradiation, which was re-modulated in the Ubq treated groups to profiles that are indistinguishable from the control group. These findings underscore Ubq's gastroprotective effects against radiation-induced enteritis and its potential in restoring the gut microbiota's diversity and balance.
Collapse
Affiliation(s)
- Walaa A Eraqi
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Walaa A El-Sabbagh
- Drug Radiation Research Department, National Center of Radiation and Research Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Microbiology and Immunology Research Program, Children's Cancer Hospital Egypt 57357, Cairo, 11617, Egypt
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74074, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74074, USA
| | - Nora M Elkenawy
- Drug Radiation Research Department, National Center of Radiation and Research Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt.
| |
Collapse
|
3
|
Winters TA, Marzella L, Molinar-Inglis O, Price PW, Han NC, Cohen JE, Wang SJ, Fotenos AF, Sullivan JM, Esker JI, Lapinskas PJ, DiCarlo AL. Gastrointestinal Acute Radiation Syndrome: Mechanisms, Models, Markers, and Medical Countermeasures. Radiat Res 2024; 201:628-646. [PMID: 38616048 PMCID: PMC11658916 DOI: 10.1667/rade-23-00196.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/14/2024] [Indexed: 04/16/2024]
Abstract
There have been a number of reported human exposures to high dose radiation, resulting from accidents at nuclear power plants (e.g., Chernobyl), atomic bombings (Hiroshima and Nagasaki), and mishaps in industrial and medical settings. If absorbed radiation doses are high enough, evolution of acute radiation syndromes (ARS) will likely impact both the bone marrow as well as the gastrointestinal (GI) tract. Damage incurred in the latter can lead to nutrient malabsorption, dehydration, electrolyte imbalance, altered microbiome and metabolites, and impaired barrier function, which can lead to septicemia and death. To prepare for a medical response should such an incident arise, the National Institute of Allergy and Infectious Diseases (NIAID) funds basic and translational research to address radiation-induced GI-ARS, which remains a critical and prioritized unmet need. Areas of interest include identification of targets for damage and mitigation, animal model development, and testing of medical countermeasures (MCMs) to address GI complications resulting from radiation exposure. To appropriately model expected human responses, it is helpful to study analogous disease states in the clinic that resemble GI-ARS, to inform on best practices for diagnosis and treatment, and translate them back to inform nonclinical drug efficacy models. For these reasons, the NIAID partnered with two other U.S. government agencies (the Biomedical Advanced Research and Development Authority, and the Food and Drug Administration), to explore models, biomarkers, and diagnostics to improve understanding of the complexities of GI-ARS and investigate promising treatment approaches. A two-day workshop was convened in August 2022 that comprised presentations from academia, industry, healthcare, and government, and highlighted talks from 26 subject matter experts across five scientific sessions. This report provides an overview of information that was presented during the conference, and important discussions surrounding a broad range of topics that are critical for the research, development, licensure, and use of MCMs for GI-ARS.
Collapse
Affiliation(s)
- Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Libero Marzella
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Olivia Molinar-Inglis
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Paul W. Price
- Office of Regulatory Affairs, DAIT, NIAID, NIH, Rockville, Maryland
| | - Nyun Calvin Han
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Jonathan E. Cohen
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Sue-Jane Wang
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Anthony F. Fotenos
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Julie M. Sullivan
- Center for Devices for Radiological Health (CDRH), FDA, Silver Spring, Maryland
| | - John I. Esker
- Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC
| | - Paula J. Lapinskas
- Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
4
|
Horseman TS, Frank AM, Cannon G, Zhai M, Olson MG, Lin B, Li X, Hull L, Xiao M, Kiang JG, Burmeister DM. Effects of combined ciprofloxacin and Neulasta therapy on intestinal pathology and gut microbiota after high-dose irradiation in mice. Front Public Health 2024; 12:1365161. [PMID: 38807988 PMCID: PMC11130442 DOI: 10.3389/fpubh.2024.1365161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/20/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction Treatments that currently exist in the strategic national stockpile for acute radiation syndrome (ARS) focus on the hematopoietic subsyndrome, with no treatments on gastrointestinal (GI)-ARS. While the gut microbiota helps maintain host homeostasis by mediating GI epithelial and mucosal integrity, radiation exposure can alter gut commensal microbiota which may leave the host susceptible to opportunistic pathogens and serious sequelae such as sepsis. To mitigate the effects of hematopoietic ARS irradiation, currently approved treatments exist in the form of colony stimulating factors and antibiotics: however, there are few studies examining how these therapeutics affect GI-ARS and the gut microbiota. The aim of our study was to examine the longitudinal effects of Neulasta and/or ciprofloxacin treatment on the gut microbiota after exposure to 9.5 Gy 60Co gamma-radiation in mice. Methods The gut microbiota of vehicle and drug-treated mice exposed to sham or gamma-radiation was characterized by shotgun sequencing with alpha diversity, beta diversity, and taxonomy analyzed on days 2, 4, 9, and 15 post-irradiation. Results No significant alpha diversity differences were observed following radiation, while beta diversity shifts and taxonomic profiles revealed significant alterations in Akkermansia, Bacteroides, and Lactobacillus. Ciprofloxacin generally led to lower Shannon diversity and Bacteroides prevalence with increases in Akkermansia and Lactobacillus compared to vehicle treated and irradiated mice. While Neulasta increased Shannon diversity and by day 9 had more similar taxonomic profiles to sham than ciprofloxacin-or vehicle-treated irradiated animals. Combined therapy of Neulasta and ciprofloxacin induced a decrease in Shannon diversity and resulted in unique taxonomic profiles early post-irradiation, returning closer to vehicle-treated levels over time, but persistent increases in Akkermansia and Bacteroides compared to Neulasta alone. Discussion This study provides a framework for the identification of microbial elements that may influence radiosensitivity, biodosimetry and the efficacy of potential therapeutics. Moreover, increased survival from H-ARS using these therapeutics may affect the symptoms and appearance of what may have been subclinical GI-ARS.
Collapse
Affiliation(s)
- Timothy S. Horseman
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Andrew M. Frank
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Georgetta Cannon
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Min Zhai
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Matthew G. Olson
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Bin Lin
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Xianghong Li
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Lisa Hull
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Mang Xiao
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Juliann G. Kiang
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - David M. Burmeister
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
5
|
Bolduc DL, Cary LH, Kiang JG, Kurada L, Kumar VP, Edma SA, Olson MG, Vergara VB, Bistline DD, Reese M, Kenchegowda D, Hood M, Korotcov A, Jaiswal S, Blakely WF. Natural-history Characterization of a Murine Partial-body Irradiation Model System: Establishment of a Multiple-Parameter Based GI-ARS Severity-Scoring System. Radiat Res 2024; 201:406-417. [PMID: 38319684 DOI: 10.1667/rade-23-00132.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/15/2023] [Indexed: 02/07/2024]
Abstract
The purpose of this investigation was to characterize the natural history of a murine total-abdominal-irradiation exposure model to measure gastrointestinal acute radiation injury. Male CD2F1 mice at 12 to 15 weeks old received total-abdominal irradiation using 4-MV linear accelerator X-rays doses of 0, 11, 13.5, 15, 15.75 and 16.5 Gy (2.75 Gy/min). Daily cage-side (i.e., in the animal housing room) observations of clinical signs and symptoms including body weights on all animals were measured up to 10 days after exposure. Jejunum tissues from cohorts of mice were collected at 1, 3, 7 and 10 days after exposure and radiation injury was assessed by histopathological analyses. Results showed time- and dose-dependent loss of body weight [for example at 7 days: 0.66 (±0.80) % loss for 0 Gy, 6.40 (±0.76) % loss at 11 Gy, 9.43 (±2.06) % loss at 13.5 Gy, 23.53 (± 1.91) % loss at 15 Gy, 29.97 (±1.16) % loss at 15.75 Gy, and 31.79 (±0.76) % loss at 16.5 Gy]. Negligible clinical signs and symptoms, except body weight changes, of radiation injury were observed up to 10 days after irradiation with doses of 11 to 15 Gy. Progressive increases in the severity of clinical signs and symptoms were found after irradiation with doses >15 Gy. Jejunum histology showed a progressive dose-dependent increase in injury. For example, at 7 days postirradiation, the percent of crypts, compared to controls, decreased to 82.3 (±9.5), 69.2 (±12.3), 45.4 (±11.9), 18.0 (±3.4), and 11.5 (± 1.8) with increases in doses from 11 to 16.5 Gy. A mucosal injury scoring system was used that mainly focused on changes in villus morphology damage (i.e., subepithelial spaces near the tips of the villi with capillary congestion, significant epithelial lifting along the length of the villi with a few denuded villus tips). Peak levels of total-abdominal irradiation induced effects on the mucosal injury score were seen 7 days after irradiation for doses ≥15 Gy, with a trend to show a decline after 7 days. A murine multiple-parameter gastrointestinal acute-radiation syndrome severity-scoring system was established based on clinical signs and symptoms that included measures of appearance (i.e., hunched and/or fluffed fur), respiratory rate, general (i.e., decreased mobility) and provoked behavior (i.e., subdued response to stimulation), weight loss, and feces/diarrhea score combined with jejunum mucosal-injury grade score. In summary, the natural-history radio-response for murine partial-body irradiation exposures is important for establishing a well-characterized radiation model system; here we established a multiple-parameter gastrointestinal acute-radiation syndrome severity-scoring system that provides a radiation injury gastrointestinal tissue-based assessment utility.
Collapse
Affiliation(s)
- David L Bolduc
- Scientific Research Department, Armed Forces Radiobiology Research Institute
| | - Lynnette H Cary
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Pharmacology and Molecular Therapeutics
| | - Juliann G Kiang
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Pharmacology and Molecular Therapeutics
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Lalitha Kurada
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, Maryland
| | - Vidya P Kumar
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, Maryland
| | - Sunshine A Edma
- Scientific Research Department, Armed Forces Radiobiology Research Institute
| | - Matthew G Olson
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, Maryland
| | - Vernieda B Vergara
- Scientific Research Department, Armed Forces Radiobiology Research Institute
| | - Dalton D Bistline
- Scientific Research Department, Armed Forces Radiobiology Research Institute
| | - Mario Reese
- Scientific Research Department, Armed Forces Radiobiology Research Institute
| | - Doreswamy Kenchegowda
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, Maryland
| | - Maureen Hood
- Biomedical Research Imaging Core at Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Radiology & Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Alexandru Korotcov
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, Maryland
- Biomedical Research Imaging Core at Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Radiology & Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Shalini Jaiswal
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, Maryland
- Biomedical Research Imaging Core at Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Radiology & Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - William F Blakely
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Preventive Medicine and Statistics, Uniformed Services of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
6
|
Garg TK, Garg S, Miousse IR, Wise SY, Carpenter AD, Fatanmi OO, van Rhee F, Singh VK, Hauer-Jensen M. Modulation of Hematopoietic Injury by a Promising Radioprotector, Gamma-Tocotrienol, in Rhesus Macaques Exposed to Partial-Body Radiation. Radiat Res 2024; 201:55-70. [PMID: 38059553 DOI: 10.1667/rade-23-00075.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
Currently, no radioprotectors have been approved to mitigate hematopoietic injury after exposure to ionizing radiation. Acute ionizing radiation results in damage to both hematopoietic and immune system cells. Pre-exposure prophylactic agents are needed for first responders and military personnel. In this study, the ability of gamma-tocotrienol (GT3), a promising radioprotector and antioxidant, to ameliorate partial-body radiation-induced damage to the hematopoietic compartment was evaluated in a nonhuman primate (NHP) model. A total of 15 rhesus NHPs were divided into two groups, and were administered either GT3 or vehicle 24 h prior to 4 or 5.8 Gy partial-body irradiation (PBI), with 5% bone marrow (BM) sparing. Each group consisted of four NHPs, apart from the vehicle-treated group exposed to 5.8 Gy, which had only three NHPs. BM samples were collected 8 days prior to irradiation in addition to 2, 7, 14, and 30 days postirradiation. To assess the clonogenic ability of hematopoietic stem and progenitor cells (HSPCs), colony forming unit (CFU) assays were performed, and lymphoid cells were immunophenotyped using flow cytometry. As a result of GT3 treatment, an increase in HSPC function was evident by an increased recovery of CFU-granulocyte macrophages (CFU-GM). Additionally, GT3 treatment was shown to increase the percentage of CD34+ cells, including T and NK-cell subsets. Our data further affirm GT3's role in hematopoietic recovery and suggest the need for its further development as a prophylactic radiation medical countermeasure.
Collapse
Affiliation(s)
- Tarun K Garg
- UAMS Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Sarita Garg
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Isabelle R Miousse
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Stephen Y Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Alana D Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Oluseyi O Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Frits van Rhee
- UAMS Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
7
|
Kumar VP, Wuddie K, Tsioplaya A, Weaver A, Holmes-Hampton GP, Ghosh SP. Development of a Multi-Organ Radiation Injury Model with Precise Dosimetry with Focus on GI-ARS. Radiat Res 2024; 201:19-34. [PMID: 38014611 DOI: 10.1667/rade-23-00068.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/23/2023] [Indexed: 11/29/2023]
Abstract
The goal of this study was to establish a model of partial-body irradiation (PBI) sparing 2.5% of the bone marrow (BM2.5-PBI) that accurately recapitulates radiological/nuclear exposure scenarios. Here we have reported a model which produces gastrointestinal (GI) damage utilizing a clinical linear accelerator (LINAC) with precise dosimetry, which can be used to develop medical countermeasures (MCM) for GI acute radiation syndrome (ARS) under the FDA animal rule. The PBI model (1 hind leg spared) was developed in male and female C57BL/6 mice that received radiation doses ranging from 12-17 Gy with no supportive care. GI pathophysiology was assessed by crypt cell loss and correlated with peak lethality between days 4 and 10 after PBI. The radiation dose resulting in 50% mortality in 30 days (LD50/30) was determined by probit analysis. Differential blood cell counts in peripheral blood, colony forming units (CFU) in bone marrow, and sternal megakaryocytes were analyzed between days 1-30, to assess the extent of hematopoietic ARS (H-ARS) injury. Radiation-induced GI damage was also assessed by measuring: 1. bacterial load (16S rRNA) by RT-PCR on days 4 and 7 after PBI in liver, spleen and jejunum, 2. liposaccharide binding protein (LBP) levels in liver, and 3. fluorescein isothiocyanate (FITC)-dextran, E-selectin, sP-selectin, VEGF, FGF-2, MMP-9, citrulline, and serum amyloid A (SAA) levels in serum. The LD50/30 of male mice was 14.3 Gy (95% confidence interval 14.1-14.7 Gy) and of female mice was 14.5 Gy (95% confidence interval 14.3-14.7 Gy). Secondary endpoints included loss of viable crypts, higher bacterial loads in spleen and liver, higher LBP in liver, increased FITC-dextran and SAA levels, and decreased levels of citrulline and endothelial biomarkers in serum. The BM2.5-PBI model, developed for the first time with precise dosimetry, showed acute radiation-induced GI damage that is correlated with lethality, as well as a response to various markers of inflammation and vascular damage. Sex-specific differences were observed with respect to radiation dose response. Currently, no MCM is available as a mitigator for GI-ARS. This BM2.5-PBI mouse model can be regarded as the first high-throughput PBI model with precise dosimetry for developing MCMs for GI-ARS under the FDA animal rule.
Collapse
Affiliation(s)
- Vidya P Kumar
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Kefale Wuddie
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Alena Tsioplaya
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Alia Weaver
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Gregory P Holmes-Hampton
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Sanchita P Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| |
Collapse
|
8
|
Cui W, Hull L, Zizzo A, Wang L, Lin B, Zhai M, Kumar VP, Xiao M. The Roles of IL-18 in a Realistic Partial Body Irradiation with 5% Bone Marrow Sparing (PBI/BM5) Model. TOXICS 2023; 12:5. [PMID: 38276718 PMCID: PMC10819571 DOI: 10.3390/toxics12010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
IL-18 has been shown to play important roles in response to total body irradiation. However, homogenous total body irradiation is not a realistic model to reflect the radiation exposure in a real nuclear event. To further study the roles of IL-18 in a real nuclear scenario, we developed a mouse partial body irradiation with 5% bone marrow sparing (PBI/BM5) model to mimic the inhomogeneous radiation exposure. We established the dose response curves of PBI/BM5 using different radiation doses ranging from 12 to 16 Gy. Using the PBI/BM5 model, we showed that IL-18 knockout mice were significantly more radiation resistant than the wild-type mice at 14.73 Gy. We further studied the hematopoietic changes using a complete blood count, bone marrow colony-forming assays, and serum cytokine assays on the mice exposed to PBI/BM5 with IL-18BP treatment and wild-type/IL-18 knockout mice. In conclusion, our data suggest that IL-18 plays important roles in mouse survival in a realistic nuclear exposure model, potentially through the IL-18/IFNγ pathway.
Collapse
Affiliation(s)
- Wanchang Cui
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Lisa Hull
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Alex Zizzo
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
| | - Li Wang
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Bin Lin
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Min Zhai
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Vidya P. Kumar
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Mang Xiao
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
| |
Collapse
|
9
|
Kenchegowda D, Bolduc DL, Kurada L, Blakely WF. Severity scoring systems for radiation-induced GI injury - Prioritization for use of GI-ARS medical countermeasures. Int J Radiat Biol 2023:1-9. [PMID: 37172305 DOI: 10.1080/09553002.2023.2210669] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
PURPOSE Severity scoring systems for ionizing radiation-induced gastrointestinal injury have been used in animal radiation models, human studies involving the use of radiation therapy, and radiation accidents. Various radiation exposure scenarios (i.e., total body irradiation, total abdominal irradiation, etc.) have been used to investigate ionizing radiation-induced gastrointestinal injury. These radiation-induced GI severity scoring systems are based on clinical signs and symptoms and gastrointestinal-specific biomarkers (i.e., citrulline, etc.). In addition, the time course for radiation-induced changes in blood citrulline levels were compared across various animal (i.e., mice, minipigs, Rhesus Macaque, etc.) and human model systems. CONCLUSIONS A worksheet tool was developed to prioritize individuals with severe life-threatening gastrointestinal acute radiation syndrome, based on the design of the Exposure and Symptom Tool addressing hematopoietic acute radiation syndrome, to rescue individuals from potential gastrointestinal acute radiation syndrome injury. This tool provides a triage diagnostic approach to assist first-responders to assess individuals suspected of showing gastrointestinal acute radiation syndrome severity to guide medical management, hence enhancing medical readiness for managing radiological casualties.
Collapse
Affiliation(s)
- Doreswamy Kenchegowda
- Biodosimetry Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - David L Bolduc
- Biodosimetry Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lalitha Kurada
- Biodosimetry Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M Jackson Foundation, 6720A Rockledge Drive, Bethesda, MD USA
| | - William F Blakely
- Biodosimetry Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
10
|
Beach T, Bakke J, Riccio E, Javitz HS, Nishita D, Kapur S, Bunin DI, Chang PY. The progression of radiation injury in a Wistar rat model of partial body irradiation with ∼5% bone marrow shielding. Int J Radiat Biol 2023:1-16. [PMID: 36930794 DOI: 10.1080/09553002.2023.2188937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
PURPOSE To describe the dose response relationship and natural history of radiation injury in the Wistar rat and it's suitability for use in medical countermeasures (MCM) testing. MATERIALS & METHODS In two separate studies, male and female rats were exposed to partial body irradiation (PBI) with 5% bone marrow sparing. Animals were X-ray irradiated from 7 to 12 Gy at 7-10 weeks of age. Acute radiation syndrome (ARS) survival at 30 days and delayed effects of acute radiation exposure (DEARE) survival at 182 days were assessed. Radiation effects were determined by clinical observations, body weights, hematology, clinical chemistry, magnetic resonance imaging of lung, whole-body plethysmography, and histopathology. RESULTS Rats developed canonical ARS responses of hematopoietic atrophy and gastrointestinal injury resulting in mortality at doses ≥8Gy in males and ≥8.5 Gy in females. DEARE mortality occurred at doses ≥8Gy for both sexes. Findings indicate lung, kidney, and/or liver injury, and persistent hematological dysregulation, revealing multi-organ injury as a DEARE. CONCLUSION The Wistar rat PBI model is suitable for testing MCMs against hematopoietic and gastrointestinal ARS. DEARE multi-organ injury occurred in both sexes irradiated with 8-9Gy, also suggesting suitability for polypharmacy studies addressing the combination of ARS and DEARE injury.
Collapse
Affiliation(s)
| | | | - Ed Riccio
- SRI International, Menlo Park, CA, USA
| | | | | | | | | | | |
Collapse
|
11
|
Sharma GP, Himburg HA. Organ-Specific Endothelial Dysfunction Following Total Body Irradiation Exposure. TOXICS 2022; 10:toxics10120747. [PMID: 36548580 PMCID: PMC9781710 DOI: 10.3390/toxics10120747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 05/14/2023]
Abstract
As the single cell lining of the heart and all blood vessels, the vascular endothelium serves a critical role in maintaining homeostasis via control of vascular tone, immune cell recruitment, and macromolecular transit. For victims of acute high-dose radiation exposure, damage to the vascular endothelium may exacerbate the pathogenesis of acute and delayed multi-organ radiation toxicities. While commonalities exist between radiation-induced endothelial dysfunction in radiosensitive organs, the vascular endothelium is known to be highly heterogeneous as it is required to serve tissue and organ specific roles. In keeping with its organ and tissue specific functionality, the molecular and cellular response of the endothelium to radiation injury varies by organ. Therefore, in the development of medical countermeasures for multi-organ injury, it is necessary to consider organ and tissue-specific endothelial responses to both injury and candidate mitigators. The purpose of this review is to summarize the pathogenesis of endothelial dysfunction following total or near total body irradiation exposure at the level of individual radiosensitive organs.
Collapse
Affiliation(s)
- Guru Prasad Sharma
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Heather A. Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: ; Tel.: +1-(414)-955-4676
| |
Collapse
|
12
|
Garg S, Garg TK, Miousse IR, Wise SY, Fatanmi OO, Savenka AV, Basnakian AG, Singh VK, Hauer-Jensen M. Effects of Gamma-Tocotrienol on Partial-Body Irradiation-Induced Intestinal Injury in a Nonhuman Primate Model. Antioxidants (Basel) 2022; 11:1895. [PMID: 36290618 PMCID: PMC9598988 DOI: 10.3390/antiox11101895] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Exposure to high doses of radiation, accidental or therapeutic, often results in gastrointestinal (GI) injury. To date, there are no therapies available to mitigate GI injury after radiation exposure. Gamma-tocotrienol (GT3) is a promising radioprotector under investigation in nonhuman primates (NHP). We have shown that GT3 has radioprotective function in intestinal epithelial and crypt cells in NHPs exposed to 12 Gy total-body irradiation (TBI). Here, we determined GT3 potential in accelerating the GI recovery in partial-body irradiated (PBI) NHPs using X-rays, sparing 5% bone marrow. Sixteen rhesus macaques were treated with either vehicle or GT3 24 h prior to 12 Gy PBI. Structural injuries and crypt survival were examined in proximal jejunum on days 4 and 7. Plasma citrulline was assessed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Crypt cell proliferation and apoptotic cell death were evaluated using Ki-67 and TUNEL staining. PBI significantly decreased mucosal surface area and reduced villous height. Interestingly, GT3 increased crypt survival and enhanced stem cell proliferation at day 4; however, the effects seemed to be minimized by day 7. GT3 did not ameliorate a radiation-induced decrease in citrulline levels. These data suggest that X-rays induce severe intestinal injury post-PBI and that GT3 has minimal radioprotective effect in this novel model.
Collapse
Affiliation(s)
- Sarita Garg
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Tarun K. Garg
- UAMS Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Isabelle R. Miousse
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stephen Y. Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Oluseyi O. Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Alena V. Savenka
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alexei G. Basnakian
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- John L. McClellan Memorial VA Hospital, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
13
|
Saliev T, Fakhradiyev I, Tanabayeva S, Assanova Y, Toishybek D, Kazybayeva A, Tanabayev B, Sikhymbaev M, Alimbayeva A, Toishibekov Y. "Radio-Protective Effect of Aminocaproic Acid in Human Spermatozoa". Int J Radiat Biol 2022; 98:1462-1472. [PMID: 35021023 DOI: 10.1080/09553002.2022.2027540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND The negative effects of ionizing radiation on organs and the reproductive system are well known and documented. Exposure to gamma radiation can lead to oligospermia, azoospermia and DNA damage. Up to date, there is no effective pharmaceutical compound for protecting the male reproductive system and sperm. OBJECTIVE This study aimed at investigating the ability of Ɛ-aminocaproic acid (EACA) to prevent the damage of human spermatozoa and DNA induced by ionizing radiation. MATERIALS AND METHODS Sperm samples were obtained from healthy volunteers (35 men; 31.50 ± 7.34 years old). There were 4 experimental groups: 1) control group (CG), 2) group exposed to maximal radiation dose 67.88 mGy (RMAX), 3) low-dose radiation (minimal) 22.62 mGy (RMIN), and 4) group treated with radiation (67.88 mGy) and EACA (dose 50 ng/ml). Sperm motility, viability, and DNA damage were assessed. RESULTS We observed a significant decrease in total sperm motility of the RMAX group compared to CG (p < 0.05). Sperm viability in the RMAX group was also reduced in comparison to the control (p < 0.05). A significant increase in DNA fragmentation was detected in the RMAX group. The results demonstrated that the treatment of sperm with EACA led to a decrease in the fragmentation of the sperm DNA (compared to the RMAX group) (p < 0.05). CONCLUSION The results indicate that EACA effectively protects human spermatozoa from DNA damage induced by ionizing radiation. Treatment of spermatozoa with EACA led to the preservation of cell motility, viability, and DNA integrity upon radiation exposure.
Collapse
Affiliation(s)
- Timur Saliev
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Ildar Fakhradiyev
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Shynar Tanabayeva
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Yelena Assanova
- F.M. Muhamedgaliev Institute of Experimental Biology, Almaty, Kazakhstan
| | - Dinmukhamed Toishybek
- F.M. Muhamedgaliev Institute of Experimental Biology, Almaty, Kazakhstan.,Embryo Technology Labs, Almaty, Kazakhstan
| | - Aigul Kazybayeva
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan.,Clinic of Reproduction and Anti Age, Almaty, Kazakhstan
| | | | - Marat Sikhymbaev
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | | | - Yerzhan Toishibekov
- F.M. Muhamedgaliev Institute of Experimental Biology, Almaty, Kazakhstan.,Embryo Technology Labs, Almaty, Kazakhstan
| |
Collapse
|
14
|
DiCarlo AL, Homer MJ, Coleman CN. United States medical preparedness for nuclear and radiological emergencies. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:10.1088/1361-6498/ac0d3f. [PMID: 34153947 PMCID: PMC8648948 DOI: 10.1088/1361-6498/ac0d3f] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
With the end of the Cold War in 1991, U.S. Government (USG) investments in radiation science and medical preparedness were phased out; however, the events of 11 September, which involved a terroristic attack on American soil, led to the re-establishment of funding for both radiation preparedness and development of approaches to address injuries. Similar activities have also been instituted worldwide, as the global threat of a radiological or nuclear incident continues to be a concern. Much of the USG's efforts to plan for the unthinkable have centred on establishing clear lines of communication between agencies with responsibility for triage and medical response, and external stakeholders. There have also been strong connections made between those parts of the government that establish policies, fund research, oversee regulatory approval, and purchase and stockpile necessary medical supplies. Progress made in advancing preparedness has involved a number of subject matter meetings and tabletop exercises, publication of guidance documents, assessment of available resources, clear establishment of anticipated concepts of operation for multiple radiation and nuclear scenarios, and identification/mobilization of resources. From a scientific perspective, there were clear research gaps that needed to be addressed, which included the need to identify accurate biomarkers and design biodosimetry devices to triage large numbers of civilians, develop decorporation agents that are more amenable for mass casualty use, and advance candidate products to address injuries caused by radiation exposure and thereby improve survival. Central to all these activities was the development of several different animal constructs, since efficacy testing of these approaches requires extensive work in research models that accurately simulate what would be expected in humans. Recent experiences with COVID-19 have provided an opportunity to revisit aspects of radiation preparedness, and leverage those lessons learned to enhance readiness for a possible future radiation public health emergency.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States of America
| | - Mary J Homer
- Biomedical Advanced Research and Development Authority (BARDA), Department of Health and Human Services (HHS), Washington, DC, United States of America
| | - C Norman Coleman
- Radiation Research Program (RRP), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States of America
| |
Collapse
|
15
|
MacVittie TJ, Farese AM. Recent advances in medical countermeasure development against acute radiation exposure based on the US FDA animal rule. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:S438-S453. [PMID: 34433144 DOI: 10.1088/1361-6498/ac20e0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Recent advances in medical countermeasures (MCMs) has been dependent on the Food and Drug Administration (FDA) animal rule (AR) and the final guidance document provided for industry on product development. The criteria outlined therein establish the path for approval under the AR. The guidance document, along with the funding and requirements from the federal agencies provided the basic considerations for animal model development in assessing radiation effects and efficacy against the potential lethal effects of acute radiation injury and the delayed effects of acute exposure. Animal models, essential for determining MCM efficacy, were developed and validated to assess organ-specific, potentially lethal, radiation effects against the gastrointestinal (GI) and hematopoietic acute radiation syndrome (H-ARS), and radiation-induced delayed effects to lung and associated comorbidities of prolonged immune suppression, GI, kidney and heart injury. Partial-body irradiation models where marginal bone marrow was spared resulted in the ability to evaluate the concomitant evolution of multiple organ injury in the acute and delayed effects in survivors of acute radiation exposure. There are no MCMs for prophylaxis against the major sequelae of the ARS or the delayed effects of acute exposure. Also lacking are MCMs that will mitigate the GI ARS consequent to potentially lethal exposure from a terrorist event or major radiation accident. Additionally, the gap in countermeasures for prophylaxis may extend to mixed neutron/gamma radiation if current modelling predicts prompt exposure from an improvised nuclear device. However, progress in the field of MCM development has been made due to federal and corporate funding, clarification of the critical criteria for efficacy within the FDA AR and the concomitant development and validation of additional animal models. These models provided for a strategic and tactical approach to determine radiation effects and MCM efficacy.
Collapse
Affiliation(s)
- Thomas J MacVittie
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, 21201, United States of America
| | - Ann M Farese
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, 21201, United States of America
| |
Collapse
|
16
|
Farese AM, Drouet M, Herodin F, Bertho JM, Thrall KD, Authier S, Doyle-Eisele M, MacVittie TJ. Acute Radiation Effects, the H-ARS in the Non-human Primate: A Review and New Data for the Cynomolgus Macaque with Reference to the Rhesus Macaque. HEALTH PHYSICS 2021; 121:304-330. [PMID: 34546214 DOI: 10.1097/hp.0000000000001442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
ABSTRACT Medical countermeasure development under the US Food and Drug Administration animal rule requires validated animal models of acute radiation effects. The key large animal model is the non-human primate, rhesus macaque. To date, only the rhesus macaque has been used for both critical supportive data and pivotal efficacy trials seeking US Food and Drug Administration approval. The potential for use of the rhesus for other high priority studies such as vaccine development underscores the need to identify another non-human primate model to account for the current lack of rhesus for medical countermeasure development. The cynomolgus macaque, Macaca fascicularis, has an existing database of medical countermeasure development against the hematopoietic acute radiation syndrome, as well as the use of radiation exposure protocols that mimic the likely nonuniform and heterogenous exposure consequent to a nuclear terrorist event. The review herein describes published studies of adult male cynomolgus macaques that used two exposure protocols-unilateral, nonuniform total-body irradiation and partial-body irradiation with bone marrow sparing-with the administration of subject-based medical management to assess mitigation against the hematopoietic acute radiation syndrome. These studies assessed the efficacy of cytokine combinations and cell-based therapy to mitigate acute radiation-induced myelosuppression. Both therapeutics were shown to mitigate the myelosuppression of the hematopoietic acute radiation syndrome. Additional studies being presented herein further defined the dose-dependent hematopoietic acute radiation syndrome of cynomolgus and rhesus macaques and a differential dose-dependent effect with young male and female cynomolgus macaques. The database supports the investigation of the cynomolgus macaque as a comparable non-human primate for efficacy testing under the US Food and Drug Administration animal rule. Critical gaps in knowledge required to validate the models and exposure protocols are also identified.
Collapse
Affiliation(s)
- Ann M Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore
| | - Michel Drouet
- Armed Forces Biomedical Research Institute, France, Department of Radiobiology, Brétigny-sur-Orge, France
| | | | - Jean-Marc Bertho
- Institute of Radiation Protection and Nuclear Safety (IRSN), 31 avenue de la division Leclerc, 92260, Fontenay-aux-Roses, France; Present address: French Nuclear Safety Authority (ASN), 15 rue Louis Lejeune 92540 Montrouge, France
| | | | - Simon Authier
- Charles River, 445 Armand Frappier, Laval, QC, Canada, H7V 4B3
| | - Melanie Doyle-Eisele
- Lovelace Biomedical Research Institute, Laboratory Animal Sciences (Life Sciences), Albuquerque, NM
| | - Thomas J MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore
| |
Collapse
|
17
|
Muller L, Huang W, Jones JW, Farese AM, MacVittie TJ, Kane MA. Complementary Lipidomic, Proteomic, and Mass Spectrometry Imaging Approach to the Characterization of the Acute Effects of Radiation in the Non-human Primate Mesenteric Lymph Node after Partial-body Irradiation with Minimal Bone Marrow Sparing. HEALTH PHYSICS 2021; 121:372-383. [PMID: 34546218 DOI: 10.1097/hp.0000000000001470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
ABSTRACT Radiation sequelae is complex and characterized by multiple pathologies, which occur over time and nonuniformly throughout different organs. The study of the mesenteric lymph node (MLN) due to its importance in the gastrointestinal system is of particular interest. Other studies have shown an immediate post-irradiation reduction in cellularity due to the known effects of irradiation on lymphoid cell populations, but the molecular and functional mechanisms that lead to these cellular alterations remain limited. In this work, we show the use of lipidomic, proteomic, and mass spectrometry imaging in the characterization of the effects of acute radiation exposure on the MLN at different time points after ionizing radiation (IR) from 4 d to 21 d after 12 Gy partial body irradiation with 2.5% bone marrow sparing. The combined analyses showed a dysregulation of the lipid and protein composition in the MLN after IR. Protein expression was affected in numerous pathways, including pathways regulating lipids such as LXR/RXR activation and acute phase response. Lipid distribution and abundance was also affected by IR in the MLN, including an accumulation of triacylglycerides, a decrease in polyunsaturated glycerophospholipids, and changes in polyunsaturated fatty acids. Those changes were observed as early as 4 d after IR and were more pronounced for lipids with a higher concentration in the nodules and the medulla of the MLN. These results provide molecular insight into the MLN that can inform on injury mechanism in a non-human primate model of the acute radiation syndrome of the gastrointestinal tract. Those findings may contribute to the identification of therapeutic targets and the development of new medical countermeasures.
Collapse
Affiliation(s)
- Ludovic Muller
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Weiliang Huang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Jace W Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Ann M Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Thomas J MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Maureen A Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| |
Collapse
|
18
|
Huang W, Yu J, Farese AM, MacVittie TJ, Kane MA. Acute Proteomic Changes in Non-human Primate Kidney after Partial-body Radiation with Minimal Bone Marrow Sparing. HEALTH PHYSICS 2021; 121:345-351. [PMID: 34546216 DOI: 10.1097/hp.0000000000001475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Near total body exposure to high-dose ionizing radiation results in organ-specific sequelae, including acute radiation syndromes and delayed effects of acute radiation exposure. Among these sequelae are acute kidney injury and chronic kidney injury. Reports that neither oxidative stress nor inflammation are dominant mechanisms defining radiation nephropathy inspired an unbiased, discovery-based proteomic interrogation in order to identify mechanistic pathways of injury. We quantitatively profiled the proteome of kidney from non-human primates following 12 Gy partial body irradiation with 2.5% bone marrow sparing over a time period of 3 wk. Kidney was analyzed by liquid chromatography-tandem mass spectrometry. Out of the 3,432 unique proteins that were identified, we found that 265 proteins showed significant and consistent responses across at least three time points post-irradiation, of which 230 proteins showed strong upregulation while 35 proteins showed downregulation. Bioinformatics analysis revealed significant pathway and upstream regulator perturbations post-high dose irradiation and shed light on underlying mechanisms of radiation damage. These data will be useful for a greater understanding of the molecular mechanisms of injury in well-characterized animal models of partial body irradiation with minimal bone marrow sparing. These data may be potentially useful in the future development of medical countermeasures.
Collapse
Affiliation(s)
- Weiliang Huang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Jianshi Yu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Ann M Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Thomas J MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Maureen A Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| |
Collapse
|
19
|
Kumar P, Wang P, Farese AM, MacVittie TJ, Kane MA. Metabolomics of Multiorgan Radiation Injury in Non-human Primate Model Reveals System-wide Metabolic Perturbations. HEALTH PHYSICS 2021; 121:395-405. [PMID: 34546220 DOI: 10.1097/hp.0000000000001472] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
ABSTRACT Exposure to ionizing radiation following a nuclear or radiological incident results in potential acute radiation syndromes causing sequelae of multi-organ injury in a dose- and time-dependent manner. Currently, medical countermeasures against radiation injury are limited, and no biomarkers have been approved by regulatory authorities. Identification of circulating plasma biomarkers indicative of radiation injury can be useful for early triage and injury assessment and in the development of novel therapies (medical countermeasures). Aims of this study are to (1) identify metabolites and lipids with consensus signatures that can inform on mechanism of injury in radiation-induced multi-organ injury and (2) identify plasma biomarkers in non-human primate (NHP) that correlate with tissues (kidney, liver, lung, left and right heart, jejunum) indicative of radiation injury, assessing samples collected over 3 wk post-exposure to 12 Gy partial body irradiation with 2.5% bone marrow sparing. About 180 plasma and tissue metabolites and lipids were quantified through Biocrates AbsoluteIDQ p180 kit using liquid chromatography and mass spectrometry. System-wide perturbations of specific metabolites and lipid levels and pathway alterations were identified. Citrulline, Serotonin, PC ae 38:2, PC ae 36:2, and sum of branched chain amino acids were identified as potential biomarkers of radiation injury. Pathway analysis revealed consistent changes in fatty acid oxidation and metabolism and perturbations in multiple other pathways.
Collapse
Affiliation(s)
- Praveen Kumar
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, 21201
| | - Pengcheng Wang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, 21201
| | - Ann M Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Thomas J MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Maureen A Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, 21201
| |
Collapse
|
20
|
Farese AM, Booth C, Tudor GL, Cui W, Cohen EP, Parker GA, Hankey KG, MacVittie TJ. The Natural History of Acute Radiation-induced H-ARS and Concomitant Multi-organ Injury in the Non-human Primate: The MCART Experience. HEALTH PHYSICS 2021; 121:282-303. [PMID: 34546213 PMCID: PMC8462029 DOI: 10.1097/hp.0000000000001451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
ABSTRACT The dose response relationship and corresponding values for mid-lethal dose and slope are used to define the dose- and time-dependent parameters of the hematopoietic acute radiation syndrome. The characteristic time course of mortality, morbidity, and secondary endpoints are well defined. The concomitant comorbidities, potential mortality, and other multi-organ injuries that are similarly dose- and time-dependent are less defined. Determination of the natural history or pathophysiology associated with the lethal hematopoietic acute radiation syndrome is a significant gap in knowledge, especially when considered in the context of a nuclear weapon scenario. In this regard, the exposure is likely ill-defined, heterogenous, and nonuniform. These conditions forecast sparing of bone marrow and increased survival from the acute radiation syndrome consequent to threshold doses for the delayed effects of acute radiation exposure due to marrow sparing, medical management, and use of approved medical countermeasures. The intent herein is to provide a composite natural history of the pathophysiology concomitant with the evolution of the potentially lethal hematopoietic acute radiation syndrome derived from studies that focused on total body irradiation and partial body irradiation with bone marrow sparing. The marked differential in estimated LD50/60 from 7.5 Gy to 10.88 Gy for the total body irradiation and partial body irradiation with 5% bone marrow sparing models, respectively, provided a clear distinction between the attendant multiple organ injury and natural history of the two models that included medical management. Total body irradiation was focused on equivalent LD50/60 exposures. The 10 Gy and 11 Gy partial body with 5% bone marrow sparing exposures bracketed the LD50/60 (10.88 Gy). The incidence, progression, and duration of multiple organ injury was described for each exposure protocol within the hematopoietic acute radiation syndrome. The higher threshold doses for the partial body irradiation with bone marrow sparing protocol induced a marked degree of multiple organ injury to include lethal gastrointestinal acute radiation syndrome, prolonged crypt loss and mucosal damage, immune suppression, acute kidney injury, body weight loss, and added clinical comorbidities that defined a complex timeline of organ injury through the acute hematopoietic acute radiation syndrome. The natural history of the acute radiation syndrome presents a 60-d time segment of multi-organ sequelae that is concomitant with the latent period or time to onset of the evolving multi-organ injury of the delayed effects of acute radiation exposure.
Collapse
Affiliation(s)
- Ann M. Farese
- University of Maryland, School of Medicine, Baltimore, MD
| | | | | | - Wanchang Cui
- Armed Forces Radiobiology Research Institute, Bethesda, MD
| | - Eric P. Cohen
- University of Maryland, School of Medicine, Baltimore, MD
| | | | - Kim G. Hankey
- University of Maryland, School of Medicine, Baltimore, MD
| | | |
Collapse
|
21
|
Cui W, Zhang P, Hankey KG, Xiao M, Farese AM, MacVittie TJ. AEOL 10150 Alleviates Radiation-induced Innate Immune Responses in Non-human Primate Lung Tissue. HEALTH PHYSICS 2021; 121:331-344. [PMID: 34546215 PMCID: PMC8601036 DOI: 10.1097/hp.0000000000001443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
ABSTRACT To study the molecular and cellular mechanisms of radiation-induced lung injury (RILI) in a non-human primate model, Rhesus macaques were irradiated with lethal doses of radiation to the whole thorax. A subset of the irradiated animals was treated with AEOL 10150, a potent catalytic scavenger of reactive oxygen and nitrogen species. Lung tissues were collected at necropsy for molecular and immunohistochemical (IHC) studies. Microarray expression profiling in the irradiated lung tissues identified differentially expressed genes (DEGs) and pathways important in innate immunity. The elevated expression of cytokines (CCL2, CCL11, IL-8), complement factors (CFB, C3), apoptosis-related molecules (p53, PTEN, Bax, p21, MDM2, c-Caspase 3), and adhesion molecules (fibronectin, integrin β6, ICAM-1) were further studied using real-time PCR, Western blot, or IHC. Oxidative stress and pulmonary inflammatory cell infiltration were increased in the irradiated lungs. Treatment with AEOL 10150 significantly decreased oxidative stress and monocyte/macrophage infiltration. Cytokine/chemokine-induced excessive innate immune response after thoracic irradiation plays an important role in RILI. To our knowledge, this is the first study to highlight the role of cytokine/chemokine-induced innate immune responses in radiation-induced pulmonary toxicity in a NHP model.
Collapse
Affiliation(s)
- Wanchang Cui
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA 20889
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA 21201
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA 20817
| | - Pei Zhang
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA 21201
| | - Kim G. Hankey
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA 21201
| | - Mang Xiao
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA 20889
| | - Ann M. Farese
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA 21201
| | - Thomas J. MacVittie
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA 21201
| |
Collapse
|
22
|
Wang J, Garg S, Landes RD, Liu L, Fu Q, Seng J, Boerma M, Thrall K, Hauer-Jensen M, Pathak R. Differential Recovery of Small Intestinal Segments after Partial-Body Irradiation in Non-Human Primates. Radiat Res 2021; 196:204-212. [PMID: 34043805 DOI: 10.1667/rade-20-00272.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 05/06/2021] [Indexed: 11/03/2022]
Abstract
In the event of a radiological attack or accident, it is more likely that the absorbed radiation dose will be heterogeneous, rather than uniformly distributed throughout the body. This type of uneven dose distribution is known as partial-body irradiation (PBI). Partial exposure of the vital organs, specifically the highly radiosensitive intestines, may cause death, if the injury is significant and the post-exposure recovery is considerably compromised. Here we investigated the recovery rate and extent of recovery from PBI-induced intestinal damage in large animals. Rhesus macaques (Macaca mulatta) were randomly divided into four groups: sham-irradiated (0 Gy), 8 Gy PBI, 11 Gy PBI and 14 Gy PBI. A single dose of ionizing radiation was delivered in the abdominal region using a uniform bilateral anteroposterior and posteroanterior technique. Irradiated animals were scheduled for euthanasia on days 10, 28 or 60 postirradiation, and sham-irradiated animals on day 60. Intestinal structural injuries were assessed via crypt depth, villus height, and mucosal surface length in the four different intestinal regions (duodenum, proximal jejunum, distal jejunum and ileum) using H&E staining. Higher radiation doses corresponded with more injury at 10 days post-PBI, and faster recovery. However, at 60 days post-PBI, damage was still evident in all regions of the intestine. The proximal and distal ends (duodenum and ileum, respectively) sustained less damage and recovered more fully than the jejunum.
Collapse
Affiliation(s)
- Junru Wang
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sarita Garg
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Reid D Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Liya Liu
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Qiang Fu
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - John Seng
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
23
|
Hollingsworth BA, Cassatt DR, DiCarlo AL, Rios CI, Satyamitra MM, Winters TA, Taliaferro LP. Acute Radiation Syndrome and the Microbiome: Impact and Review. Front Pharmacol 2021; 12:643283. [PMID: 34084131 PMCID: PMC8167050 DOI: 10.3389/fphar.2021.643283] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Study of the human microbiota has been a centuries-long endeavor, but since the inception of the National Institutes of Health (NIH) Human Microbiome Project in 2007, research has greatly expanded, including the space involving radiation injury. As acute radiation syndrome (ARS) is multisystemic, the microbiome niches across all areas of the body may be affected. This review highlights advances in radiation research examining the effect of irradiation on the microbiome and its potential use as a target for medical countermeasures or biodosimetry approaches, or as a medical countermeasure itself. The authors also address animal model considerations for designing studies, and the potential to use the microbiome as a biomarker to assess radiation exposure and predict outcome. Recent research has shown that the microbiome holds enormous potential for mitigation of radiation injury, in the context of both radiotherapy and radiological/nuclear public health emergencies. Gaps still exist, but the field is moving forward with much promise.
Collapse
Affiliation(s)
- Brynn A Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - David R Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Carmen I Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Thomas A Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Lanyn P Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| |
Collapse
|
24
|
Klaus R, Niyazi M, Lange-Sperandio B. Radiation-induced kidney toxicity: molecular and cellular pathogenesis. Radiat Oncol 2021; 16:43. [PMID: 33632272 PMCID: PMC7905925 DOI: 10.1186/s13014-021-01764-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/11/2021] [Indexed: 12/19/2022] Open
Abstract
Radiation nephropathy (RN) is a kidney injury induced by ionizing radiation. In a clinical setting, ionizing radiation is used in radiotherapy (RT). The use and the intensity of radiation therapy is limited by normal-tissue damage including kidney toxicity. Different thresholds for kidney toxicity exist for different entities of RT. Histopathologic features of RN include vascular, glomerular and tubulointerstitial damage. The different molecular and cellular pathomechanisms involved in RN are not fully understood. Ionizing radiation causes double-stranded breaks in the DNA, followed by cell death including apoptosis and necrosis of renal endothelial, tubular and glomerular cells. Especially in the latent phase of RN oxidative stress and inflammation have been proposed as putative pathomechanisms, but so far no clear evidence was found. Cellular senescence, activation of the renin–angiotensin–aldosterone-system and vascular dysfunction might contribute to RN, but only limited data is available. Several signalling pathways have been identified in animal models of RN and different approaches to mitigate RN have been investigated. Drugs that attenuate cell death and inflammation or reduce oxidative stress and renal fibrosis were tested. Renin–angiotensin–aldosterone-system blockade, anti-apoptotic drugs, statins, and antioxidants have been shown to reduce the severity of RN. These results provide a rationale for the development of new strategies to prevent or reduce radiation-induced kidney toxicity.
Collapse
Affiliation(s)
- Richard Klaus
- Division of Pediatric Nephrology, Department of Pediatrics, Dr. v. Hauner Children's Hospital, University Hospital, LMU Munich, Lindwurmstr. 4, 80337, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Bärbel Lange-Sperandio
- Division of Pediatric Nephrology, Department of Pediatrics, Dr. v. Hauner Children's Hospital, University Hospital, LMU Munich, Lindwurmstr. 4, 80337, Munich, Germany.
| |
Collapse
|
25
|
MacVittie TJ, Farese AM. Defining the Concomitant Multiple Organ Injury within the ARS and DEARE in an Animal Model Research Platform. HEALTH PHYSICS 2020; 119:519-526. [PMID: 32868706 DOI: 10.1097/hp.0000000000001327] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Thomas J MacVittie
- University of Maryland School of Medicine 10 South Pine Street, MSTF 5-02A Baltimore, MD 21201
| | | |
Collapse
|
26
|
Huang W, Yu J, Liu T, Tudor G, Defnet AE, Zalesak S, Kumar P, Booth C, Farese AM, MacVittie TJ, Kane MA. Proteomic Evaluation of the Natural History of the Acute Radiation Syndrome of the Gastrointestinal Tract in a Non-human Primate Model of Partial-body Irradiation with Minimal Bone Marrow Sparing Includes Dysregulation of the Retinoid Pathway. HEALTH PHYSICS 2020; 119:604-620. [PMID: 32947489 PMCID: PMC7541663 DOI: 10.1097/hp.0000000000001351] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Exposure to ionizing radiation results in injuries of the hematopoietic, gastrointestinal, and respiratory systems, which are the leading causes responsible for morbidity and mortality. Gastrointestinal injury occurs as an acute radiation syndrome. To help inform on the natural history of the radiation-induced injury of the partial body irradiation model, we quantitatively profiled the proteome of jejunum from non-human primates following 12 Gy partial body irradiation with 2.5% bone marrow sparing over a time period of 3 wk. Jejunum was analyzed by liquid chromatography-tandem mass spectrometry, and pathway and gene ontology analysis were performed. A total of 3,245 unique proteins were quantified out of more than 3,700 proteins identified in this study. Also a total of 289 proteins of the quantified proteins showed significant and consistent responses across at least three time points post-irradiation, of which 263 proteins showed strong upregulations while 26 proteins showed downregulations. Bioinformatic analysis suggests significant pathway and upstream regulator perturbations post-high dose irradiation and shed light on underlying mechanisms of radiation damage. Canonical pathways altered by radiation included GP6 signaling pathway, acute phase response signaling, LXR/RXR activation, and intrinsic prothrombin activation pathway. Additionally, we observed dysregulation of proteins of the retinoid pathway and retinoic acid, an active metabolite of vitamin A, as quantified by liquid chromatography-tandem mass spectrometry. Correlation of changes in protein abundance with a well-characterized histological endpoint, corrected crypt number, was used to evaluate biomarker potential. These data further define the natural history of the gastrointestinal acute radiation syndrome in a non-human primate model of partial body irradiation with minimal bone marrow sparing.
Collapse
Affiliation(s)
- Weiliang Huang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Jianshi Yu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Tian Liu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | | | - Amy E Defnet
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Stephanie Zalesak
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Praveen Kumar
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | | | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Maureen A Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
- Correspondence: Maureen A. Kane, University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, 20 N. Pine Street, Room N731, Baltimore, MD 21201, Phone: (410) 706-5097, Fax: (410) 706-0886,
| |
Collapse
|
27
|
Kumar P, Wang P, Tudor G, Booth C, Farese AM, MacVittie TJ, Kane MA. Evaluation of Plasma Biomarker Utility for the Gastrointestinal Acute Radiation Syndrome in Non-human Primates after Partial Body Irradiation with Minimal Bone Marrow Sparing through Correlation with Tissue and Histological Analyses. HEALTH PHYSICS 2020; 119:594-603. [PMID: 32947487 PMCID: PMC7546578 DOI: 10.1097/hp.0000000000001348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Exposure to total- and partial-body irradiation following a nuclear or radiological incident result in the potentially lethal acute radiation syndromes of the gastrointestinal and hematopoietic systems in a dose- and time-dependent manner. Radiation-induced damage to the gastrointestinal tract is observed within days to weeks post-irradiation. Our objective in this study was to evaluate plasma biomarker utility for the gastrointestinal acute radiation syndrome in non-human primates after partial body irradiation with minimal bone marrow sparing through correlation with tissue and histological analyses. Plasma and jejunum samples from non-human primates exposed to partial body irradiation of 12 Gy with bone marrow sparing of 2.5% were evaluated at various time points from day 0 to day 21 as part of a natural history study. Additionally, longitudinal plasma samples from non-human primates exposed to 10 Gy partial body irradiation with 2.5% bone marrow sparing were evaluated at timepoints out to 180 d post-irradiation. Plasma and jejunum metabolites were quantified via liquid chromatography-tandem mass spectrometry and histological analysis consisted of corrected crypt number, an established metric to assess radiation-induced gastrointestinal damage. A positive correlation of metabolite levels in jejunum and plasma was observed for citrulline, serotonin, acylcarnitine, and multiple species of phosphatidylcholines. Citrulline levels also correlated with injury and regeneration of crypts in the small intestine. These results expand the characterization of the natural history of gastrointestinal acute radiation syndrome in non-human primates exposed to partial body irradiation with minimal bone marrow sparing and also provide additional data toward the correlation of citrulline with histological endpoints.
Collapse
Affiliation(s)
- Praveen Kumar
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Pengcheng Wang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | | | | | - Ann M Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Thomas J MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Maureen A Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| |
Collapse
|
28
|
MacVittie TJ, Farese AM, Jackson W. A Systematic Review of the Hematopoietic Acute Radiation Syndrome (H-ARS) in Canines and Non-human Primates: Acute Mixed Neutron/Gamma vs. Reference Quality Radiations. HEALTH PHYSICS 2020; 119:527-558. [PMID: 32947486 PMCID: PMC9438931 DOI: 10.1097/hp.0000000000001319] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A systematic review of relevant studies that determined the dose response relationship (DRR) for the hematopoietic (H) acute radiation syndrome (ARS) in the canine relative to radiation quality of mixed neutron:gamma radiations, dose rate, and exposure uniformity relative to selected reference radiation exposure has not been performed. The datasets for rhesus macaques exposure to mixed neutron:gamma radiation are used herein as a species comparative reference to the canine database. The selection of data cohorts was made from the following sources: Ovid Medline (1957-present), PubMed (1954-present), AGRICOLA (1976-present), Web of Science (1954-present), and US HHS RePORT (2002-present). The total number of hits across all search sites was 3,077. Several referenced, unpublished, non-peer reviewed government reports were unavailable for review. Primary published studies using canines, beagles, and mongrels were evaluated to provide an informative and consistent review of mixed neutron:gamma radiation effects to establish the DRRs for the H-ARS. Secondary and tertiary studies provided additional information on the hematologic response or the effects on hematopoietic progenitor cells, radiation dosimetry, absorbed dose, and organ dose. The LD50/30 values varied with neutron quality, exposure aspect, and mixed neutron:gamma ratio. The reference radiation quality varied from 250 kVp or 1-2 MeV x radiation and Co gamma radiation. A summary of a published review of a data set describing the DRR in rhesus macaques for mixed neutron:gamma radiation exposure in the H-ARS is included for a comparative reference to the canine dataset. The available evidence provided a reliable and extensive database that characterized the DRR for the H-ARS in canines and young rhesus macaques exposed to mixed neutron:gamma radiations of variable energy relative to 250 kVp, 1-2 MeV x radiation and Co gamma, and uniform and non-uniform total-body irradiation without the benefit of medical management. The mixed neutron:gamma radiation showed an energy-dependent RBE of ~ 1.0 to 2.0 relative to reference radiation exposure within both species. A marginal database described the DRR for the gastrointestinal (GI)-ARS. Medical management showed benefit in both species relative to the mixed neutron:gamma as well as exposure to reference radiation. The DRR for the H-ARS was characterized by steep slopes and relative LD50/30 values that reflected the radiation quality, exposure aspect, and dose rate over a range in time from 1956-2012.
Collapse
Affiliation(s)
| | - Ann M Farese
- University of Maryland School of Medicine, Baltimore, MD
| | | |
Collapse
|
29
|
Jackson IL, Gurung G, Poirier Y, Gopalakrishnan M, Cohen EP, Donohue TS, Newman D, Vujaskovic Z. A New Zealand White rabbit model of thrombocytopenia and coagulopathy following total body irradiation across the dose range to induce the hematopoietic-subsyndrome of acute radiation syndrome. Int J Radiat Biol 2020; 97:S19-S31. [PMID: 31526203 DOI: 10.1080/09553002.2019.1668981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE The purpose if this study was to develop a rabbit model of total body irradiation (TBI) -induced thrombocytopenia and coagulopathy across the dose-range which induces the hematopoietic subsyndrome of the acute radiation syndrome (H-ARS). METHODS Twenty male New Zealand White rabbits were assigned to arms to receive 6-MV of TBI at a dose of 6.5, 7.5, 8.5 or 9.5 Gy. Animals were treated with moderate levels of supportive care including buprenorphine for pain management, antibiotics, antipyretics for rectal body temperature >104.8 °F, and fluids for signs of dehydration. Animals were closelyfollowed for up to 45 days after TBI for signs of major morbidity/mortality. Hematology and serum chemistry parameters were routinely monitored. Hemostasis parameters were analyzed prior to TBI, 2 and 6 hours post-TBI, and at the time of euthanasia. RESULTS Animals developed the characteristic signs and symptoms of H-ARS during the first-week post TBI. Animals became thrombocytopenic with signs of severe acute anemia during the second week post TBI. Moribund animals presented with petechia and ecchymosis of the skin and generalized internal hemorrhage. Multiorgan dysfunction characterized by bone marrow failure, gastric ileus, acute renal toxicity, and liver abnormalities were common. Severe abnormalities in coagulation parameters were observed. CONCLUSIONS The presentation of bone marrow failure and multiorogan injury associated with ARS in the New Zealand White rabbit model is consistent with that described in the canine, swine, non-human primate, and in humans. The hemorrhagic syndrome associated with the ARS in rabbits is characterized by thrombocytopenia and hemostasis dysfunction, which appear to underlie the development of multiorgan dysfunction following TBI to rabbits. Taken together, the rabbit recapitulates the pathogenesis of ARS in humans, and may present an alternative small animal model for medical countermeasure pilot efficacy screening, dose-finding and schedule optimization studies prior to moving into large animal models of TBI-induced ARS.
Collapse
Affiliation(s)
- Isabel L Jackson
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ganga Gurung
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yannick Poirier
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mathangi Gopalakrishnan
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Eric P Cohen
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Terez-Shea Donohue
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Diana Newman
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zeljko Vujaskovic
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
30
|
Wang Q, Lee Y, Shuryak I, Pujol Canadell M, Taveras M, Perrier JR, Bacon BA, Rodrigues MA, Kowalski R, Capaccio C, Brenner DJ, Turner HC. Development of the FAST-DOSE assay system for high-throughput biodosimetry and radiation triage. Sci Rep 2020; 10:12716. [PMID: 32728041 PMCID: PMC7392759 DOI: 10.1038/s41598-020-69460-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/09/2020] [Indexed: 11/09/2022] Open
Abstract
Following a large-scale radiological incident, there is a need for FDA-approved biodosimetry devices and biomarkers with the ability to rapidly determine past radiation exposure with sufficient accuracy for early population triage and medical management. Towards this goal, we have developed FAST-DOSE (Fluorescent Automated Screening Tool for Dosimetry), an immunofluorescent, biomarker-based system designed to reconstruct absorbed radiation dose in peripheral blood samples collected from potentially exposed individuals. The objective of this study was to examine the performance of the FAST-DOSE assay system to quantify intracellular protein changes in blood leukocytes for early biodosimetry triage from humanized NOD-scid-gamma (Hu-NSG) mice and non-human primates (NHPs) exposed to ionizing radiation up to 8 days after radiation exposure. In the Hu-NSG mice studies, the FAST-DOSE biomarker panel was able to generate delivered dose estimates at days 1, 2 and 3 post exposure, whereas in the NHP studies, the biomarker panel was able to successfully classify samples by dose categories below or above 2 Gy up to 8 days after total body exposure. These results suggest that the FAST-DOSE bioassay has large potential as a useful diagnostic tool for rapid and reliable screening of potentially exposed individuals to aid early triage decisions within the first week post-exposure.
Collapse
Affiliation(s)
- Qi Wang
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Radiation Oncology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Younghyun Lee
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Monica Pujol Canadell
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Maria Taveras
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jay R Perrier
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
- ASELL, LLC, Owings Mills, MD, 21117, USA
| | - Bezalel A Bacon
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | | | | | | | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
31
|
MALDI-MSI spatially maps N-glycan alterations to histologically distinct pulmonary pathologies following irradiation. Sci Rep 2020; 10:11559. [PMID: 32665567 PMCID: PMC7360629 DOI: 10.1038/s41598-020-68508-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 06/20/2020] [Indexed: 12/15/2022] Open
Abstract
Radiation-induced lung injury is a highly complex combination of pathological alterations that develop over time and severity of disease development is dose-dependent. Following exposures to lethal doses of irradiation, morbidity and mortality can occur due to a combination of edema, pneumonitis and fibrosis. Protein glycosylation has essential roles in a plethora of biological and immunological processes. Alterations in glycosylation profiles have been detected in diseases ranging from infection, inflammation and cancer. We utilized mass spectrometry imaging to spatially map N-glycans to distinct pathological alterations during the clinically latent period and at 180 days post-exposure to irradiation. Results identified alterations in a number of high mannose, hybrid and complex N-glycans that were localized to regions of mucus and alveolar-bronchiolar hyperplasia, proliferations of type 2 epithelial cells, accumulations of macrophages, edema and fibrosis. The glycosylation profiles indicate most alterations occur prior to the onset of clinical symptoms as a result of pathological manifestations. Alterations in five N-glycans were identified as a function of time post-exposure. Understanding the functional roles N-glycans play in the development of these pathologies, particularly in the accumulation of macrophages and their phenotype, may lead to new therapeutic avenues for the treatment of radiation-induced lung injury.
Collapse
|
32
|
Ye F, Ning J, Fardous Z, Katsube T, Li Q, Wang B. Citrulline, A Potential Biomarker of Radiation-Induced Small Intestine Damage. Dose Response 2020; 18:1559325820962341. [PMID: 33013253 PMCID: PMC7513408 DOI: 10.1177/1559325820962341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 12/25/2022] Open
Abstract
Radiation damage assessment of the small intestine is important in nuclear accidents or routine radiotherapy of abdominal tumors. This article reviews the clinical symptoms and molecular mechanisms of radiation-induced small intestinal damage and summarizes recent research on biomarkers of such damage. Citrulline is the most promising biomarker for the evaluation of radiation-induced small intestinal damage caused by radiotherapy and nuclear accidents. This article also summarizes the factors influencing plasma citrulline measurement investigated in the latest research, as well as new findings on the concentration of citrulline in saliva and urine after different types of radiation.
Collapse
Affiliation(s)
- Fei Ye
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of
China
| | - Jing Ning
- Gansu Provincial Hospital, Lanzhou, People’s Republic of China
| | - Zeenath Fardous
- Institute of Food and Radiation
Biology, Atomic Energy Research Establishment, Bangladesh Atomic Energy
Commission, Dhaka, Bangladesh
| | - Takanori Katsube
- National Institute of Radiological Sciences, National Institutes
for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of
China
| | - Bing Wang
- National Institute of Radiological Sciences, National Institutes
for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
33
|
Huang W, Yu J, Jones JW, Carter CL, Pierzchalski K, Tudor G, Booth C, MacVittie TJ, Kane MA. Proteomic Evaluation of the Acute Radiation Syndrome of the Gastrointestinal Tract in a Murine Total-body Irradiation Model. HEALTH PHYSICS 2019; 116:516-528. [PMID: 30624357 PMCID: PMC6384135 DOI: 10.1097/hp.0000000000000951] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Radiation exposure to the gastrointestinal system contributes to the acute radiation syndrome in a dose- and time-dependent manner. Molecular mechanisms that lead to the gastrointestinal acute radiation syndrome remain incompletely understood. Using a murine model of total-body irradiation, C57BL/6J male mice were irradiated at 8, 10, 12, and 14 Gy and assayed at day 1, 3, and 6 after exposure and compared to nonirradiated (sham) controls. Tryptic digests of gastrointestinal tissues (upper ileum) were analyzed by liquid chromatography-tandem mass spectrometry on a Waters nanoLC coupled to a Thermo Scientific Q Exactive hybrid quadrupole-orbitrap mass spectrometer. Pathway and gene ontology analysis were performed with Qiagen Ingenuity, Panther GO, and DAVID databases. A number of trends were identified in our proteomic data including pronounced protein changes as well as protein changes that were consistently up regulated or down regulated at all time points and dose levels interrogated. Time- and dose-dependent protein changes, canonical pathways affected by irradiation, and changes in proteins that serve as upstream regulators were also identified. Additionally, proteins involved in key processes including inflammation, radiation, and retinoic acid signaling were identified. The proteomic profiling conducted here represents an untargeted systems biology approach to identify acute molecular events that will be useful for a greater understanding of animal models and may be potentially useful toward the development of medical countermeasures and/or biomarkers.
Collapse
Affiliation(s)
- Weiliang Huang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Jianshi Yu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Jace W. Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Claire L. Carter
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Keely Pierzchalski
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | | | | | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
- Correspondence: Maureen A. Kane, University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, 20 N. Pine Street, Room 723, Baltimore, MD 21201, Phone: (410) 706-5097, Fax: (410) 706-0886,
| |
Collapse
|
34
|
Carter CL, Hankey KG, Booth C, Tudor GL, Parker GA, Jones JW, Farese AM, MacVittie TJ, Kane MA. Characterizing the Natural History of Acute Radiation Syndrome of the Gastrointestinal Tract: Combining High Mass and Spatial Resolution Using MALDI-FTICR-MSI. HEALTH PHYSICS 2019; 116:454-472. [PMID: 30681424 PMCID: PMC6384159 DOI: 10.1097/hp.0000000000000948] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The acute radiation syndrome of the gastrointestinal tract has been histologically characterized, but the molecular and functional mechanisms that lead to these cellular alterations remain enigmatic. Mass spectrometry imaging is the only technique that enables the simultaneous detection and cellular or regional localization of hundreds of biomolecules in a single experiment. This current study utilized matrix-assisted laser desorption/ionization mass spectrometry imaging for the molecular characterization of the first natural history study of gastrointestinal acute radiation syndrome in the nonhuman primate. Jejunum samples were collected at days 4, 8, 11, 15, and 21 following 12-Gy partial-body irradiation with 2.5% bone marrow sparing. Mass spectrometry imaging investigations identified alterations in lipid species that further understanding of the functional alterations that occur over time in the different cellular regions of the jejunum following exposure to high doses of irradiation. Alterations in phosphatidylinositol species informed on dysfunctional epithelial cell differentiation and maturation. Differences in glycosphingolipids of the villi epithelium that would influence the absorptive capacity and functional structure of the brush border membrane were detected. Dichotomous alterations in cardiolipins indicated altered structural and functional integrity of mitochondria. Phosphatidylglycerol species, known regulators of toll-like receptors, were detected and localized to regions in the lamina propria that contained distinct immune cell populations. These results provide molecular insight that can inform on injury mechanism in a nonhuman primate model of the acute radiation syndrome of the gastrointestinal tract. Findings may contribute to the identification of therapeutic targets and the development of new medical countermeasures.
Collapse
Affiliation(s)
- Claire L. Carter
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD USA
| | - Kim G. Hankey
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD USA
| | | | | | - George A. Parker
- Charles River Laboratories, Pathology Associates, Raleigh-Durham, North Carolina, USA
| | - Jace W. Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD USA
| | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD USA
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD USA
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD USA
| |
Collapse
|
35
|
Medhora M, Gao F, Gasperetti T, Narayanan J, Hye Khan MA, Jacobs ER, Fish BL. Delayed Effects of Acute Radiation Exposure (Deare) in Juvenile and Old Rats: Mitigation by Lisinopril. HEALTH PHYSICS 2019; 116:529-545. [PMID: 30624354 PMCID: PMC6384142 DOI: 10.1097/hp.0000000000000920] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Our goal is to develop lisinopril as a mitigator of delayed effects of acute radiation exposure in the National Institute of Allergy and Infectious Diseases program for radiation countermeasures. Published studies demonstrated mitigation of delayed effects of acute radiation exposure by lisinopril in adult rats. However, juvenile or old rats beyond their reproductive lifespans have never been tested. Since no preclinical models of delayed effects of acute radiation exposure were available in these special populations, appropriate rat models were developed to test lisinopril after irradiation. Juvenile (42-d-old, prepubertal) female and male WAG/RijCmcr (Wistar) rats were given 13-Gy partial-body irradiation with only part of one hind limb shielded. Lethality from lung injury between 39-58 d and radiation nephropathy between 106-114 d were recorded. All irradiated-only juvenile rats were morbid from delayed effects of acute radiation exposure by 114 d, while lisinopril (24 mg m d) started 7 d after irradiation and continued improved survival to 88% (p = 0.0015, n ≥ 8/group). Old rats (>483-d-old, reproductively senescent) were irradiated with 13-Gy partial-body irradiation keeping part of one leg shielded and additionally shielding the head in some animals. Irradiated old females developed lethal nephropathy, and all became morbid by 170 d after irradiation, though no rats displayed lethal radiation pneumonitis. Similar results were observed for irradiated geriatric males, though 33% of rats remained alive at 180 d after irradiation. Lisinopril mitigated radiation nephropathy in old rats of both sexes. Finally, comparison of delayed effects of acute radiation exposure between irradiated juvenile, adult, and old rats showed younger rats were more sensitive to delayed effects of acute radiation exposure with earlier manifestation of injuries to some organs.
Collapse
Affiliation(s)
- Meetha Medhora
- Department of Radiation Oncology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
- Department of Medicine, Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
- Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295
| | - Feng Gao
- Department of Radiation Oncology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Tracy Gasperetti
- Department of Radiation Oncology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Jayashree Narayanan
- Department of Radiation Oncology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Md. Abdul Hye Khan
- Department of Pharmacology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Elizabeth R. Jacobs
- Department of Medicine, Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
- Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295
| | - Brian L. Fish
- Department of Radiation Oncology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| |
Collapse
|
36
|
Jackson IL, Gibbs A, Poirier Y, Wathen L, Eley J, Draeger E, Gopalakrishnan M, Benjamin B, Vujaskovic Z. Hematological Effects of Non-Homogenous Ionizing Radiation Exposure in a Non-Human Primate Model. Radiat Res 2019; 191:428-438. [PMID: 30870098 DOI: 10.1667/rr15280.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Detonation of a radiological or nuclear device in a major urban area will result in heterogenous radiation exposure, given to the significant shielding of the exposed population due to surrounding structures. Development of biodosimetry assays for triage and treatment requires knowledge of the radiation dose-volume effect for the bone marrow (BM). This proof-of-concept study was designed to quantify BM damage in the non-human primate (NHP) after exposure to one of four radiation patterns likely to occur in a radiological/nuclear attack with varying levels of BM sparing. Rhesus macaques (11 males, 12 females; 5.30-8.50 kg) were randomized by weight to one of four arms: 1. bilateral total-body irradiation (TBI); 2. unilateral TBI; 3. bilateral upper half-body irradiation (UHBI); and 4. bilateral lower half-body irradiation (LHBI). The match-point for UHBI vs. LHBI was set at 1 cm above the iliac crest. Animals were exposed to 4 Gy of 6 MV X rays. Peripheral blood samples were drawn 14 days preirradiation and at days 1, 3, 5, 7 and 14 postirradiation. Dosimetric measurements after irradiation indicated that dose to the mid-depth xiphoid was within 6% of the prescribed dose. No high-grade fever, weight loss >10%, dehydration or respiratory distress was observed. Animals in the bilateral- and unilateral TBI arms presented with hematologic changes [e.g., absolute neutrophil count (ANC) <500/ll; platelets <50,000/ll] and clinical signs/symptoms (e.g., petechiae, ecchymosis) characteristic of the acute radiation syndrome. Animals in the bilateral UHBI arm presented with myelosuppression; however, none of the animals developed severe neutropenia or thrombocytopenia (ANC remained >500/µl; platelets >50,000/µl during 14-day follow-up). In contrast, animals in the LHBI arm (1 cm above the ilieac crest to the toes) were protected against BM toxicity with no marked changes in hematological parameters and only minor gross pathology [petechiae (1/5), splenomegaly (1/5) and mild pulmonary hemorrhage (1/5)]. The model performed as expected with respect to the dose-volume effect of total versus partial-BM irradiation, e.g., increased shielding resulted in reduced BM toxicity. Shielding of the major blood-forming organs (e.g., skull, ribs, sternum, thoracic and lumbar spine) spared animals from bone marrow toxicity. These data suggest that the biological consequences of the absorbed dose are dependent on the total volume and pattern of radiation exposure.
Collapse
Affiliation(s)
- Isabel L Jackson
- a Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Allison Gibbs
- a Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Yannick Poirier
- a Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Lynne Wathen
- b Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - John Eley
- a Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Emily Draeger
- a Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Mathangi Gopalakrishnan
- c Division of Diagnostics and Medical Devices, Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary of Preparedness and Response, U.S. Department of Health and Human Services, Washington, DC 20024
| | - Biju Benjamin
- c Division of Diagnostics and Medical Devices, Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary of Preparedness and Response, U.S. Department of Health and Human Services, Washington, DC 20024
| | - Zeljko Vujaskovic
- a Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
37
|
Farese AM, Bennett AW, Gibbs AM, Hankey KG, Prado K, Jackson W, MacVittie TJ. Efficacy of Neulasta or Neupogen on H-ARS and GI-ARS Mortality and Hematopoietic Recovery in Nonhuman Primates After 10-Gy Irradiation With 2.5% Bone Marrow Sparing. HEALTH PHYSICS 2019; 116:339-353. [PMID: 30281533 PMCID: PMC6349470 DOI: 10.1097/hp.0000000000000878] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A nonhuman primate model of acute, partial-body, high-dose irradiation with minimal (2.5%) bone marrow sparing was used to assess endogenous gastrointestinal and hematopoietic recovery and the ability of Neulasta (pegylated granulocyte colony-stimulating factor) or Neupogen (granulocyte colony-stimulating factor) to enhance recovery from myelosuppression when administered at an increased interval between exposure and initiation of treatment. A secondary objective was to assess the effect of Neulasta or Neupogen on mortality and morbidity due to the hematopoietic acute radiation syndrome and concomitant gastrointestinal acute radiation syndrome. Nonhuman primates were exposed to 10.0 Gy, 6 MV, linear accelerator-derived photons delivered at 0.80 Gy min. All nonhuman primates received subject-based medical management. Nonhuman primates were dosed daily with control article (5% dextrose in water), initiated on day 1 postexposure; Neulasta (300 μg kg), administered on days 1, 8, and 15 or days 3, 10, and 17 postexposure; or Neupogen (10 μg kg), administered daily postexposure following its initiation on day 1 or day 3 until neutrophil recovery (absolute neutrophil count ≥1,000 cells μL for 3 consecutive days). Mortality in the irradiated cohorts suggested that administration of Neulasta or Neupogen on either schedule did not affect mortality due to gastrointestinal acute radiation syndrome or mitigate mortality due to hematopoietic acute radiation syndrome (plus gastrointestinal damage). Following 10.0 Gy partial-body irradiation with 2.5% bone marrow sparing, the mean duration of neutropenia (absolute neutrophil count <500 cells μL) was 22.4 d in the control cohort vs. 13.0 and 15.3 d in the Neulasta day 1, 8, 15 and day 3, 10, 17 cohorts, relative to 16.2 and 17.4 d in the Neupogen cohorts initiated on day 1 and day 3, respectively. The absolute neutrophil count nadirs were 48 cells μL in the controls; 117 cells μL and 40 cells μL in the Neulasta days 1, 8, and 15 or days 3, 10, and 17 cohorts, respectively; and 75 cells μL and 37 cells μL in the Neupogen day 1 and day 3 cohorts, respectively. Therefore, the earlier administration of Neulasta or Neupogen was more effective in this model of marginal 2.5% bone marrow sparing. The approximate 2.5% bone marrow sparing may approach the threshold for efficacy of the lineage-specific medical countermeasure. The partial-body irradiation with 2.5% bone marrow sparing model can be used to assess medical countermeasure efficacy in the context of the concomitant gastrointestinal and hematopoietic acute radiation syndrome sequelae.
Collapse
Affiliation(s)
- Ann M. Farese
- University of Maryland School of Medicine, Baltimore, MD
| | | | | | - Kim G. Hankey
- University of Maryland School of Medicine, Baltimore, MD
| | - Karl Prado
- University of Maryland Medical System, Department of Radiation Oncology, Baltimore, MD
| | | | | |
Collapse
|
38
|
MacVittie TJ, Farese AM, Kane MA. ARS, DEARE, and Multiple-organ Injury: A Strategic and Tactical Approach to Link Radiation Effects, Animal Models, Medical Countermeasures, and Biomarker Development to Predict Clinical Outcome. HEALTH PHYSICS 2019; 116:297-304. [PMID: 30608246 PMCID: PMC8439279 DOI: 10.1097/hp.0000000000001045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
| | - Ann M Farese
- University of Maryland School of Medicine, Baltimore, MD
| | - Maureen A Kane
- University of Maryland School of Pharmacy, Baltimore, MD
| |
Collapse
|
39
|
Parker GA, Li N, Takayama K, Booth C, Tudor GL, Farese AM, MacVittie TJ. Histopathological Features of the Development of Intestine and Mesenteric Lymph Node Injury in a Nonhuman Primate Model of Partial-body Irradiation with Minimal Bone Marrow Sparing. HEALTH PHYSICS 2019; 116:426-446. [PMID: 30624355 PMCID: PMC6362996 DOI: 10.1097/hp.0000000000000932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Male rhesus macaques were subjected to partial-body irradiation at 10, 11, or 12 Gy with 5% bone marrow protection. Animals were euthanized when dictated by prospectively determined clinical parameters or at approximately 180 d following irradiation. Histological sections of jejunum, colon, and mesenteric lymph node were stained with hematoxylin and eosin as well as a battery of histochemical and immunohistochemical stains. The immediate postirradiation histopathological alterations in the jejunum and colon were based primarily on injury to rapidly proliferating crypt epithelial cells, though there was evidence of additional radiation-induced fibrogenic responses. There was substantial resolution of the radiation-related mucosal injury through the observation period, but microscopically visible defects in mucosal structure persisted to the end of the observation period. In the later stages of the observation period, the jejunum and colon had overt fibrosis that was most commonly located in the submucosa and serosa, with less microscopically discernible involvement of the mucosa. Mesenteric lymph nodes had an immediate postirradiation reduction in cellularity due to the known effects of irradiation on lymphoid cell populations. In later stages of the observation period the lymph nodes also developed fibrotic changes, possibly related to transmigration of immunomodulatory cells and/or signaling molecules from the radiation-damaged intestine.
Collapse
Affiliation(s)
- George A. Parker
- Charles River Laboratories/Pathology Associates, Durham, NC, USA
| | - Na Li
- Charles River Laboratories/Pathology Associates, Durham, NC, USA
| | - Kyle Takayama
- Charles River Laboratories/Pathology Associates, Durham, NC, USA
| | | | | | | | | |
Collapse
|
40
|
Parker GA, Li N, Takayama K, Farese AM, MacVittie TJ. Lung and Heart Injury in a Nonhuman Primate Model of Partial-body Irradiation with Minimal Bone Marrow Sparing: Histopathological Evidence of Lung and Heart Injury. HEALTH PHYSICS 2019; 116:383-400. [PMID: 30688698 PMCID: PMC6381599 DOI: 10.1097/hp.0000000000000936] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Male rhesus macaques were subjected to partial-body irradiation at 10, 11, or 12 Gy with 5% bone marrow protection. Animals were euthanized when dictated by prospectively determined clinical parameters or at approximately 180 d following irradiation. Histological sections of lung and heart were stained with hematoxylin and eosin as well as a battery of histochemical and immunohistochemical stains. Histopathological alterations in the lung were centered on fibrosis, inflammation, and reactive/proliferative changes in pneumocytes. These changes were noted in animals necropsied after approximately 85-100 d postirradiation and extending through the observation period. Interstitial and pleural fibrosis demonstrated by Masson's trichrome staining were associated with increased alpha smooth muscle actin and collagen 1 immunohistochemical staining. Areas of interstitial fibrosis had reduced microvascular density with CD31 immunohistochemical staining. Accumulations of CD163- and CD206-positive alveolar macrophages were present in areas of interstitial fibrosis. Unidentified cells termed "myxoid" cells in alveolar walls had histochemical and immunohistochemical staining characteristics of epithelial-, endothelial-, or pericyte-mesenchymal transition states that were developing myofibroblast features. Distinctive focal or multifocal alveolar-bronchiolar hyperplasia had microscopic features of preneoplastic proliferation. Delayed radiation-associated changes in the heart consisted primarily of myocardial fibrosis, with rare histological evidence of myofiber degeneration.
Collapse
Affiliation(s)
- George A. Parker
- Charles River Laboratories/Pathology Associates, Durham, NC, USA
| | - Na Li
- Charles River Laboratories/Pathology Associates, Durham, NC, USA
| | - Kyle Takayama
- Charles River Laboratories/Pathology Associates, Durham, NC, USA
| | - Ann M. Farese
- University of Maryland, School of Medicine, Dept. of Radiation Oncology, Baltimore, MD, USA
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Dept. of Radiation Oncology, Baltimore, MD, USA
| |
Collapse
|
41
|
MacVittie TJ, Farese AM, Parker GA, Jackson W. The Time Course of Radiation-induced Lung Injury in a Nonhuman Primate Model of Partial-body Irradiation With Minimal Bone Marrow Sparing: Clinical and Radiographic Evidence and the Effect of Neupogen Administration. HEALTH PHYSICS 2019; 116:366-382. [PMID: 30624350 DOI: 10.1097/hp.0000000000000968] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The primary objectives of two companion manuscripts were to assess the natural history of delayed radiation-induced lung injury in a nonhuman primate model of acute high-dose, partial-body irradiation with 5% bone marrow sparing, to include the clinical, radiographic, and histopathological evidence and the effect of Neupogen administration on the morbidity and mortality. Nonhuman primates were exposed to 10.0 or 11.0 Gy with 6 MV linac-derived photons at approximately 0.80 Gy min. All nonhuman primates received subject-based, medical management. Subsets of nonhuman primates were administered Neupogen (10 μg kg) starting on day 1, day 3, or day 5 until recovery (absolute neutrophil count ≥ 1,000 cells μL for three consecutive days). Mortality due to multiple organ injury at 180 d study duration: Mortality at 180 d post either 10.0 Gy or 11.0 Gy was the consequence of concurrent injury due to the acute radiation syndrome (gastrointestinal and hematological) and delayed radiation-induced lung injury. The 180-d all-cause mortality observed in the control cohorts at 10.0 Gy (53%) or 11.0 Gy (86%) did not vary from cohorts that received Neupogen at any administration schedule. Mortality ranged from 43-50% (10 Gy) to 75-100% (11.0 Gy) in the Neupogen-treated cohorts. The study, however, was not powered to detect statistical significant differences between mortality in the control and Neupogen-treated cohorts. Clinical and radiographic evidence of radiation-induced lung injury: The mean nonsedated respiratory rate in the control cohorts exposed to 10 or 11 Gy increased from a baseline value of 37 breaths min to >60 breaths min within 103 d and 94 d postexposure, and the incidence of nonsedated respiratory rate > 80 breaths min was 50% and 70%, respectively. The mean duration of latency to development of clinical pneumonitis and/or fibrosis (nonsedated respiratory rate > 80 breaths min) was not significantly different between the 10.0-Gy or 11.0 Gy-cohorts (range 100-107 d). Neupogen (granulocyte colony-stimulating factor) administration had no apparent effect of the latency, incidence, or severity of nonsedated respiratory rate within either radiation dose or administration schedule. Computed tomography scans were obtained and images were analyzed for evidence of lung injury, e.g., pneumonitis and/or fibrosis, pleural and pericardial effusion. A quantitative, semiautomated method was developed based on differences in radiodensity (Hounsfield units) and lung morphology to extract the volume of pneumonitis/fibrosis and pleural effusion as indexed against total lung at each time point obtained. At both irradiation doses, 100% of the nonhuman primates surviving acute radiation syndrome manifested radiographic evidence of radiation-induced lung injury as pneumonitis and/or fibrosis. There was no apparent effect of Neupogen administration on the latency, incidence, severity, or progression of pneumonitis/fibrosis:total lung volume or pleural effusion:total lung volume at either exposure. A comparative review of the data illustrated the concomitant time course of increased mortality, nonsedated respiratory rate, and pneumonitis/fibrosis:total lung volume and pleural effusion:total lung volume consequent to 10.0-Gy or 11.0-Gy partial-body irradiation with 5% bone marrow sparing. All key parameters proceeded from a latent period of approximately 60 d followed by an increase in all three indices of clinical and radiographic evidence of radiation-induced lung injury within the next 60 d to 120 d postexposure. The subsequent time course and longitudinal analysis was influenced by the persistent progression of radiation-induced lung injury, administration of dexamethasone, and loss of nonhuman primates due to lethality. Companion paper: Lung and Heart Injury in a Nonhuman Primate Model of Partial-body Irradiation With Minimal Bone Marrow Sparing: Histopathological Evidence of Lung and Heart Injury (Parker et al. 2019): Note that the computed tomography-based radiodensity data do not permit differentiation of pneumonitis and fibrosis. The companion paper employed Masson's trichrome, collagen 1, and selected staining to identify the key time and incidence parameters relative to excessive collagen deposition indicative of fibrosis and associated histopathology in the lung. This histological database provided valuable longitudinal analysis in support of the clinical and radiographic evidence associated with the time course of radiation-induced lung injury.
Collapse
Affiliation(s)
| | - Ann M Farese
- University of Maryland School of Medicine, Baltimore, MD
| | | | | |
Collapse
|
42
|
MacVittie TJ, Farese AM, Parker GA, Jackson W, Booth C, Tudor GL, Hankey KG, Potten CS. The Gastrointestinal Subsyndrome of the Acute Radiation Syndrome in Rhesus Macaques: A Systematic Review of the Lethal Dose-response Relationship With and Without Medical Management. HEALTH PHYSICS 2019; 116:305-338. [PMID: 30624353 PMCID: PMC9446380 DOI: 10.1097/hp.0000000000000903] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Well-characterized animal models that mimic the human response to potentially lethal doses of radiation are required to assess the efficacy of medical countermeasures under the criteria of the US Food and Drug Administration's Animal Rule. Development of a model for the gastrointestinal acute radiation syndrome requires knowledge of the radiation dose-response relationship and time course of mortality and morbidity across the acute and prolonged gastrointestinal radiation syndrome. The nonhuman primate, rhesus macaque, is a relevant animal model that has been used to determine the efficacy of medical countermeasures to mitigate major signs of morbidity and mortality relative to the hematopoietic acute radiation syndrome, gastrointestinal acute radiation syndrome, and lung injury. It can be used to assess the natural history of gastrointestinal damage, concurrent multiple organ injury, and aspects of the mechanism of action for acute radiation exposure and treatment. A systematic review of relevant studies that determined the dose-response relationship for the gastrointestinal acute and prolonged radiation syndrome in the rhesus macaque relative to radiation dose, quality, dose rate, exposure uniformity, and use of medical management has never been performed.
Collapse
Affiliation(s)
| | - Ann M Farese
- University of Maryland School of Medicine, Baltimore, MD
| | | | | | | | | | - Kim G Hankey
- University of Maryland School of Medicine, Baltimore, MD
| | | |
Collapse
|
43
|
Parker GA, Cohen EP, Li N, Takayama K, Farese AM, MacVittie TJ. Radiation Nephropathy in a Nonhuman Primate Model of Partial-Body Irradiation With Minimal Bone Marrow Sparing-Part 2: Histopathology, Mediators, and Mechanisms. HEALTH PHYSICS 2019; 116:409-425. [PMID: 30624348 PMCID: PMC6349488 DOI: 10.1097/hp.0000000000000935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Male rhesus macaques were subjected to partial-body irradiation at 10, 11, or 12 Gy with 5% bone marrow protection. Animals were euthanized when dictated by prospectively determined clinical parameters or at approximately 180 d following irradiation. Histological sections of kidney were stained with hematoxylin and eosin as well as a battery of histochemical and immunohistochemical stains. Histopathological alterations were centered on glomerular changes and fibrosis of glomeruli and the interstitial compartment. These changes were first noted in animals necropsied approximately 100 d postirradiation and continued in animals necropsied through the observation period. Glomerular changes included congestion, thrombosis, erythrocyte degeneration, capillary tuft dilation, fibrin deposition, altered quantity and dispersion pattern of von Willebrand factor, increased mesangial matrix, and mesangial deposits of material that stained positively with periodic acid-Schiff staining. Areas of interstitial and glomerular fibrosis, as demonstrated by Masson's trichrome staining, were topographically associated with increased immunohistochemical staining for connective tissue growth factor, alpha smooth muscle actin, and collagen 1, but there was little staining for transforming growth factor beta. Fibrotic glomeruli had reduced microvascularity as demonstrated by reduced CD31 immunohistochemical staining. Vascular congestion was commonly noted in the region of the corticomedullary junction, and proteinaceous casts were commonly noted in cortical and medullary tubules. Longitudinal analysis of histopathological alterations provided evidence defining the latency, severity, and progression of delayed radiation-induced kidney injury.
Collapse
Affiliation(s)
| | - Eric P Cohen
- University of Maryland, School of Medicine, Nephrology Division, Baltimore, MD
| | - Na Li
- Charles River Laboratories/Pathology Associates, Durham, NC
| | - Kyle Takayama
- Charles River Laboratories/Pathology Associates, Durham, NC
| | - Ann M Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Thomas J MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| |
Collapse
|
44
|
Thrall KD, Mahendra S, Jackson MK, Jackson W, Farese AM, MacVittie TJ. A Comparative Dose-response Relationship Between Sexes for Mortality and Morbidity of Radiation-induced Lung Injury in the Rhesus Macaque. HEALTH PHYSICS 2019; 116:354-365. [PMID: 30688697 DOI: 10.1097/hp.0000000000000925] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Radiation-induced lung injury is a characteristic, dose- and time-dependent sequela of potentially lethal, delayed effects of acute radiation exposure. Understanding of these delayed effects to include development of medical countermeasures requires well-characterized and validated animal models that mimic the human response to acute radiation and adhere to the criteria of the US Food and Drug Administration Animal Rule. The objective herein was to establish a nonhuman primate model of whole-thorax lung irradiation in female rhesus macaques. Definition of the dose-response relationship to include key signs of morbidity and mortality in the female macaque served to independently validate the recent model performed with male macaques and importantly, to establish the lack of sex and institutional bias across the dose-response relationship for radiation-induced lung injury. The study design was similar to that described previously, with the exception that female rhesus macaques were utilized. In brief, a computed tomography scan was conducted prior to irradiation and used for treatment planning. Animals in 5 cohorts (n = 8 per cohort) were exposed to a single 6-MV photon exposure focused on the lung as determined by the computed tomography scan and treatment planning at a dose of 9.5, 10, 10.5, 11, or 11.5 Gy. Subject-based supportive care, including administration of dexamethasone, was based on trigger-to-treat criteria. Clearly defined euthanasia criteria were used to determine a moribund condition over the 180-day study duration post-whole-thorax lung irradiation. Percent mortality per radiation dose was 12.5% at 9.5 Gy, 25% at 10 Gy, 62.5% at 10.5 Gy, 87.5% at 11 Gy, and 100% at 11.5 Gy. The resulting probit plot for the whole-thorax lung irradiation model estimated an LD50/180 of 10.28 Gy, which was not significantly different from the published estimate of 10.27 Gy for the male rhesus. The key parameters of morbidity and mortality support the conclusion that there is an absence of a sex influence on the radiation dose-response relationship for whole-thorax lung irradiation in the rhesus macaque. This work also provides a significant interlaboratory validation of the previously published model.
Collapse
Affiliation(s)
| | - S Mahendra
- Northwest Medical Physics Center, Lynnwood, WA
| | | | | | - Ann M Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Thomas J MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| |
Collapse
|
45
|
Hale LP, Rajam G, Carlone GM, Jiang C, Owzar K, Dugan G, Caudell D, Chao N, Cline JM, Register TC, Sempowski GD. Late effects of total body irradiation on hematopoietic recovery and immune function in rhesus macaques. PLoS One 2019; 14:e0210663. [PMID: 30759098 PMCID: PMC6373904 DOI: 10.1371/journal.pone.0210663] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/28/2018] [Indexed: 12/29/2022] Open
Abstract
While exposure to radiation can be lifesaving in certain settings, it can also potentially result in long-lasting adverse effects, particularly to hematopoietic and immune cells. This study investigated hematopoietic recovery and immune function in rhesus macaques Cross-sectionally (at a single time point) 2 to 5 years after exposure to a single large dose (6.5 to 8.4 Gray) of total body radiation (TBI) derived from linear accelerator-derived photons (2 MeV, 80 cGy/minute) or Cobalt 60-derived gamma irradiation (60 cGy/min). Hematopoietic recovery was assessed through measurement of complete blood counts, lymphocyte subpopulation analysis, and thymus function assessment. Capacity to mount specific antibody responses against rabies, Streptococcus pneumoniae, and tetanus antigens was determined 2 years after TBI. Irradiated macaques showed increased white blood cells, decreased platelets, and decreased frequencies of peripheral blood T cells. Effects of prior radiation on production and export of new T cells by the thymus was dependent on age at the time of analysis, with evidence of interaction with radiation dose for CD8+ T cells. Irradiated and control animals mounted similar mean antibody responses to proteins from tetanus and rabies and to 10 of 11 serotype-specific pneumococcal polysaccharides. However, irradiated animals uniformly failed to make antibodies against polysaccharides from serotype 5 pneumococci, in contrast to the robust responses of non-irradiated controls. Trends toward decreased serum levels of anti-tetanus IgM and slower peak antibody responses to rabies were also observed. Taken together, these data show that dose-related changes in peripheral blood cells and immune responses to both novel and recall antigens can be detected 2 to 5 years after exposure to whole body radiation. Longer term follow-up data on this cohort and independent validation will be helpful to determine whether these changes persist or whether additional changes become evident with increasing time since radiation, particularly as animals begin to develop aging-related changes in immune function.
Collapse
Affiliation(s)
- Laura P. Hale
- Department of Pathology and Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States of America
- * E-mail:
| | - Gowrisankar Rajam
- Immunobiology Laboratory, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States of America
| | - George M. Carlone
- Immunobiology Laboratory, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States of America
| | - Chen Jiang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States of America
| | - Kouros Owzar
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States of America
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, United States of America
| | - Greg Dugan
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - David Caudell
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Nelson Chao
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States of America
| | - J. Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Thomas C. Register
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Gregory D. Sempowski
- Department of Pathology and Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States of America
| |
Collapse
|
46
|
Fish BL, MacVittie TJ, Szabo A, Moulder JE, Medhora M. WAG/RijCmcr rat models for injuries to multiple organs by single high dose ionizing radiation: similarities to nonhuman primates (NHP). Int J Radiat Biol 2019; 96:81-92. [PMID: 30575429 DOI: 10.1080/09553002.2018.1554921] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Purpose: Defined animal models are needed to pursue the FDA Animal Rule for approval of medical countermeasure for radiation injuries. This study compares WAG/RijCmcr rat and nonhuman primate (NHP) models for acute radiation syndrome (ARS) and delayed effects of acute radiation exposure (DEARE).Materials and methods: Irradiation models include total body irradiation, partial body irradiation with bone marrow sparing and whole thorax lung irradiations. Organ-specific sequelae of radiation injuries were compared using dose-response relationships.Results and conclusions: Rats and NHP manifest similar organ dysfunctions after radiation, starting with acute gastrointestinal (GI-ARS) and hematopoietic (H-ARS) syndromes followed by lung, heart and kidney toxicities. Humans also manifest these sequelae. Latencies for injury were earlier in rats than in NHP. After whole thorax lung irradiations (WTLI) up to 13 Gy, there was recovery of lung function from pneumonitis in rats. This has not been evaluated in NHP. The latency, incidence, severity and progression of radiation pneumonitis was not influenced by early multi-organ injury from ARS in rats or NHP. Rats developed more severe radiation nephropathy than NHP, and also progressed more rapidly. Dosimetry, anesthesia, environment, supportive care, euthanasia criteria etc., may account for the alterations in radiation sensitivity observed between species.
Collapse
Affiliation(s)
- Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA.,Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | - Thomas J MacVittie
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, USA.,Charles River Laboratories, Durham, NC, USA
| | - Aniko Szabo
- Division of Biostatistics, Medical College of Wisconsin (MCW), Milwaukee, WI, USA
| | - John E Moulder
- Department of Radiation Oncology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA.,Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA.,Department of Pulmonary Medicine, Medical College of Wisconsin (MCW), Milwaukee, WI, USA.,Department of Physiology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA.,Cardiovascular Research Center, Medical College of Wisconsin (MCW), Milwaukee, WI, USA.,Cancer Center, Medical College of Wisconsin (MCW), Milwaukee, WI, USA
| |
Collapse
|
47
|
Kaur A, Ten Have GAM, Hritzo B, Deutz NEP, Olsen C, Moroni M. Morphological and functional impairment in the gut in a partial body irradiation minipig model of GI-ARS. Int J Radiat Biol 2019; 96:112-128. [PMID: 30475652 DOI: 10.1080/09553002.2018.1552377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Purpose: Göttingen minipig (G-MP) displays classic gastrointestinal acute radiation syndrome (GI-ARS) following total body irradiation (TBI) at GI doses which are lethal by 10-14 days. In collaboration with BARDA, we are developing a hemi-body/partial body irradiation (PBI) model by exposing only the abdomen and lower extremities to study GI structure/function impairment, natural history of injury and recovery, as well as correlative biomarkers out to 30 days.Materials and methods: Twenty-four G-MP were exposed to either 12 or 16 Gy (LINAC Elekta); head, forelimbs, and thorax were outside the irradiation field, sparing ∼50% of the bone marrow. Animals were followed for 30 days with euthanasia scheduled at pre-set intervals to study the time course of GI injury and recovery. Hematological profiles, clinical symptoms, gross- and histo-pathology including markers of proliferation and apoptosis in the small intestines, gut function parameters (food tolerance, digestion, absorption, citrulline production), and levels of two biomarkers, CRP and IGF-1, were evaluated.Results: PBI at 16 Gy yielded higher lethality than 12 Gy. Unlike TBI, PBI did not cause severe pancytopenia or external hemorrhage, as expected, and allowed to focus the injury on GI organs while sparing the radiation sensitive heart and lung. Compromised animals showed inactivity, anorexia, vomiting, diarrhea, and weight loss. Histology revealed that in 12 Gy irradiated animals, lesions recovered overtime. In 16 Gy irradiated animals, lesions were more pronounced and persistent. BrdU and Ki67 labelling demonstrated dose-dependent loss of crypts and subsequent mucosal ulceration which recovered over time. Minimal apoptosis was observed at both doses. Reductions in food tolerance, digestion, absorption, and citrulline production were time and dose-dependent. Loss of citrulline reached a nadir between 6-12 days and then recovered partially. CRP and IGF-1 were upregulated following PBI at GI doses.Conclusions: This lower hemi-body irradiation model allowed for extended survival at GI-specific ARS doses and development of a well-controlled GI syndrome with minimal hematopoietic injury or confounding mortality from cardiopulmonary damage. A dose-dependent impairment in the intestinal structure resulted in overall decreased gut functionality followed by a partial recovery. However, while the structure appeared to be recovered, not all functionality was attained. PBI induced systemic inflammation and altered the IGF-1 hormone indicating that these can be used as biomarkers in the minipig even under partial body conditions. This PBI model aligns with other minipig models under BARDA's large animal consortium to test medical countermeasure efficacy against a less complex GI-specific ARS injury.
Collapse
Affiliation(s)
- Amandeep Kaur
- Radiation Countermeasure program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Gabriëlla A M Ten Have
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Bernadette Hritzo
- Radiation Countermeasure program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Cara Olsen
- Biostatistics Consulting Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Maria Moroni
- Radiation Countermeasure program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
48
|
King GL, Sandgren DJ, Mitchell JM, Bolduc DL, Blakely WF. System for Scoring Severity of Acute Radiation Syndrome Response in Rhesus Macaques ( Macaca mulatta). Comp Med 2018; 68:474-488. [PMID: 30305197 PMCID: PMC6310201 DOI: 10.30802/aalas-cm-17-000106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/18/2017] [Accepted: 03/17/2018] [Indexed: 11/05/2022]
Abstract
We developed a clinical assessment tool for use in an NHP radiation model to 1) quantify severity responses for subsyndromes of the acute radiation syndrome (ARS; that is, hematopoietic and others) and 2) identify animals that required enhanced monitoring. Our assessment tool was based primarily on the MEdical TREatment ProtocOLs for Radiation Accident Victims (METREPOL) scoring system but was adapted for NHP to include additional indices (for example, behaviors) for use in NHP studies involving limited medical intervention. Male (n = 16) and female (n = 12) rhesus macaques (Macaca mulatta; 5 groups: sham and 1.0, 3.5, 6.5, and 8.5 Gy; n = 6 per group) received sham- or bilateral 60Co γ-irradiation at approximately 0.6 Gy/mn. Clinical signs of ARS and blood analysis were obtained before and serially for clinical assessment during the period of 6 h to 60 d after sham or 60Co irradiation. Minimal supportive care (that is, supplemental nutrition, subcutaneous fluid, loperamide, acetaminophen, and topical antibiotic ointment) was prescribed based on clinical observations. Results from clinical signs and assays for assessment of relevant organ systems in individual animals were stratified into ARS severity scores of normal (0), mild (1), moderate (2), and severe (3 or 4). Individual NHP were scored for maximal subsyndrome ARS severity in multiple organ systems by using the proposed ARS scoring system to obtain an overall ARS response category. One NHP died unexpectedly. The multiple-parameter ARS severity scoring tool aided in the identification of animals in the high-dose (6.5 and 8.5 Gy) groups that required enhanced monitoring.
Collapse
Affiliation(s)
- Gregory L King
- Departments of Scientific Research, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - David J Sandgren
- Departments of Scientific Research, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jennifer M Mitchell
- Departments of Veterinary Sciences, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA; The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David L Bolduc
- Departments of Scientific Research, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - William F Blakely
- Departments of Scientific Research, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.
| |
Collapse
|
49
|
Janec KJ, Yuan H, Norton JE, Kelner RH, Hirt CK, Betensky RA, Guinan EC. rBPI 21 (Opebacan) Promotes Rapid Trilineage Hematopoietic Recovery in a Murine Model of High-Dose Total Body Irradiation. Am J Hematol 2018; 93:10.1002/ajh.25136. [PMID: 29752735 PMCID: PMC6230507 DOI: 10.1002/ajh.25136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 11/11/2022]
Abstract
The complexity of providing adequate care after radiation exposure has drawn increasing attention. While most therapeutic development has focused on improving survival at lethal radiation doses, acute hematopoietic syndrome (AHS) occurs at substantially lower exposures. Thus, it is likely that a large proportion of such a radiation-exposed population will manifest AHS of variable degree and that the medical and socioeconomic costs of AHS will accrue. Here, we examined the potential of rBPI21 (opebacan), used without supportive care, to accelerate hematopoietic recovery after radiation where expected survival was substantial (42-75%) at 30 days). rBPI21 administration was associated with accelerated recovery of hematopoietic precursors and normal marrow cellularity, with increases in megakaryocyte numbers particularly marked. This translated into attaining normal trilineage peripheral blood counts 2-3 weeks earlier than controls. Elevations of hematopoietic growth factors observed in plasma and the marrow microenvironment suggest the mechanism is likely multifactorial and not confined to known endotoxin-neutralizing and cytokine down-modulating activities of rBPI21 . These observations deserve further exploration in radiation models and other settings where inadequate hematopoiesis is a prominent feature. These experiments also model the potential of therapeutics to limit the allocation of scarce resources after catastrophic exposures as an endpoint independent of lethality mitigation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kenneth J. Janec
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston MA
| | - Huaiping Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA
| | - James E. Norton
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston MA
| | - Rowan H. Kelner
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston MA
| | - Christian K. Hirt
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA
| | - Rebecca A. Betensky
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston MA
| | - Eva C. Guinan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston MA
- Department of Radiation Oncology, Harvard Medical School, Boston MA
| |
Collapse
|
50
|
Accardi MV, Donini O, Rumage A, Ascah A, Haruna J, Pouliot M, Bujold K, Huang H, Wierzbicki W, Stamatopoulos J, Naraghi H, Measey T, Authier S. Characterization of a partial-body irradiation model with oral cavity shielding in nonhuman primates. Int J Radiat Biol 2018; 96:100-111. [DOI: 10.1080/09553002.2018.1440093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | | | | | | | | | - Kim Bujold
- CiToxLAB North America, Laval, QC, Canada
| | - Hai Huang
- CiToxLAB North America, Laval, QC, Canada
| | | | | | | | | | - Simon Authier
- CiToxLAB North America, Laval, QC, Canada
- Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC, Canada
| |
Collapse
|